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Abstract

We consider prediction with expert advice when the loss vec-
tors are assumed to lie in a set described by the sum of atomic
norm balls. We derive a regret bound for a general version
of the online mirror descent (OMD) algorithm that uses a
combination of regularizers, each adapted to the constituent
atomic norms. The general result recovers standard OMD re-
gret bounds, and yields regret bounds for new structured set-
tings where the loss vectors are (i) noisy versions of vec-
tors from a low-dimensional subspace, (ii) sparse vectors cor-
rupted with noise, and (iii) sparse perturbations of low-rank
vectors. For the problem of online learning with structured
losses, we also show lower bounds on regret in terms of rank
and sparsity of the loss vectors, which implies lower bounds
for the above additive loss settings as well.

1 Introduction

Online learning problems, such as prediction with expert ad-
vice (Cesa-Bianchi and Lugosi 2006) and online convex op-
timization (Zinkevich 2003), involve a learner who sequen-
tially makes decisions from a decision set. The learner seeks
to minimize her total loss over a sequence of loss functions,
unknown at the beginning, but which is revealed causally.
Specifically, she attempts to achieve low regret, for each se-
quence in a class of loss sequences, with respect to the best
single decision point in hindsight.

The theory of online learning, by now, has yielded flexible
and elegant algorithmic techniques that enjoy provably sub-
linear regret in the time horizon of plays. Regret bounds for
online learning algorithms typically hold across inputs (loss
function sequences) that have little or no structure. For in-
stance, for the prediction with experts problem, the exponen-
tially weighted forecaster (Cesa-Bianchi and Lugosi 2006)
is known to achieve an expected regret of O(

√
T lnN) over

any sequence of N -dimensional loss vectors with coordi-
nates bounded in [0, 1]; here T is the number of rounds of
play.

There is often, however, more structure in the inputs of
online learning problems beyond elementary �∞-type con-
straints, which a learner with a priori knowledge can hope
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to exploit and improve her performance. A notable exam-
ple is when the loss vectors for the prediction with experts
problem come from a low-dimensional subspace (Hazan et
al. 2016). This is often the case in recommender systems
based on latent factor models (Koren, Bell, and Volinsky
2009), where users and items are represented in terms of
their features or attribute vectors, typically of small dimen-
sion. Under a bilinear model for the utility of a user-item
pair, each user’s utility across all items becomes a vector
from a subspace of dimension at most the size of the fea-
ture vectors. (Hazan et al. 2016) show that in this setup the
learner can limit her regret to O(d

√
T ) when each loss vec-

tor comes from a d-dimensional subspace of RN . If d � N

(in fact, d = o
(√

lnN
)

), then this is potentially advanta-
geous over a more general best-experts algorithm like Expo-
nential Weights.

This example is interesting not only because it shows
that geometric/structural properties known in advance can
help the learner achieve order-wise better regret, but also
because it opens up the possibility of studying whether
other, arguably more realistic, forms of structure can be ex-
ploited, such as sparsity in the input (or more generally small
norm) and, more importantly, “additive” combinations of
such structures, e.g., low-rank losses added with losses of
small �2-norm, which expresses losses that are noisy per-
turbations of a low-dimensional subspace. In this paper, we
take a step in this direction and develop a framework for on-
line learning problems with structured losses.

Our Results and Techniques: We consider the prediction
with experts problem with loss sequences in which each el-
ement (loss vector) belongs to a set that respects structural
constraints. Specifically, we assume that the loss vectors be-
long to a sum of atomic norm balls1 (Chandrasekaran et al.
2012), say A + B, where the sum of sets, A and B, is in
the Minkowski sense.2 For this setup—which we call on-
line learning with additive loss spaces—we show a general
regret guarantee for an online mirror descent (OMD) algo-
rithm that uses a combination of regularizer functions, each

1centrally symmetric, convex, compact sets with their centroids
at the origin.

2A+B = {a+ b : a ∈ A, b ∈ B}.
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of which is adapted to a constituent atomic norms of A and
B, respectively.

