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Abstract

Recently, binary hashing has been widely applied to data
compression, ranking and nearest-neighbor search. Although
some promising results have been achieved, effectively opti-
mizing sign function related objectives is still highly chal-
lenging and thus pseudo-labels are inevitably used. In this
paper, we propose a novel general framework to simultane-
ously minimize the measurement distortion and the quantiza-
tion loss, which enable to learn hash functions directly with-
out requiring the pseudo-labels. More significantly, a novel
W-Shape Loss (WSL) is specifically developed for hashing
so that both the two separate steps of relaxation and the NP-
hard discrete optimization are successfully discarded. The ex-
perimental results demonstrate that the retrieval performance
both in uni-modal and cross-modal settings can be improved.

Introduction

Actually, almost all existing methods of binary embedding
(hashing) choose H(x) = sign(F (x)) ∈ {1,−1}K as the
hash function to binarize samples x ∈ X , where F captures
some specific properties, X is a sample set and K is the
length of codes. Generally, a minimization problem to keep
the measurement consistency of relationships between the
original and learned Hamming spaces can be written as:

H∗ = argmin
H
R(H,X), (1)

where R(H,X) =
∑

i,jM(S(H(xi), H(xj)), S(xi, xj)).
S describes the relationships between any pair of samples
in the corresponding space and M is used to measure the
difference between the two measurements of relationship.
However, the immediate challenging is how to optimize
sign related ideal objective functions, because the step func-
tion sign is non-differentiable at 0 in the ordinary sense.

To overcome the problems induced by sign function, re-
cently, three strategies are normally used. Firstly, the dis-
crete codes H(x) can be obtained from the objective by dis-
crete optimization and, then, the best hash functions would
be the ones approach to these codes mostly (Lin et al. 2013).
Nevertheless, discrete optimization is an NP hard problem
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when the length of codes is large and, in practice, some re-
laxation tricks are inevitably needed. Moreover, the origi-
nally preserved properties are likely to be ruined after the
two separated steps of relaxation and approximation, since
the codes were learned without knowledge of functions. Sec-
ondly, to improve the two-step hashing, several works (Gong
et al. 2013b) consider to optimize the codes and the func-
tions, alternatively. In fact, beside the NP hard problem, it-
erative optimization between codes and functions is compu-
tationally expensive. More importantly, once the model gen-
erates a bad results in one step, then the effect of decreasing
would be amplified in another step, due to the second opti-
mum is the one which fits the first results mostly. Thirdly,
some constraints, such as hinge loss (Rastegari et al. 2013),
are introduced to learn functions to avoid that F (x) is close
to zero, when F (x) is directly used. However, the hinge loss
needs that the codes should be given in advance and thus, an
alternative optimization is also required.

In addition to the above essential problems, a common in-
ferior trait is that, before learning the hash function, the cer-
tain binary codes H(x) need to be given in advance. Then,
learning hash functions could be considered as training a set
of binary classifiers, which regard H(x) as the ground-truth
label. However, the tasks of hashing and classification are
fundamental different and the codes between them have var-
ied practical significance as well. Roughly speaking, the loss
in classification is used to measure the difference between
F (x) and a fixed label (one of them 1 or −1) but the loss
in hashing only needs to measure the difference between
F (x) and either of them (1 or −1). For example, to improve
the measurement consistency, F (x) in hashing could freely
jump from −1 to 1 and vice versa, whilst for classification,
it will make a big classification loss.

Can we learn a set of hash functions as training clas-
sifiers for classification but without introducing the surro-
gate ground-truth labels? The answer is definitely yes. In
this paper, we propose a novel general framework to di-
rectly learn a set of hash functions without the ground-truth
labels, which can minimize the quantization loss and the
measurement distortion, simultaneously. More significantly,
a new W-Shape Loss (WSL) function is developed so that
the quantization loss between F (x) and the binary codes
could be directly minimized and the most important fea-
ture of W-shape loss having the two equal minimums at 1
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and −1 makes it rightly suitable to the hash function learn-
ing. Indeed, the essential role of WSL is to minimize the
minimum distance (i.e.min(|f(x)−1|, |f(x)− (−1)|)) be-
tween the mapped value f(x) and the set {−1, 1} with less
measurement distortion, where f is a function for one code.
Moreover, any kind of measurement consistency considered
as the regularization item could be seamlessly incorporated
into the framework. Finally, by minimizing the overall ob-
jective (loss + regularization), we can directly obtain the
parameters of functions without both the NP-hard discrete
optimization and the two separated steps of relaxation be-
tween H(x) and F (x).

