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Abstract

The random features method is an efficient method to approx-
imate the kernel function. In this paper, we propose novel ran-
dom features called “alternating circulant random features,”
which consist of a random mixture of independent random
structured matrices. Existing fast random features exploit ran-
dom sign flipping to reduce the correlation between features.
Sign flipping works well on random Fourier features for
real-valued shift-invariant kernels because the correspond-
ing weight distribution is symmetric. However, this method
cannot be applied to random Laplace features directly be-
cause the distribution is not symmetric. The method proposed
herein yields alternating circulant random features, with the
correlation between features being reduced through the ran-
dom sampling of weights from multiple independent random
structured matrices instead of via random sign flipping. The
proposed method facilitates rapid calculation by employing
structured matrices. In addition, the weight distribution is pre-
served because sign flipping is not implemented. The perfor-
mance of the proposed alternating circulant random features
method is theoretically and empirically evaluated.

1 Introduction

Kernel methods are effective for classification using nonlin-
ear relationships between data. However, the complexity of
these methods increases as the dataset size grows. Thus, ker-
nel approximation methods are necessary.

The random features method is an approximation method
that first represents the given kernel function by the expec-
tation of the product of the parameterized function values
of two inputs and then approximates the kernel with the in-
ner product of vectors composed of the values of randomly
sampled functions. Various random features techniques have
been proposed, with their construction depending on the
structure of the given input feature and kernel function (Pen-
nington, Felix, and Kumar 2015; Kar and Karnick 2012;
Rahimi and Recht 2007; Yang et al. 2014).

When we apply the random features method on large-
scale data, we need to consider the cost involved in calcu-
lating the approximate feature vectors. Naive approxima-
tion methods often require O(Dd) computation, where d
and D denote input and output dimensions, respectively.
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This is not negligible when d is large because in most
cases, D ≥ d. Thus, recent work has proposed methods
to calculate the features with O(D log d). Most existing
work approximates the Gaussian kernel (Felix et al. 2016;
Le, Sarlós, and Smola 2013; Yu et al. 2015) or polynomial
kernels (Pham and Pagh 2013). In this work, we propose
a fast method that approximates semigroup kernels that is
effective for positive vectors but where we cannot apply ex-
isting fast methods directly.

A wide range of features, including histograms, discrete
probabilistic distributions, and activations of convolutional
neural networks (CNNs), are associated with the space of
positive vectors R

d
+. The semigroup kernel is a kernel that

exploits such positive definiteness. For two inputs x, y ∈
R

d
+, the kernel value of the semigroup kernel depends only

on the summation of the two inputs x + y. In such a case,
Berg et al. (Berg, Christensen, and Ressel 1984) have proven
that there exists a distribution p(w) on R

d
+ such that

k(x+ y) =

∫
e−wt(x+y)p(w)dw. (1)

Based on Eq. (1), Yang et al. (Yang et al. 2014) proposed

random Laplace features, which use {
√

1
D e−wjx}Dj=1 with

{wj}Dj=1 sampled from p(w) as a D-dimensional feature
vector. Random Laplace features exhibit superior perfor-
mance to existing commonly used kernels such as the Gaus-
sian and χ2 kernels with regard to the classification of his-
togram data. The computational complexity is O(Dd). As
the dimension of the input feature grows, this linear depen-
dency on d becomes non-negligible.

In this paper, we propose a method to calculate the fea-
ture vector with O(D log d) complexity by exploiting struc-
tured matrices to approximate the semigroup kernel quickly.
Structured matrices are matrices with special structures that
enable us to calculate the matrix-vector products recur-
sively with O(d log d) time complexity and O(d) mem-
ory at the expense of independency between different fea-
ture elements. Existing fast Gaussian kernel approximation
methods (Felix et al. 2016; Le, Sarlós, and Smola 2013;
Yu et al. 2015) combine structured matrices with random
sign flipping to reduce the correlation between different
feature elements. For random Fourier features on a shift-
invariant kernel such as Gaussian kernel, the sample distri-
bution is symmetric. Thus, sign flipping does not change the
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output distribution. However, for random Laplace features,
the support of the weight distribution p(w) and the input x
are positive. Thus, sign flipping changes the output distri-
bution. Instead, we propose a novel method called “alter-
nating circulant random features” that utilizes weights ran-
domly sampled from multiple independent structured matri-
ces to calculate the features. Because the proposed method
uses structured matrices, the computation complexity de-
pends on the log of the input dimension d. Further, the pro-
posed method preserves the weight distribution by replacing
random sign flipping with random choice from the variables
sampled from the same distribution. Thus, this technique can
be applied to semigroup kernels.

In addition, we demonstrate that the covariance for ran-
dom circulant features without random sign flipping is as
large as autocovariance, while the covariance for the pro-
posed method becomes small with respect to the autocovari-
ance as d increases. Thus, the proposed features exhibit com-
parable performance to random Laplace features.