Specializing this result for a variety of loss-function sets
recovers standard OMD regret guarantees for strongly con-
vex regularizers (Shalev-Shwartz 2012a), and subsumes a
result for the online low-rank problem (Hazan et al. 2016).
But more importantly, this allows us to obtain “new results
from old”—regret guarantees for settings such as noisy low
rank (where losses are perturbations from a low-dimensional
subspace), noisy sparse (where losses are perturbations of
sparse vectors), and sparse low-rank (where losses are sparse
perturbations from a low-dimensional subspace); see Ta-
bles 1 and 2.

Another contribution of this work is to show lower bounds
on regret for online learning with structured losses. We de-
rive a generic lower bound on regret, for any algorithm for
the prediction with experts problem, using structured (in
terms of sparsity and dimension) loss vectors. This result
allows us to derive regret lower bounds in a variety of in-
dividual and additive loss space settings including sparse,
noisy, low rank, noisy low-rank, and noisy sparse losses.

Related work. The work that is perhaps closest in spirit
to ours is that of (Hazan et al. 2016), who study the best
experts problem when the loss vectors all come from a low-
dimensional subspace of the ambient space. A key result of
theirs is that the online mirror descent (OMD) algorithm,
used with a suitable regularization, improves the regret to
depend only on the low rank and not the ambient dimension.
More broadly, OMD theory provides regret bounds depend-
ing on properties of the regularizer and the geometry of the
loss and decision spaces (Shalev-Shwartz 2012b). We are
able to notably generalize this to the more flexible setting of
additive losses.

Online learning with structure has been studied in the
recent past from the point of view of overall sequence
complexity or “hardness” (learning with “easy data”). This
includes work that shows algorithms enjoying first- and
second-order regret bounds (Cesa-Bianchi, Mansour, and
Stoltz 2007), and with performance depending on the
quadratic variation of the inputs (Hazan and Kale 2010;
Steinhardt and Liang 2014). There is also recent work on
achieving regret scaling with the covering number of the se-
quence of observed loss vectors (Cohen and Mannor 2017),
which is another notion of easy data.

Our problem formulation explores a different formulation
of learning with easy data, in which the adversary, instead
of being constrained to choose loss sequences with low total
magnitude or variation, chooses loss vectors from sets with
enough geometric structure (atomic norm balls).

2 Notation and Preliminaries

For an integer n ∈ Z+, we use [n] to denote the set
{1, 2, . . . n}. For a vector x ∈ R

n, xi denotes the ith
component of x. The p-norm of x is defined as ‖x‖p =

(
∑n

i=1 |xi|p)1/p, 1 ≤ p < ∞. Write ‖x‖∞ := maxni=1 |xi|
and ‖x‖0 := |{i | xi �= 0}|. If ‖· ‖ is a norm defined on
a closed convex set Ω ⊆ R

n, then its corresponding dual

norm is defined as

‖u‖∗ = sup
x∈Ω:‖x‖≤1

x · u ,

where x · u =
∑

i xiui is the standard inner product.
It follows that the dual of the standard p-norm (p ≥ 1)
is the q-norm, where q is the Hölder conjugate of p, i.e.,
1
p + 1

q = 1. The n-probability simplex is defined as Δn =

{x ∈ [0, 1]n | ∑n
i=1 xi = 1}. Given any set A ⊆ R

n,
we denote the convex hull of A as conv(A). Clearly, when
A = {e1, e2, . . . en}, conv (A) = Δn, where ei ∈ [0, 1]n

denotes ith standard basis vector of Rn.

2.1 Atomic Norm and its Dual (Chandrasekaran
et al. 2012)

The notion of an atomic norm along with its dual will pro-
vide us with a unified framework for addressing structured
loss spaces, and will be used extensively in the paper. Let
A ⊆ R

n be a set which is convex, compact, and cen-
trally symmetric about the origin (i.e., a ∈ A if and only
if −a ∈ A).

The atomic norm induced by the set A is defined as

||x||A := inf{t > 0 | x ∈ tA}, for x ∈ R
n.