In summary, our contributions are as follows: 1) Our
method does not need pseudo-labels which are usually ob-
tained by a separate optimization in previous work. 2) WSL
avoids the NP-hard discrete optimization required in previ-
ous work, and does not need the alternative optimization
between codes and mappings in previous work. 3) We in-
troduce a new quantization loss to minimize the minimum
distance between the mapped value and the code set. 4) We
propose a general framework which enables to seamlessly
incorporate any kind of measurement consistency and quan-
tization loss.

Related Work
Self-taught hashing (Zhang, Wang, and Lu 2010) firstly de-
composes the learning procedure into two steps and, then the
idea is extended in (Lin et al. 2013). The first step of codes
learning can typically be formulated as binary quadratic
problems, and the second step of function learning can be
accomplished by training standard binary classifiers. (Shen
et al. 2015) formulate the hashing framework as a multi-
class classification, where the learned binary codes (surro-
gate labels) are expected to be optimal for classification.
To improve the two-step hashing, several works (Gong et
al. 2013b) consider to optimize the codes and the func-
tions, alternatively. Another group methods follow the sim-
ilar scheme of two-step hashing but, the first step considers
the affinity-based loss as a smooth problem and the second
step minimizes the quantization loss by finding the thresh-
olds for the learned continuous variables. Iterative Quanti-
zation (ITQ) (Gong et al. 2013b) minimize the quantization
error of mapping the PCA-projected data to vertices of the
binary hypercube. Similarly, Isotropic hashing (Kong and Li
2012) can produce embedded dimensions for the projected
data with isotropic variances thus reduce the quantization
error. Followed the alternative quantization, various tech-
niques including locally linear reconstruction weight (Irie et
al. 2014), graph Laplacian matrix (Zhao, Lu, and Mei 2014)
and bilinear projection (Gong et al. 2013a) are applied into
the first step.

Moreover, the hinge loss (Mu, Shen, and Yan 2010;
Rastegari et al. 2013; Zheng, Tang, and Shao 2016; Zheng
and Shao 2016) could be used to minimize the risk of the
auxiliary variable close to 0. In (Mu, Shen, and Yan 2010), a
hinge loss is used to learn hash function one by one with
considering the similarity-similarity difference. Recently,
the hinge loss is used to learn a set of hash functions in
cross-modal setting (Rastegari et al. 2013; Zheng, Tang, and

Shao 2016). (Zheng, Tang, and Shao 2016) proves that, by
incorporating the hinge loss, the discrete optimization prob-
lem could be solved certainly by minimizing an differen-
tiable upper bound. In (Gong et al. 2012), a orthogonal trans-
formation is searched so that the sum of cosine similarities
(Angular quantization loss) between each data point and its
corresponding binary landmark is maximized.

Hashing can be applied for fast realizing various tasks. In
(Zheng and Shao 2016), binary codes are learned to fast per-
son re-identification. (Liu et al. 2014) proposes a collabora-
tive hashing scheme for image search and recommendation.
A structure sensitive hashing based on cluster prototypes is
designed in (Liu et al. 2016) to discover prototypes. Later,
(Liu et al. 2017) proposes an adaptive binary quantization
method that learns a discriminative hash function with pro-
totypes associated with small unique binary codes. In (Guo,
Ding, and Han 2017), an lp,q-norm loss function is proposed
to conduct the lp-norm similarity search. The l∞-norm dis-
tortion (Aghazadeh et al. 2017) is also introduced for robust
hashing. Sparse hashing is designed to optimize the integra-
tion of anchors so that the features can be better binarized
(Guo et al. 2017). Furthermore, we think that hashing can be
applied for other tasks such as tracking (Chen et al. 2017),
texture synthesis (You et al. 2016) and segmentation (You et
al. 2011) etc.

It is worth to point out that the square loss, the hinge loss
and the angular quantization loss are from the area of clas-
sification. More importantly, surrogate labels must be given
in advance and then the problem of hashing could be solved
as training a set of classifiers. In this paper, we propose a
novel framework which can minimize the quantization loss
and the affinity distortion, simultaneously.