We compare the performance of the proposed method to
that of an approximate semigroup kernel for application to
Bag of Visual Words features that can be regarded as a his-
togram, and to the CNN features. We demonstrate that the
proposed method exhibits comparable classification perfor-
mance to the random Laplace features method with a signif-
icantly shorter computation time.

In summary, the contributions of this paper are as follows:

• We propose a novel fast random features called “alternat-
ing circulant random features”; the proposed method can
compute random features with computation complexity
O(D log d) and O(D) memory requirement.

• We theoretically evaluate that the approximation error of
the proposed method is comparable to that of the random
Laplace features method as the input dimension d grows.

• Experimental results using Bag of Visual Words fea-
tures and CNN features show that the proposed method
achieves similar accuracy to the random Laplace features
method and requires less computation time.

2 Background

For a given kernel function k(·, ·) : R
d × R

d → R ex-
pressed as the expectation of the product of the parameter-
ized function φw(·) : Rd → R with respect to the parameter
w, denoted as Ew∼p(w)[φw(·)φw(·)], random features use

{
√

1
Dφwj

(·)}Dj=1 with {wj}Dj=1 randomly sampled from p

as a feature function to approximate the kernel value.
Semigroup kernels are the kernels whose values depend

only on the summation x + y of the two inputs x, y ∈
R

d
+. For the semigroup kernel, there exists a distribution

p(w) on R
d
+ that satisfies Eq. (1). Random Laplace fea-

tures use {
√

1
D e−wix}Di=1 with {wi}Di=1 sampled from p(w)

as a feature. In this study, in addition to the assumption
of semigroup kernel, we also assume that the kernel can
be decomposed as the product of the kernels of each di-
mension k1, as k(x + y) =

∏d
j=1 k1(xj + yj). Note

that the exponential-semigroup kernel e−β
∑d

j=1

√
xj+yj and

reciprocal-semigroup kernel
∏d

j=1
λ

xj+yj+λ , to which Yang
et al. applied random Laplace features, satisfy this assump-
tion. When we denote the matrix W = [w1, w2, · · ·wD]t ∈
R

D×d, the features are expressed as
√

1
D e−Wx.

We call the kernel function defined by two inputs x, y ∈
R

d a “shift-invariant kernel,” if the kernel value depends on
the difference in the input x−y only. Bochner (Rudin 2011)
has shown that the shift-invariant kernel k can be expressed
with the measure p(w) on R

d as

k(x− y) =

∫
eiw

t(x−y)p(w)dw. (2)

Random Fourier features methods (Rahimi and Recht 2007)
randomly sample {wj}Dj=1 from p(w) in Eq. (2) and use√

1
D eiWx or

√
2
D cos(Wx + b), with b uniformly sampled

from [0, 2π], as features.
Recently, fast computation methods have been proposed

for the Gaussian kernel, which is one of the shift-invariant
kernels. These approaches use structured matrices where the
matrix-vector product can be calculated with O(d log d) and
random diagonal matrices where the matrix-vector product
can be calculated with O(d) (Felix et al. 2016; Le, Sarlós,
and Smola 2013; Yu et al. 2015). These studies have al-
lowed calculation of d-dimensional random features with
O(d log d) time complexity and we achieve D-dimensional
features with O(D log d) complexity by independently sam-
pling the features D/d times. Such fast random features ex-
hibit comparable or superior approximation performance to
the original random Fourier features.

3 Related Work

Various approximation techniques have been proposed de-
pending on the kernel structures (Pennington, Felix, and Ku-
mar 2015; Pham and Pagh 2013; Rahimi and Recht 2007;
Yang et al. 2014). In this section, we focus on fast random
Fourier features using structured matrices. The properties of
the existing fast approximation methods and the proposed
method are summarized in Table 1. In the discussion that
follows, we assume that d is a power of 2. In the general
case, we pad 0’s to set the dimension to a power of 2.

FastFood FastFood (Le, Sarlós, and Smola 2013) exploits
the property for which the Hadamard matrix combined with
diagonal Gaussian matrices exhibits similar behavior to a

Gaussian matrix. For the Gaussian kernel e−
‖x−y‖2

2σ2 , Fast-
Food uses

√
2 cos

(
1

σ
√
d
SHGΠHBx+ b

)
(3)

as a global feature, where H is the Hadamard matrix whose
elements are -1 or 1.This matrix is a constant multiple of or-
thogonal matrices, and the matrix-vector product can be cal-
culated recursively with O(d log d) time complexity. Here,
S,G, and B are diagonal matrices representing random scal-
ing, a random Gaussian variable, and random sign flipping,
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Table 1: Comparison of kernel approximation methods. Here, d and D denote the dimensions of the input and output features,
respectively, and m is the number of mixed structured matrices (2 or log2 d in this study). “Gaussian” and “Semigroup” indicate
the method applicability to Gaussian and semigroup kernels, respectively. Note that the random circulant features method can
be applied to semigroup kernels if we omit random sign flipping.