The dual of the atomic norm induced by A becomes the
support function of A (Boyd and Vandenberghe 2004); for-
mally,

||x||∗A := sup{x.z | z ∈ A}, for x ∈ R
n.

For example, if the set A is the convex hull of all unit-
norm one-sparse vectors, i.e., A := conv ({±ei}ni=1), then
the corresponding atomic norm is the standard �1-norm
‖x‖1 =

∑
i |xi|.

2.2 Problem setup

We consider the online learning problem of learning with
expert advice from a collection of N experts (Cesa-Bianchi
and Lugosi 2006). In each round t = 1, 2, . . . , T , the learner
receives advice from each of the N experts, following which
the learner selects an expert from a distribution pt ∈ ΔN ,
maintained over the experts, whose advice is to be followed.
Upon this, the adversary reveals the losses incurred by the
N experts, lt =

(
lt(1), lt(2), . . . , lt(N)

) ∈ [0, 1]N , lt(i)
being the loss incurred by the ith expert. The learner suffers
an expected loss of EIt∼pt

[lt(It)] =
∑N

i=1 pt(i)lt(i). If the
game is played for a total of T rounds, then the objective
of the learner is to minimize the expected cumulative regret
defined as:

E [RegretT ] =
T∑

t=1

pt.lt − min
i∈[N ]

T∑
t=1

lt(i).

It is well-known that without any further assumptions
over the losses lt, the best achievable regret for this problem
is Θ(

√
T lnN). Indeed, the exponential weights algorithm

or the Hedge algorithm achieves regret O(
√
T lnN) (Arora,

Hazan, and Kale 2012, Theorem 2.3), and a matching lower
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bound exists as well (Cesa-Bianchi and Lugosi 2006, Theo-
rem 3.7).

Now, a very natural question to ask is: can a better
(smaller) regret be achieved if the loss sequence has more
structure? Suppose the loss vectors (lt)

T
t=1 all belong to a

common structured loss space L ⊆ [0, 1]N , such as:

1. Sparse loss space: L = {l ∈ [0, 1]N | ‖l‖0 = s}. Here,
s ∈ [N ] is the sparsity parameter.

2. Spherical loss space: L = {l ∈ [0, 1]N | ‖l‖2A = l�Al ≤
ε}, where A is a positive definite matrix and ε > 0.

3. Noisy loss space: L = {l ∈ [0, 1]N | ‖l‖22 = ε}, ε >
0}. Note that noisy losses are a special class of spherical
losses where A = IN , the identity matrix.

4. Low-rank loss space: L = {l ∈ [0, 1]N | l = Uv },
here the rank of matrix U ∈ R

N×d is equal to d ∈ [N ]
and vector v ∈ R

d (as mentioned previously, such loss
vectors were considered by (Hazan et al. 2016)).

5. Additive loss space: L = L1 + L2 (Minkowski Sum).
More formally, L = {l = l1+ l2 | l1 ∈ L1 and l2 ∈ L2},
where L1 ⊆ [0, 1]N and L2 ⊆ [0, 1]N are structured loss
spaces themselves.3 Examples include any combination
of the previously described loss spaces, such as the low-
rank + noisy space.

The Exponential Weight or Hedge algorithm achieves
O(

√
T lnN) regret (Cesa-Bianchi and Lugosi 2006; Shalev-

Shwartz 2012b) in all of the above settings. The relevant
question is whether the geometry of such loss spaces can be
exploited in a principled fashion to achieve improved regret
guarantees (possibly independent of lnN ). In other words,
can we come up with algorithms for above cases such that
the regret is O(

√
ωT ), where ω < lnN?

We will show that, for all of the above loss spaces, we
can obtain a regret factor ω which is order-wise better than
lnN . In particular, we will establish these regret bounds by
employing the Online Mirror Descent algorithm (described
below) with a right choice of atomic norms. Furthermore,
using this algorithm, we will also develop a framework to
obtain new regret bounds from old. That is, we show that if
we have an online mirror descent setup for L1 and L2, then
we can in fact obtain a low-regret algorithm for the additive
loss space L1 + L2.