The proposed method

Given a dataset X = (x1, · · · , xN ) ⊂ Rd, the hashing is
to learn a set of hash functions H = {hk : k = 1, · · · ,K}
to embed the xi into binary codes Y = (y1, · · · , yN ) ⊂
{−1, 1}K with considering certain consistencies between
the two spaces. Among them, N is the number of samples
and d is the dimension of the original feature space. For
simplicity, we depict the binary codes as yi = H(xi) =
(h1(xi), · · · , hK(xi))

T and the kth code as yki = hk(xi).

Measurement consistency

Generally, the core of hashing is that the relationship
measurements between samples represented in the orig-
inal feature space and the learned binary code space
should be consistent (Wang et al. 2016). Considering var-
ied properties required by certain tasks, different models
exploited diverse frameworks but, in fact, without compli-
cated mathematical operations, all of them could be de-
rived from the general problem in Eq. 1: R(H,X) =∑

i,jM(S(yi, yj), S(xi, xj)). M which depends on the
choices of measurements could be the operation of product
or the square of deviation.

On the one hand, the most popular S(yi, yj) is the
Hamming distance Dh(yi, yj). Moreover, if we have
yi, yj ∈ {−1, 1}K , thus the following two equations hold:
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2Dh(yi, yj) = K − yTi yj and ||yi − yj ||22 = 2K − 2yTi yj .
Thus, the inner product and the Hamming distance could be
directly connected. On the other hand, S(xi, xj) is a kind
of pair-wise relationships in the original space. Local struc-
tures, global statistical constraints and semantic attributes
can be used to define S(xi, xj) and then guide the leaning
of hash functions. Furthermore, beside the pair-wise rela-
tionships, some other types of list-wise measurements, such
as triplet (xi, xj , xl) and multi-group (similar and dissimilar
groups), could be also derived as the combination of several
pair-wise measurement items.

If the Hamming distance is selected for S(yi, yj),
S(xi, xj) is a kind of similarity in the original space
and the operation of product is used in M, then
we have the minimizing problem as R(H,X) =∑

i,j Dh(yi, yj)S(xi, xj) =
∑

i,j ||yi − yj ||22S(xi, xj)/2.
Furthermore, we have

R(H,X) =
∑

k

R(hk, X), (2)

where R(hk, X) =
∑

i,j ||yi(k) − yj(k)||22S(xi, xj)/2.
Simply, the learned distance is expected to be smaller if the
similarity in the original space is larger and vice versa.

Quantization loss

Without exception, all hashing methods choose sign func-
tion to fill the gap between H and F as yi = H(xi) =
sign(F (xi)), where F = {fk : Rd → R, k = 1, · · · ,K} is
the corresponding continuous functions and yki = hk(xi) =
sign(fk(xi)). Without ambiguity, we denote binary rep-
resentation matrix of X by all hash functions as Y =
sign(F (X)) and a row vector of X by function fk only
as yk = sign(fk(X)). The parameters of functions includ-
ing deep neural networks, eigenfunctions, kernel-based and
linear functions, will be optimized in the stage of training.

However, sign function is non-differentiable at 0. Thus,
most optimization strategies which used the derivative of ob-
jective function are unsuitable to this problem. In this paper,
we resort to an alternative novel scheme to learn the func-
tion F directly, by simultaneously minimizing a novel quan-
tization loss and measurement distortion defined in Eq. 1.
For every sample, a set of multiple labels s = {1,−1} is
given. Hashing is to learn a function which embeds x into
its set s. The quantization loss is generated only when f(x)
is far from the corresponding set s. Thus, with minimizing
the measurement distortion, the nature of hashing is to min-
imize the following minimum:

L(f(x), s) = min(|f(x)− 1|, |f(x)− (−1)|) (3)
L(f(x), s) is the quantization loss. The following theorem
guarantees that zero loss can be achieved.
Theorem 0.1. Given a dataset X , there must exist a
differentiable function f so that the equation holds:
L(fk(X), s) = 0, where L(fk(X), s) =

∑
i L(fk(xi), s).

Corollary 0.1. Given a dataset X , if all members in F
can achieve zero quantization loss, then we have F (X) ◦
F (X) = JKN , where JKN is a K×N -size matrix whose el-
ements are 1 and the symbol ◦ denotes the Hadamard prod-
uct between the two matrices.