Method Memory Time Gaussian Semigroup
Random Fourier / Laplace Features O(Dd) O(Dd) Yes Yes
FastFood O(D) O(D log d) Yes No
Circulant O(D) O(D log d) Yes Partially Yes
Structured Orthogonal Random Features O(D) O(D log d) Yes No
Alternating Circulant Random Features (ours) O(mD) O(mD log d) Yes Yes

respectively. Further, Π is a random permutation. Thus, the
complexity needed to calculate a d-dimensional random fea-
ture is O(d log d). We independently sample this feature
D/d times to obtain the D-dimensional output feature.

Random Circulant Features Yu et al. (Yu et al. 2015)
have proposed a random Fourier features that uses the circu-
lant matrix instead of the Hadamard matrix. For the vector
r ∈ R

d, the circulant matrix circ(r) ∈ R
d×d is defined as

circ(r) =

⎡
⎢⎢⎣
r1 rd · · · r2
r2 r1 · · · r3
... r2

. . .
...

rd rd−1 · · · r1

⎤
⎥⎥⎦ . (4)

We can calculate the matrix-vector product using the fast
Fourier transform as circ(r)x = F−1(F (r) ◦ F (x)) with
O(d log d) complexity, where ◦ denotes the element-wise
product.

With randomly sampled w, the random circulant features
approach yields √

2 cos (circ(w)Bx+ b) (5)
as a global feature. Although Yu et al. did not analyze the
performance of this method, in experiments, the random cir-
culant features method exhibits equivalent performance to
the random Fourier features method.

Choromanski & Sindhwani (Choromanski and Sindhwani
2016) generalized the fast Fourier features method to con-
struct low-variance features via graph-theoretic concept.

Structured Orthogonal Random Features Felix et al.
(Felix et al. 2016) have proposed the use of randomly sam-
pled orthogonal matrices as the W for a Gaussian kernel,
and have also proposed structured orthogonal random fea-
tures that compute matrices similar to orthogonal matrices
with O(d log d) time complexity. Although structured or-
thogonal random features are not an unbiased estimator of
the Gaussian kernel, the approximation error converges to 0
with increasing d. Further, the correlation between features
is small because orthogonal matrices are used. Structured
orthogonal random features are calculated as

√
2 cos

(√
d

σ
HB1HB2HB3 + b

)
, (6)

where the Bi terms correspond to independent random sign
flipping.

4 Alternating Circulant Random Features
As discussed in the previous section, existing fast random
features methods using structured matrices depend on sign
flipping to reduce the covariance between the obtained fea-
tures. Thus, we cannot apply these methods to the case of
random Laplace features for which the weights are sampled
from R

d
+. The random circulant features approach does not

use Hadamard matrices; thus, random circulant features can
be applied if random sign flipping is omitted. However, as
shown in the next section, the covariance of the features be-
comes very large. To overcome this problem, we propose the
alternating circulant random features method, in which ran-
dom sign flipping is replaced with random mixture, and we
analyze the approximation performance.

4.1 Method

In the proposed method, we employ a random column
mixture of m independent circulant matrices. We sam-

ple {w(l)
j }j=d,l=m

j=1,l=1 in advance and use
√

1
D e−Wx or√

2
D cos(Wx+ b), with each column of W uniformly sam-

pled from circ(w(l)):,j with l ranging from 1 to m. As each
column in circ(w) is composed of all the elements of w,
only changing the column reduces the correlation of feature
elements drastically. Thus, we can rapidly calculate the pro-
posed features, as in the case of random circulant features.
We denote s(l) ∈ R

d as a vector, where s
(l)
j = 1 if and

only if the j-th column is sampled from circ(w(l)) and is 0
otherwise. Then, Wx can be calculated as

m∑
l=1

F−1
(
F
(
w(l)

)
◦ F

(
s(l) ◦ x

))
. (7)

The computational complexity of Eq. (7) is O(mD log d)
and the required memory is O(mD). In the experiments
discussed below, we considered the case in which m = 2
and m = log2 d. When m = 2, the computational com-
plexity is identical to that for existing fast random Fourier
features methods. Further, the proposed method is an unbi-
ased estimator of the original kernel because for each se-
lected row, each column element is independent and identi-
cally distributed (i.i.d.) from the original distribution.

4.2 Analysis

In this section, we evaluate the variance of the kernel func-
tions approximated with random Laplace features. We first
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evaluate the original method, which randomly samples all
the weights i.i.d. from p1; then, we evaluate the case of ran-
dom circulant features without random sign flipping. Finally,
we calculate the variance for the proposed features. For two
inputs x and y, we define z = x + y ∈ R

d. As discussed
in Section 1, we assume that k(z) =

∏d
j=1 k1(zj). In this

case, the corresponding distribution p can be decomposed as
p(w) =

∏d
j=1 p1(wj).

First, we evaluate the autocovariance of the approximate
kernel value e−wz for the original method.

Theorem 1. Varw∼p(w)[e
−ztw] = k(2z)− k(z)2.