All proofs of theory, lemma and corollary will be given
in our supplementary materials. Hadamard product is an op-
eration that takes two matrices of the same dimensions, and
produces a matrix whose element is the product of corre-
sponding elements in the original two matrices. Therefore,
by considering both Eq. 1 and quantization loss, our objec-
tive can be defined as:

F ∗ = argmin
F
R(F,X), s.t. F (X) ◦ F (X) = JKN . (4)

Obviously, we have ∀k, fk(X) ◦ fk(X) = J1N and
∀i, F (xi) ◦ F (xi) = JK1 where J1N is a row vector with
same size of fk(X) and JK1 is a column vector with same
size of F (xi).

The advantages of the objective function in Eq. 4 are ob-
vious and distinctive. Firstly, the sign function has been re-
moved from the objective function thus the classical deriva-
tive based methods (gradient descend) could be used while,
more importantly, the gap between the real value and dis-
crete number has been considered as well. Secondly, the
complicated procedure of two-step optimization to search
the suboptimal Y and F iteratively is successfully avoided.
Finally, the properties can be directly preserved without any
further loss in the step of quantization.

W-Shape Loss

Rather than satisfy equations in Eq. 4 strictly, allowing cer-
tain loss for some samples is acceptable: F (X) ◦ F (X) −
JKN = B(F,X), where B(F,X) is a K×N matrix whose
all elements are required to be close to zero. However, in-
stead of approximating to zero from two directions, we use
a substitute quantity defined as:

L(F,X) = J1K(ln(B(F,X) ◦B(F,X)))JN1 (5)

where ln(· ) is the natural logarithm function which executes
on every element of the matrix. It is obvious that ln is a
monotonous and differential function. Moreover, it is easy
to prove that minimizing L(F,X) can guarantee that all the
elements of B(F,X) will be close to zero. This step is sim-
ilar to the barrier method in Lagrangian multiplier, which
is used to transfer inequalities into equalities. In our frame-
work, we use B(F,X) to relax the equalities.

Next, we will see the essential roles of this relaxation
when we investigate the function individually. Thus, for
fk(xi), the constraint requires that the following item should
be minimized:

L(fk, xi) = ln((fk(xi)
2 − 1)2) (6)

Obviously, L(fk, xi) is differential but nonconvex. The plot
of the function has been illustrated in Fig. 1. The most sig-
nificant property is the W-shape and, more importantly, it
depict the distance between fk(xi) and 1 or −1. Thus, we
name it as “W-shape” loss, which can be used to learn hash
function. The W-shape makes the loss feasible to be the min-
imum when fk(xi) is 1 or −1.

We derive our framework from one case of zero quan-
tization loss to a more reasonable problem allowing some
acceptable quantization losses and then drive our W-shape
loss. That is to say, beside the objective function in Eq. 4,
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Figure 1: W-shape loss functions. A function L(fk, xi) =
(fk(xi)

2 − 1)2 of same characteristics has been shown as
well. The domain of the loss in the plots is f(x) ∈ [−2, 2]
and, actually, the loss functions are monotonous outside this
domain. The W-shape functions have two equal minimums
at f(x) = 1 and −1.

the quantization loss should be minimized simultaneously.
Therefore, we can obtain our new general framework for
hash function learning:

F ∗ = argmin
F
L(F,X) + μR(F,X), (7)

where μ is used to balance the two parts. In this objective,
the first item is the quantization loss while the second one
is the regularization item for measurement distortion. Ap-
parently, the overall objective function is non-convex but,
importantly, it is differential. In this general hashing frame-
work, different W-shape losses can be explored while varied
consistency preserving strategies can be incorporated into
the objective as well.

Algorithm 1 WSL Hashing
Input: Training dataset X and parameters: μ, ν and K.
Output: F (x) = (w1, · · · , wK)Tx.
Initialisation:

Randomly initiate w0
1, · · · , w0

K .
Construct S for X and calculate matrix L.

For t = 1, · · · ,; k = 1, · · · ,K
Compute values f t−1

k (X) on X using wt−1
k .

Calculate Ck using wt
1, · · · , wt

k−1, w
t−1
k+1, · · · , wt−1

K .
Compute barriers B(f t−1

k ).
Calculate derivatives ∂R(fk)

∂fk
, ∂O(fk,Ck)

∂fk
and ∂L(fk)

∂fk
.

Run optimizer MMA(L(fk, μ, ν),
L(fk,μ,ν)

∂fk
, wt−1

k ).
Output wt

k and compute�Lt
k and�Ot

k.
If the two conditions in Eq. 12 are false

wt
k = wt−1

k .
End

End If satisfy conditions: Exit.

Optimization

We will solve the differentiable problem in Eq. 7 with con-
sidering the orthogonality of the learned codes.

Orthogonal constraints

To avoid the trivial solutions, two orthogonal constraints
are necessarily considered so the samples could be evenly
mapped to each hash code. The first one is the bit balance
means that each bit has a around fifty percent chance of be-
ing 1 or −1. And the second one is the bit uncorrelation
means that different bits need to be independent. The math-
ematical formulations of the two constraints are given as:
(1) ∀k, fk(X)JT

1N = 0. (2) ∀k �= l, fk(X)fl(X)T = 0. To
unify them, we consider JT

1N as a function where JT
1N (X) =

JT
1N . We firstly select one projection fk, then the remaining

including fl(X), l �= k and JT
1N (X) are required to be or-

thogonal to fk(X). For simplicity, X will be omitted from
fk(X) and F (X) in the following.

Theorem 0.2. Given a dataset X and a hypothesis set F , if
one function fk ∈ F satisfies:

O(fk, Ck) = fkCkf
T
k = 0, (8)

where Ck =
∑

l �=k f
T
l fl+JT

1NJ1N , then the two constraints
bit balance (1) and bit uncorrelation (2) hold with respect to
the given fk.

Using Theory 0.2, we transfer the two constraints into
an unified condition. Totally, considering both the general
framework introduced in 7 and the integrated constraint
given in 8, we can obtain our final optimization objective:

F ∗ = argmin
F

L(F ) + μR(F ), s.t. ∀k,O(fk, Ck) = 0. (9)

The algorithm is summarized in Algorithm 1.

Divide and conquer

Obviously, the objective in Eq. 9 is a complicated nonlin-
ear and non-convex optimization problem with a nonlinear
equality constraint. To solve this objective, we divide the
problem into several sub-problems which are relatively inde-
pendent with each other. Then, a greedy algorithm is adopted
to optimize the sub-problem individually. To this end, we
first choose one function fk to be optimized and fix all re-
maining functions. Therefore, we obtain the objective func-
tion of sub-problem:

f∗
k = argmin

fk
L(fk) + μR(fk), s.t. O(fk, Ck) = 0. (10)

In this sub-objective for fk, the consistency item isR(fk) =∑
i,j ||fk(xi) − fk(xj)||22S(xi, xj)/2 = fkL(fk)

T /2,
where L = D − S is a Laplacian matrix and D is a diago-
nal matrix, whose elements are D(xi, xi) =

∑
j S(xi, xj).

And the loss function is L(fk) = (ln(B(fk) ◦B(fk)))JN1,
where B(fk) is the kth row of B(F ). The following the-
ory can be used to demonstrate the relationship between the
original problem and the sub-problems.

Theorem 0.3. Using a Lagrange multiplier ν, the La-
grangian for the original problem is: L(F, μ, ν) = L(F ) +
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μR(F ) + ν
∑

kO(fk, Ck) and the Lagrangian for the sub-
problem for function fk is: L(fk, μ, ν) = L(fk)+μR(fk)+
νO(fk, Ck). Then the following equation holds:

L(F, μ, ν) =
∑

k

L(fk, μ, ν). (11)

From the theory 0.3, we can see that the original prob-
lem consists of these sub-problems and is completely with-
out any relaxation. Every sub-problem, which only focuses
on optimizing one function, is connected to others using
the orthogonal constraint only. In fact, if the sub-problem
is convex, then the divide-conquer strategy guarantees that
the alternative optimization can converge to a local opti-
mum because, in every step, the reduction of overall objec-
tive must be non-negative1. However, in our general frame-
work, we consider to use more relaxed nonlinear and non-
convex items both for loss and consistency to improve the
flexibility of the framework. To achieve this, an acceptance-
rejection optimizer is proposed to selectively accept the lo-
cal optimum f t

k of the sub-problem in the current round t.
The following theory guarantees that the Lagrange of origi-
nal problem L(F, μ, ν) must converge into a local minimum
at least.
Theorem 0.4. If f t

k is accepted in the tth round of optimiza-
tion only when the equalities holds:

�Lt
k > 0,�Lt

k > �Ot
k, (12)

where �Lt
k = L(f t−1

k , μ, ν) − L(f t
k, μ, ν) and �Ot

k =

O(f t
k, C

t
k) − O(f t−1

k , Ct
k), then, the Lagrange of original

problem L(F, μ, ν) can consistently decrease.