Proof. It holds that

Ew∼p(w)

[(
e−ztw

)2
]
= Ew∼p(w)[e

−(2z)tw] = k(2z).

(8)
Thus,

Varw∼p(w)[e
−ztw] (9)

= Ew∼p(w)

[(
e−ztw

)2
]
−
(
Ew∼p(w)[e

−ztw]
)2

(10)

= k(2z)− k(z)2. (11)

As there is no covariance between elements with different
dimensions, the variance of the approximated kernel with
output dimension D is k(2z)−k(z)2

D .
Next, we calculate the covariance for random cir-

culant features without random sign flipping. For the
vector v = [v1, v2, · · · , vd]t, we denote ↑nv =
[vn+1, vn+2, · · · , vd, v1, · · · , vn]t, ↓nv = ↑−nv, and
rev(v) = [vd, vd−1, · · · , v2, v1]t. The autocovariance is
identical to that for the original method. In this case, the ele-
ments for the different dimensions have non-zero covariance
because the weights are shared in the different rows.
Theorem 2.

Ew∼p(w)[e
−(Wz)j1 e−(Wz)j2 ] = k(z + ↑(j1−j2)z), (12)

for 1 ≤ j1, j2 ≤ d.

Proof.

Ew∼p(w)[e
−(Wz)j1 e−(Wz)j2 ] (13)

= Ew∼p(w)[e
−↑j1 (rev(w))tze−

↑j2 (rev(w))tz] (14)

= Ew∼p(w)[e
−wtrev(↓j1z)e−wtrev(↓j2z)] (15)

= Ew∼p(w)[e
−wt(rev(↓j1z)+rev(↓j2z))] (16)

= k(rev(↓j1z) + rev(↓j2z)) (17)

= k(↓j1z + ↓j2z) = k(z + ↑(j1−j2)z). (18)

Thus, the random circulant features without random sign
flipping have k(z + ↑(j1−j2)z) − k(z)2 covariance. For ex-
ample, when each element in z is identical, this value is the
same as the autocovariance. Thus, the variance is significant.

Next, we analyze the variance for the proposed method.
We need to sum over all the random sampling of
circ(w(l)):,j , l = 1–m; which makes this problem more
complex than the previous cases. We first calculate the co-
variance between the first and d-th elements. In this case, we
can calculate the exact solution.
Theorem 3.

Ew(l)∼p(w),lj∼unif{1,2,...,m}[e
−(Wz)1e−(Wz)d ] (19)

=

⎛
⎝ d∏

j=1

(k1(zj + zj+1) + (m− 1)k1(zj)k1(zj+1))(20)

+(m−1)
d∏

j=1

(k1(zj+zj+1)−k1(zj)k1(zj+1))

⎞
⎠/md, (21)

where we write zd+1 = z1.
The ratio of the covariance to the autocovariance is

roughly (k1(2z)+(m−1)k1(z)
2

mk1(2z)
)d, which exponentially con-

verges toward 0 as d increases. The convergence speed is
high if m is large. In fact, we vary k1 as d increases; thus, the
convergence speed does not exactly follow this order. How-
ever, this value is considerably smaller than that for random
circulant features.

Proof. When we denote u(l) = rev(w(l)), it holds that

Ew∼p(w),lj∼unif{1,...,m}[e−(Wz)1e−(Wz)d ] (22)

=Ew∼p(w),lj∼unif{1,...,m}[e
−∑d

j=1v
(lj)

j zje−
∑d

j=1
↓1v

(lj)

j zj ] (23)

=Ew∼p(w),lj∼unif{1,...,m}[e
−∑d

j=1

(
v
(lj)

j zj+v
(↑1lj)

j
↑1zj

)
] (24)

=Elj∼unif{1,...,m}[
d∏

j=1

Ew∼p(w)[e
−
(
v
(lj)

j zj+v
(lj+1)

j zj+1

)
]].(25)

The last equality follows from the fact that v(l)j correspond-
ing to different j are independent regardless of the val-
ues of lj . We define the matrices Cj ∈ R

m×m such that

Cj
o,p = Ew(l)∼p(w)[e

−
(
v
(o)
j zj+v

(p)
j zj+1

)
]. In other words, the

Cj are matrices with diagonal and non-diagonal elements
are k1(zj + zj+1) and k1(zj)k1(zj+1), respectively. With
the Cj terms, Eq. (25) can be expressed as

Elj∼unif{1,...,m}[
d∏

j=1

Ew∼p(w)[e
−
(
v
(lj)

j zj+v
(lj+1)

j zj+1

)
]](26)

=Elj∼unif{1,...,m}[
d∏

j=1

Cj
lj ,lj+1

] (27)

=
trace(

∏d
j=1 C

j)

md
, (28)

and the equation is derived.