In this theory, f t−1
k is the accepted local optimum in the

last round t − 1. Obviously, �Lt
k in Eq. 12 is likely to be

non-negative, because f t−1
k is the initial and f t

k is the op-
timal in current round of optimization. This step is simi-
lar to the module of rejection in Sequential Monte Carlo
methodologies, where the undesired samples will be aban-
doned in the current round of sampling. The division of op-
timization makes it feasible to derive the stochastic gradi-
ent descend for hashing or ensemble learning based hashing
(Carreira-Perpinan and Raziperchikolaei 2016), in which the
mini batches of X could be used sequentially or treated sep-
arately for different bits.

Derivative of sub-problem

Here, we offer the derivatives of L(f t
k, μ, ν) with respect to

fk and then, the derivative of Lagrange with respect to the
parameters θ of function fk could be easily calculated us-
ing chain rule ∂L

∂θ = ∂fk
∂θ

∂L
∂fk

. Thus, we have ∂L(fk,μ,ν)
∂fk

=
∂L(fk)
∂fk

+ μ∂R(fk)
∂fk

+ ν ∂O(fk,Ck)
∂fk

. It is easy to obtain the last

two derivatives: ∂R(fk)
∂fk

= LfT
k and ∂O(fk,Ck)

∂fk
= 2Ckf

T
k .

However, due to the Hadamard product in the loss, the
derivative of the first item could not be computed directly.
In (Bentler and Lee 1978), the derivative of a function de-
fined by Hadamard product is fully discussed. Hence, we

1The 0 reduction occurs when fk in last round is still the opti-
mum of sub-problem in current round.

can use the following corollary to calculate the derivative of
the W-shape loss.

Corollary 0.2.
∂L(fk)
∂fk

= diag(fk)
4

B(fk)T
, where the divi-

sion in 4
B(fk)T

is executed on each element separately and
results in a vector of same size to B(fk)

T .

The Lagrangian L(f t
k, μ, ν) is a nonlinear and non-convex

optimization problem without constraint. Our desired hash
function can be searched at the minimum of the Lagrangian.
Given a specific function fk and consistency, we can calcu-
late the value of fk and its derivative w.r.t. its parameters
θ. Then, the value and the derivative of L(f t

k, μ, ν) can be
computed as well. Using these quantities, several existing
nonlinear and non-convex optimizers (Bottou, Curtisy, and
Nocedal 2016; Johnson 2008) could be directly used. In this
paper, a method of globally convergent method-of-moving-
asymptotes (MMA) algorithm for gradient based local op-
timization (Svanberg 2002) is selected and others in this li-
brary (Johnson 2008) can achieve similar results.

To make our optimization feasible when |f(x)| approxi-
mates to 1, we only need to use a surrogate gradient which is
computed from (f(x)2−1)2 to update the parameters. While
the loss can be also computed based on original loss func-
tion log(f(x)2−1)2. Surrogate gradient algorithm (we men-
tioned above) is a general scheme to optimize the parameters
when the original gradient is singular or non-existence. In-
tuitively, when |f(x)2 − 1| is less than a very small value, it
is unnecessary to further update the parameters because the
goal of minimizing quantization loss is achieved.

Specific Function and Consistency

Actually, any kind of functions, including linear, kernel-
based and neural networks based models, could be used in
our framework to embed samples into the codes in Hamming
space, as long as they have derivatives or some surrogates of
derivative. In this paper, to mainly illustrate the performance
of W-shape loss function, we select linear functions to learn
the binary codes. Therefore, assuming the f(X) = wTX ,
we have ∂f(X)

∂w = X . Actually, all the related models in-
troduced in (Yan et al. 2007), which are originally proposed
for dimensionality reduction, can be used as the definition of
measurement consistency f(X)Lf(X)T .

Moreover, the proposed general framework can be used
to learn hash codes in a cross-modal setting. We con-
sider a recent proposed method of Hetero-manifold reg-
ularization (Zheng, Tang, and Shao 2016) which incor-
porates both within-modality local structure and between-
modality supervised information, as the consistency preserv-
ing. We use linear functions f(X) = wTX for M number
of modalities, where wT = ((w1)T , (w2)T , · · · , (wM )T )
consists of projections from all the M modalities. In
this case, we have the multi-modal data matrix X =
diag(X1, · · · , XM ), where Xm is the samples from the m

modality. Thus, the derivative of f(x) is given by: ∂f(X)
∂w =

diag(X1, X2, · · · , XM ), and the Hetero-manifold regular-
ization is defined as: f(X)Lf(X)T where L is a Laplacian
exploited on the Hetero-manifold.
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Figure 2: 2D toy examples.

Table 1: Various loss comparisons on a toy set between
ITQ, IsoHash and W-Shape. Four types of quantization
losses including |f(x) − sign(f(x))| (Abs Loss), (f(x) −
sign(f(x)))2, max{1− sign(f(x))f(x), 0} and (f(x)2 −
1)2 are used to describe the loss of binarization.

Methods ITQ IsoHash WSL
Abs Loss 1.623 1.613 0.858
Squire Loss 1.350 1.332 0.553
Hinge Loss 1.623 1.613 0.816
W-Shape Loss 1.802 1.801 0.903
Average 1.599 1.59 0.783

Experiment

To validate the proposed framework, we compare it with the
state-of-the-art methods in five datasets: toy set, SIFT1M
(Jegou, Douze, and Schmid 2011) CIFAR-10 (Krizhevsky
and Hinton 2009), MNIST2 and VIPeR (Gray and Tao
2008). The parameters of the proposed model are set as
μ = 0.05 and ν = 0.6.

Toy set

Our first experiment works on a toy dataset, in which the
points are randomly generated in the area [0, 1]× [0, 0.5]. It
is worth to point out that the variance in two directions are
different. The purpose of hash function learning is to project
the points close to −1 or 1. Two classical methods concen-
trating on minimizing quantization loss: ITQ (Gong et al.
2013b) and IsoHash (Kong and Li 2012) are compared.

Fig. 2 illustrates the learned real-valued features before
binarization. From Table 1 and Fig. 2, we can see that, no
matter what types of criterion are used, the quantization loss
of the proposed method is almost only half of other two
methods. Because the structure of the original data is sim-
ple, all the three methods can preserve the basic shape of
dataset. However, only the proposed method can project the
data closer to 1 or−1 and the other two methods focus more
on balancing the variances between two directions.

2http://yann.lecun.com/exdb/mnist/.

We also observed that ITQ and IsoHash are significantly
influenced by the range of data but WLS is not. The inher-
ent reason is that the linear models y = f(x) = wTx in
two methods are not well regularized. Both methods focus
on the balance of variances (holistic view) and thus achieve
very similar quantization loss. Then, the magnitude of the
projected values for certain coordinates maybe widen to sat-
isfy the variance balance. However, in the quantization step,
the intrinsic structure (local) is very likely to be ruined, due
to the very large quantization loss, which will result in bad
binary representation.

Uni-modal Hashing

The second group of datasets used to validate the per-
formance of the proposed method includes SIFT1M (Je-
gou, Douze, and Schmid 2011) CIFAR-10 (Krizhevsky and
Hinton 2009) and MNIST. SIFT1M consists of 1M 128-
dimensional SIFT vectors as the reference set, 100K vec-
tors as the learning set, and 10K vectors as the query set.
The recall@R defined as the fraction of the relevant sam-
ples in the retrieved R items to the ground truth neighbours
are used to measure the retrieval performances of differ-
ent methods. The experimental setting for CIFAR-10 and
MNIST, in which label information is provided, is the same
as that in (Liong et al. 2015). The mean average precision of
the semantic retrieval on the two datasets is reported.

To make clear that the improvement is exactly raised by
WSL, we use the purely simplest setting (linear and unsu-
pervised) for WSL. We compare WSL method with MLH
(Norouzi and Fleet 2011), LSH (Indyk and Motwani 1998),
ITQ (Gong et al. 2013b), SH (Weiss, Torralba, and Fergus
2009), SpH (Heo et al. 2015), PCAH (Wang, Kumar, and
Chang 2012) and AGH (Liu et al. 2011).