We continue to the general case. The point of the previ-
ous proof is that when we calculate the correlation by first
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obtaining the expectation with respect to w and then calcu-
lating the average of each lj ranging from 1 to m, the cor-
relation is represented as the trace of the product of d ma-
trices that can be simultaneously diagonalized. This is be-
cause when the difference of the dimension is 1, when we
bridge the dimensions that share the same w(l), the graph
is a cyclic such as 1 → 2 → · · · → d → 1. When the
greatest common factor between δj = j1 − j2 and d is 2g ,
the graph becomes an independent 2g cyclic graph of length
d/(2g) such as 1 → 1 + δj → 1 + 2δj → · · · → 1.
The calculation for one loop is the same as the previous
proof. Thus, the ratio of one loop is roughly of the order
(k1(2z)+(m−1)k1(z)

2

mk1(2z)
)d/2

g

. When the 2g products are calcu-

lated, the order is (k1(2z)+(m−1)k1(z)
2

mk1(2z)
)d. Thus, the order is

roughly the same in the general case. Therefore, the covari-
ance is small if d is sufficiently large. We now write the ex-
pectation of the product of i-th dimension and j-th dimen-
sion of e−Wz as g(z; i, j).

We also derive a uniform bound for the approximation
error. We follow the analysis used in (Yang et al. 2014) and
(Sutherland and Schneider 2015).

Theorem 4. Let M be the set of the input vector in R that
satisfies ‖x‖2 ≤ R and xi ≥ r ≥ 0, i = 1, ..., d. Then
provided that Lp,r = Ew∼p(w)[e

−2wrw2] ≤ ∞ and σ2
M =

supx,y∈M
[

1
d2

∑d
i=1

∑d
j=1 g(x+ y; i, j)− k(x+ y)2

]
,

for the mapping Ψ sampled in our algorithm, we have

P

[
sup

x,y∈M
|〈Ψ(x),Ψ(y)〉 − k(x+ y)| ≥ ε

]
(29)

≤
((

d

2

) 2
d+2

+

(
2

d

) d
d+2

)
(16R)

2d
d+2 e

− ε2D/d
αε,M(d+2)

(
4dLp,r

ε2

) d
d+2

(30)

where αε,M = min(1, 4σ2
M + 2ε/3).

Proof. Let z = x + y, s = D/d, and c(z) = 1
s

∑s
i=1 gi(z)

where gi(z) = 1
d

∑(d+1)i
j=di+1 e

−ztwj . From the definition,
c(z) = 〈Ψ(x),Ψ(y)〉. We also write f(z) = c(z) − k(z).
Let the range of z written as Mz = {x+ y|x, y ∈ M}.

Like (Yang et al. 2014), We need to obtain high probabil-
ity bound for f(z) and supz∈Mz

‖∇f(z)‖.
Since c(z) is the mean of i.i.d. gi(z)s and 0 ≤ gi(z) ≤ 1,

we obtain

P
[
|f(z)− k(z)| > ε

2

]
≤ 2e−ε2s/2, (31)

by using the Hoeffding’s inequality.
Since the variance of gi(z) is bounded as

E

⎡
⎢⎣
⎛
⎝1

d

(d+1)i∑
j=di+1

e−ztwj

⎞
⎠

2
⎤
⎥⎦− E

⎡
⎣1

d

(d+1)i∑
j=di+1

e−ztwj

⎤
⎦
2

≤ σ2
M,

(32)
we can obtain

P
[
|f(z)− k(z)| > ε

2

]
≤ 2e

− ε2s/2

4σ2
M+2ε/3 , (33)

using Bernstein inequality. By combining above two in-
equality, we get

P
[
|f(z)− k(z)| > ε

2

]
≤ 2e

− ε2s
2αε,M . (34)

We can also get

P

(
sup

z∈Mz

‖∇f(z)‖2 ≥ ε2/4γ2

)
≤ 4γ2dLp,r/ε

2. (35)

by following the same discussion as (Yang et al. 2014) be-
cause the corresponding discussion in (Yang et al. 2014) re-
quires only the independence of w per each column that also
holds true for our method.

Combining these results, we get the uniform bound with

probability at least 1 − 2
(

16R
γ

)d

e
− ε2s

2αε,M − 4γ2dLp,r/ε
2

for positive γ. By optimizing γ, we get the bound.

5 Experiments

In this section, we experimentally evaluate the accuracy and
computation time of the proposed method. In Section 5.1,
we evaluate the approximation error of the gram matrix. In
Section 5.2 and 5.3, we evaluate the classification accuracy
on image recognition datasets. In Section 5.4, the compu-
tation time for feature encoding using synthesized data is
compared.

5.1 Approximation Error of Gram Matrix

We first applied the proposed method to CNN features
and evaluated the approximation error of kernel values.
The method was tested on three object recognition datasets
(CUB-200, Stanford Dogs, and Caltech256). CUB-200
(Welinder et al. 2010) is a standard fine-grained object
recognition dataset that consists of 200 bird species with 60
images per class. Stanford Dogs (Khosla et al. 2011) con-
sists of approximately 20,000 images of 120 dog classes,
and Caltech256 (Griffin, Holub, and Perona 2007) consists
of approximately 30,600 images of 256 object classes.