From the Fig. 3 (a), we can see that the proposed WSL
can achieve better results than MLH, LSH, ITQ and SH.
ITQ is a pioneer method which reduces the square based
quantization loss and an alternative optimization strategy is
used. Same to SH, WSL uses the basic Laplacian matrix
in the measurement item but WSL outperforms SH because
the quantization loss is minimized as well. Moreover, WSL
achieves better results than AGH. Actually, linear functions
are used in WSL but in AGH, nonlinear eigenfunctions are
used. Thus the computation burden of the retrieval stage in
WSL is much lower than that in AGH. From the Tables 2
and 3, WSL achieves advanced performance for the seman-
tic retrieval on datasets CIFAR-10 and MNIST.

In Fig. 4, the embedded values w.r.t. the parameter μ are
investigated. On the one hand, when μ is too small, the norm
of projection would be small as well and then, all samples
will be projected close to 0. In fact, W-shape loss plays the
same role as the norm regularization item ||F ||2. On the
other hand, surprisingly, large value of μ also results in poor
performance. We observed in our experiment that the initial
of projection is very important and would converge into a
poor local optimum. In general, the initial could be selected
from the ones which could minimize the measurement item
firstly. The optimizing procedure of loss is illustrated in Fig.
3 (b). We can see that both the quantization loss and the
measurement distortion decrease consistently and the mea-
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Table 2: Ranking performance on CIFAR-10. Mean average
precision (MAP) at different number of bits is calculated.

#bits LSH ITQ PCAH SH SpH WSL
16 0.140 0.167 0.135 0.136 0.148 0.183
32 0.141 0.174 0.130 0.130 0.154 0.210
64 0.127 0.179 0.124 0.132 0.159 0.227

Table 3: Ranking performance (MAP) on MNIST.
#bits LSH ITQ PCAH SH SpH WSL
16 0.224 0.410 0.276 0.272 0.268 0.434
32 0.246 0.434 0.245 0.259 0.323 0.479
64 0.320 0.456 0.212 0.251 0.356 0.522

surement distortion may approximate to the possible lowest
value (Black line) which is computed in the corresponding
continuous model.

Cross-modal Hashing

We also test the proposed method in a cross-modal setting
for fast cross-camera person re-identification. Two cameras
setting in different places of a campus environment are used
to collect the samples. The task of cross-camera person re-
identification is to, given a image of a person in the view of
one camera, search the images of same person in the view
of other cameras. The VIPeR (Gray and Tao 2008) contains
632 pedestrian image pairs in an outdoor environment. Half
of the dataset including 316 images for each view is used
for training the algorithms and the reminding (316 pedes-
trian) is used for testing. For a semantic identification sys-
tems, the Cumulated Matching Characteristics (CMC) are
used for performance evaluation and measuring how well an
identification system ranks the identities in the gallery with
respect to a probe sample (Rank 20).

Three cross-modal hashing methods including CMFH
(Ding, Guo, and Zhou 2014), CMSSH (Bronstein and Bron-
stein 2010), CVH (Kumar and Udupa 2011) and one non-
hashing methods CCA (Hotelling 1936) are compared. From
Fig. 3 (c), we can see that the proposed WSL method can
consistently outperform the three hashing methods. It is
worth to point out that, due to the dimension limitation of
covariance, CCA and CVH can learn a few bits. The best
performances of WSL and CCA are close but CCA is a con-
tinuous method without any quantization loss.

Conclusion

In this paper, a novel general framework is raised for hashing
which could be used in both uni-modal and cross-modal set-
tings. We test the proposed method on five datasets and the
results demonstrate that the W-Shape Loss (WSL) actually
benefits to simultaneously reduce the measurement distor-
tion and the quantization loss. In the future, it is valuable
to propose more types of W-shape loss. Moreover, the the-
oretical aspect of the WSL needs to be investigated as well.
More importantly, the proposed W-shape loss would be used

to guide the binary weights learning for deep architecture
machine, which further speeds up the step of on-line testing.
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Figure 3: (a) The performance comparison of uni-modal retrieval on dataset SIFT1M. (b) The investigation of loss decreasing
with respect to the iteration t. (c) The performance comparison of cross-modal retrieval on dataset VIPeR.
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