For the CNN model, we used the VGG-16 (Simonyan
and Zisserman 2014) network pretrained with ImageNet. We
employed the l1-normalized activation of the last fully con-
nected layer with a dimension of 4,096. The activation was
positive definite because we applied the ReLU function.

As a kernel function, we used an exponential-semigroup
kernel that was reported to exhibit good performance in
(Yang et al. 2014), using the kernel parameter β = 0.1.
The kernel function had the form e−β

∑d
j=1

√
xj+yj and the

corresponding weight distribution was a Lévy distribution

p(w) = β
2
√
π
w−3/2e

−β2

4w .
We compared random Laplace features (random), random

circulant features excluding random sign flipping (circ), and
the proposed method (altcirc) with m = 2 and log2 d.
Then, we varied the output feature dimension to 4, 096 ×
{1, 2, 4, 8, 16, 32}.

We randomly sampled 2,000 data from each dataset and
computed the mean and standard error of ‖Ktrue−Kapprox‖F

‖Ktrue‖F ,
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(a) CUB (b) StanfordDogs (c) Caltech256

Figure 1: Comparison of the approximation error for the gram matrix using VGG-16 last activation.

where Ktrue is the true gram matrix, and Kapprox denotes
gram matrices calculated from random features for 10 trials.

Figure 1 shows the results. The approximation error is
roughly ’random’ < ’altcirc (m = log2 d)’ < ’altcirc (m =
2) < ’circ’. Random circulant features have a much larger
error and the performance is unstable. Though the error of
“random” is smaller than the error of “altcirc (m = log2 d),”
“altcirc (m = log2 d)” has a small error, and its performance
increases in stable fashion as D increases.

5.2 Semigroup Kernel on Bag of Visual Words

Next, we applied the proposed method to Bag of Visual
Words features and evaluated its accuracy on image recog-
nition datasets. As in Section 5.1, the method was tested on
CUB-200, Stanford Dogs, and Caltech256.

We used the default train/test splits for the CUB-200 and
Stanford Dogs datasets. For the Caltech256 dataset, we ran-
domly sampled 25 images per class as training data and 30
images per class as test data.

For all datasets, we extracted dense 128-dimensional
scale-invariant feature transform (SIFT) features with a step
size of 2 and scales of 4, 6, 8, and 10. We used “vl phow”
implemented in VLFeat (Vedaldi and Fulkerson 2008) for
extraction and then encoded the extracted SIFT to 4,096-
dimensional Bag of Visual Words features. We used 250,000
local features to learn the codebooks.

As a kernel function, we used an exponential-semigroup
kernel like Section 5.1 with the kernel parameter β = 0.01.
We compared random Laplace features (random), random
circulant features excluding random sign flipping (circ), and
the proposed method (altcirc) with m = 2 and log2 d.
Then, we varied the output feature dimension to 4, 096 ×
{1, 2, 4, 8, 16}. We applied linear SVM implemented in LI-
BLINEAR (Fan et al. 2008) with C = 100 and evaluated the
mean and standard error of the accuracy over 10 trials.

The results are listed in Table 2 and indicate that ran-
dom circulant features without random sign flipping exhib-
ited poor performance with a large standard error. Thus, the
random circulant features are unstable. On the other hand,

the proposed method with m = 2 exhibited a very simi-
lar performance to the random Laplace features. Further, the
proposed method exhibited comparable performance to the
random Laplace features method for m = log2 d, although
the standard error was slightly larger for the former. Thus,
the proposed method is a good choice for histogram feature.

5.3 Semigroup Kernel on the CNN feature

Next, we applied the proposed method to features calcu-
lated from the CNNs. We used the VGG-16 (Simonyan
and Zisserman 2014) network pretrained with ImageNet.
We employed the l1-normalized activation of the last fully
connected layer with a dimension of 4,096 and a 1,000-
dimensional output for the softmax layer, which was em-
bedded into a 1,024-dimensional vector with the additional
dimensions filled with 0’s. The activation was positive. The
softmax layer output was also positive. Thus, both features
satisfied the requirement for positive definiteness.

We compared the random Laplace features, random circu-
lant features, and the proposed method with m = 2 and m =
log2 d, corresponding to the exponential-semigroup kernel.
We also evaluated the results obtained using the methods for
original features (linear) and by applying random Fourier
features corresponding to a Gaussian kernel (gauss) so as to
verify the performance of the exponential-semigroup kernel
on CNN features. As kernel parameters, we used β = 0.1
and 0.01 for the outputs of the last fully-connected and soft-
max layers, respectively. We used the mean of the 50-th l2
nearest-neighbor distances of 1,000 data sampled from the
training data for the Gaussian kernel, following (Yu et al.
2015). In addition, we employed the same dataset, evalua-
tion metric, and classifier setting used in Section 5.2.

Tables 3 and 4 show the results. Table 3 indicates that,
while the Gaussian kernel did not work well for the soft-
max output, the exponential-semigroup kernel contributed
significantly to a performance improvement. The results in-
dicate that the semigroup kernel was effective not only for
histogram data but also for probability score of the softmax
output. Furthermore, the proposed method with m = log2 d
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Table 2: Comparison of accuracy on image recognition datasets using Bag of Visual Words.

Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 11.20 ± 0.12 12.70 ± 0.11 14.06 ± 0.08 14.81 ± 0.05 15.12 ± 0.05
circ 9.37 ± 0.90 12.15 ± 0.55 13.77 ± 0.35 14.57 ± 0.19 15.36 ± 0.08
altcirc (ours) (m = 2) 10.95 ± 0.39 12.59 ± 0.14 14.03 ± 0.19 14.73 ± 0.11 15.27 ± 0.09
altcirc (ours) (m = log2 d) 11.26 ± 0.21 12.77 ± 0.11 14.09 ± 0.13 14.71 ± 0.09 15.23 ± 0.07

Stanford random 16.65 ± 0.10 19.23 ± 0.12 21.02 ± 0.05 22.23 ± 0.08 23.06 ± 0.08
Dogs circ 12.50 ± 2.10 18.73 ± 0.89 21.49 ± 0.28 22.49 ± 0.26 23.37 ± 0.13

altcirc (ours) (m = 2) 16.68 ± 0.79 19.51 ± 0.29 21.30 ± 0.22 22.18 ± 0.21 23.22 ± 0.15
altcirc (ours) (m = log2 d) 16.83 ± 0.20 18.91 ± 0.21 21.22 ± 0.15 22.38 ± 0.10 23.03 ± 0.09

Caltech random 30.12 ± 0.15 32.72 ± 0.09 34.50 ± 0.08 35.55 ± 0.08 36.06 ± 0.10
256 circ 25.82 ± 1.88 31.42 ± 0.93 34.23 ± 0.35 35.56 ± 0.23 36.23 ± 0.12

altcirc (ours) (m = 2) 29.28 ± 0.81 32.46 ± 0.23 34.51 ± 0.24 35.45 ± 0.23 36.30 ± 0.16
altcirc (ours) (m = log2 d) 30.06 ± 0.27 32.55 ± 0.31 34.60 ± 0.17 35.56 ± 0.16 36.09 ± 0.16

Table 3: Comparison of accuracy on image recognition datasets using VGG-16 softmax output.

Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 36.07 ± 0.30 39.48 ± 0.11 40.91 ± 0.12 42.03 ± 0.08 42.55 ± 0.07
circ 33.29 ± 2.55 35.26 ± 2.18 37.88 ± 2.03 40.35 ± 1.14 41.20 ± 0.92
altcirc (ours) (m = 2) 33.76 ± 2.08 36.95 ± 1.95 39.11 ± 1.09 40.77 ± 0.89 42.10 ± 0.63
altcirc (ours) (m = log2 d) 36.05 ± 0.68 37.50 ± 1.09 40.91 ± 0.43 41.86 ± 0.21 42.46 ± 0.20
gauss 23.07 ± 0.06 23.34 ± 0.05 23.38 ± 0.06 23.39 ± 0.03 23.44 ± 0.04
linear 22.83

Stanford random 78.81 ± 0.04 79.13 ± 0.02 79.22 ± 0.04 79.28 ± 0.04 79.29 ± 0.04
Dogs circ 78.50 ± 0.30 78.93 ± 0.13 79.02 ± 0.11 79.31 ± 0.04 79.33 ± 0.03

altcirc (ours) (m = 2) 78.75 ± 0.19 79.00 ± 0.12 79.21 ± 0.07 79.29 ± 0.02 79.35 ± 0.03
altcirc (ours) (m = log2 d) 78.86 ± 0.08 79.08 ± 0.06 79.18 ± 0.05 79.34 ± 0.04 79.34 ± 0.02
gauss 78.07 ± 0.03 78.03 ± 0.04 78.02 ± 0.02 78.00 ± 0.03 78.03 ± 0.01
linear 78.12

Caltech random 70.04 ± 0.21 71.52 ± 0.18 72.25 ± 0.21 72.57 ± 0.15 72.74 ± 0.14
256 circ 67.35 ± 1.19 69.20 ± 1.02 70.47 ± 0.96 71.84 ± 0.51 72.32 ± 0.36

altcirc (ours) (m = 2) 68.54 ± 0.95 69.94 ± 0.93 71.45 ± 0.51 72.10 ± 0.36 72.69 ± 0.20
altcirc (ours) (m = log2 d) 69.78 ± 0.35 70.73 ± 0.32 72.01 ± 0.21 72.53 ± 0.16 72.71 ± 0.18
gauss 58.48 ± 0.20 58.72 ± 0.22 58.65 ± 0.23 58.65 ± 0.24 58.69 ± 0.24
linear 57.90

worked as well as the random Laplace features approach. In
Table 4, when the output feature dimension was small, the
linear method and the Gaussian kernel worked well. How-
ever, as the dimension grew, the approximation method for
the semigroup kernel exhibited better performance. Thus,
we can state that the semigroup kernel is superior to the
Gaussian kernel for encoding the activation output of the
CNNs when the approximation is sufficiently accurate.

These results demonstrate that the proposed method is ef-
fective for encoding CNN features.

5.4 Computation Time

Finally, we compared the feature-encoding computation
time using synthesized data, with each element sampled
from a uniform distribution ranging from 0 to 1. We varied
the dimension of the input feature d to 1,024, 2,048, 4,096,
8,192 and 16,384, and set the dimension of the output fea-
ture D = d. We compared the computation time required to
encode one input vector using an Intel(R) Xeon(R) CPU E5-
2690 v3 @ 2.60GHz. We implemented each method using
Matlab with the “-singleCompThread” option.

Table 5 shows that the overall performance roughly fol-

lows the order given in Table 1. The proposed method re-
quires significantly less computation time than the random
Laplace features method. Although the proposed method
with m = log2 d is slower than the proposed method with
m = 2, even with m = log2 d, it is approximately 100 times
as fast as the random Laplace features method when the di-
mension is 16,384. Thus, the proposed method is efficient.

6 Conclusion

In this study, we proposed alternating circulant random
features for application to semigroup kernels. The pro-
posed method randomly mixes the circulant random fea-
tures. We analyzed the covariance of the proposed fea-
tures and showed that this value is small when the dimen-
sion of the global feature is large. From experiments on
image recognition datasets using histogram and CNN fea-
tures, we demonstrated that the semigroup kernel is effec-
tive on a wide range of positive definite features, and that
the proposed method exhibits comparable performance to,
with much lower computation time than, the original ran-
dom Laplace features. The proposed method enabled us to
apply the corresponding semigroup kernels very efficiently.
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Table 4: Comparison of accuracy on image recognition datasets using VGG-16 last activation.

Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 55.00 ± 0.16 56.89 ± 0.12 57.94 ± 0.07 58.43 ± 0.09 58.74 ± 0.04
circ 54.14 ± 0.94 56.80 ± 0.36 57.68 ± 0.19 58.45 ± 0.08 58.72 ± 0.06
altcirc (ours) (m = 2) 54.85 ± 0.34 56.63 ± 0.22 57.75 ± 0.16 58.57 ± 0.07 58.94 ± 0.05
altcirc (ours) (m = log2 d) 54.92 ± 0.14 56.75 ± 0.12 57.81 ± 0.06 58.39 ± 0.09 58.68 ± 0.05
gauss 56.88 ± 0.11 57.60 ± 0.08 57.75 ± 0.06 57.84 ± 0.03 57.87 ± 0.05
linear 56.47

Stanford random 75.45 ± 0.06 76.59 ± 0.09 77.20 ± 0.05 77.52 ± 0.06 77.73 ± 0.03
Dogs circ 75.75 ± 0.27 76.90 ± 0.08 77.44 ± 0.07 77.65 ± 0.06 77.72 ± 0.04

altcirc (ours) (m = 2) 75.70 ± 0.13 76.75 ± 0.07 77.24 ± 0.07 77.47 ± 0.05 77.71 ± 0.05
altcirc (ours) (m = log2 d) 75.45 ± 0.11 76.48 ± 0.07 77.20 ± 0.07 77.53 ± 0.04 77.64 ± 0.03
gauss 76.02 ± 0.05 76.23 ± 0.06 76.37 ± 0.05 76.39 ± 0.03 76.44 ± 0.04
linear 77.73

Caltech random 75.42 ± 0.17 76.48 ± 0.16 77.15 ± 0.15 77.54 ± 0.15 77.65 ± 0.16
256 circ 73.07 ± 1.64 76.03 ± 0.57 76.81 ± 0.40 77.45 ± 0.17 77.60 ± 0.14

altcirc (ours) (m = 2) 75.01 ± 0.48 76.25 ± 0.28 77.16 ± 0.14 77.44 ± 0.16 77.66 ± 0.16
altcirc (ours) (m = log2 d) 75.33 ± 0.18 76.53 ± 0.15 77.11 ± 0.13 77.44 ± 0.18 77.70 ± 0.16
gauss 76.32 ± 0.20 76.60 ± 0.21 76.78 ± 0.19 76.83 ± 0.18 76.85 ± 0.19
linear 75.50

Table 5: Computation time (second) on synthesized data.

Method 1,024 2,048 4,096 8,192 16,384
random 3.4e-3 1.5e-2 6.2e-2 2.5e-1 1.0
altcirc (ours) (m = 2) 3.6e-4 3.7e-4 4.8e-4 9.6e-4 1.7e-3
altcirc (ours) (m = log2 d) 6.3e-4 8.5e-4 1.8e-3 4.0e-3 8.6e-3

We have applied our method to semigroup kernels. How-
ever, the concept of mixing random features can be applied
to a wider domain. Thus, we will extend this concept to a
broader range of kernels in future work.
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