2.3 Online Mirror Descent

In this section, we give a brief introduction to the Online
Mirror Descent (OMD) algorithm (Bubeck 2011; Shalev-
Shwartz 2012b), which is a subgradient descent based
method for online convex optimization with a suitably cho-
sen regularizer. A reader well-versed with the analysis of
OMD may skip the statement of Theorem 3 and proceed to
the next section.

OMD generalizes the basic mirror descent algorithm
used for offline optimization problems (see, e.g., (Beck and

3Note that, in the problem setup at hand the learner observes
only the loss vectors lt, and does not have access to the loss com-
ponents l1t or l2t.

Teboulle 2003)). Before detailing the algorithm, we will re-
call a few relevant definitions:
Definition 1. Bregman Divergence. Let Ω ∈ R

n be a con-
vex set, and f : Ω→R be a strictly convex and differentiable
function. Then the Bregman divergence associated with f ,
denoted by Bf : Ω× Ω→R, is defined as

Bf (u,v) = f(u)− f(v)− (u− v) · ∇f(v), ∀u,v ∈ Ω .

Definition 2. Strong Convexity Let Ω ∈ R
n be a convex

set, and f : Ω→R be a differentiable function. Then f is
called α-strongly convex over Ω with respect to the norm
‖ · ‖ iff for all x,y ∈ Ω,

f(x)− f(y)− (∇f(y))T (x− y) ≥ α

2
‖x− y‖2.

Equivalently, a continuous twice differentiable function, f ,
over Ω is said to be α-strongly convex iff for all x,w ∈ Ω
we have

xT∇2f(w)x ≥ α‖x‖2.
We now describe the OMD algorithm for the online learn-

ing problem setup (Sec. 2.2).

Algorithm 1 Online Mirror Descent (OMD)

1: Parameters: Learning rate η > 0.
2: Convex set Ω ⊆ R

N , such that ΔN ⊆ Ω
3: Strictly convex, differentiable function R : Ω→R

4: Initialize: p1 = argmin
p∈ΔN

R(p)

5: for t = 1, 2, · · ·T do
6: Play pt ∈ ΔN

7: Receive loss vector lt ∈ [0, 1]N

8: Incur loss pt.lt
9: Update:

10: ∇R(p̃t+1) ← ∇R(pt)−ηlt (Assuming p̃t+1 ∈ Ω)
11: pt+1 ← argmin

p∈ΔN

BR(p, p̃t+1)

12: end for

The following regret guarantee for the above algorithm is
well-known.
Theorem 3 (OMD regret bound (Theorem 5.2, (Bubeck
2011))). Let the loss vectors, {lt}Tt=1, belong to a loss space
L ⊆ [0, 1]N , which is bounded with respect to a (arbi-
trary) norm ‖· ‖; in particular, for any l ∈ L we have
‖l‖ ≤ G. Furthermore, let Ω ⊇ ΔN be a convex set, and
R : Ω→R be a strictly convex, differentiable function that
satisfies R(p) − R(p1) ≤ D2 for parameter D ∈ R and
all p ∈ ΔN ; where p1 := argminp∈ΔN

R(p). Also, let the
restriction of R to ΔN be α-strongly convex with respect to
‖· ‖∗, the dual norm of ‖· ‖.

Then, the regret of OMD algorithm with set Ω, regularizer
function R, and learning rate η > 0, for T rounds satisfies

RegretT (OMD(η)) =
T∑

t=1

pt.lt −
N
min
i=1

T∑
t=1

lt(i)

≤ 1

η

(
D2 +

η2G2T

2α

)
,
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Loss Space Regret Bound Atomic Norm Regularizer

s-Sparse 2
√
ln(s+ 1)T 1√

2
‖ · ‖p ‖x‖2q

(p = 2 ln(s+ 1)) (q = p
p−1 )

Spherical
√
ελmax(A−1)T 1√

ε
‖ · ‖A εx�A−1x

ε-Noise
√
εT 1√

ε
‖ · ‖2 εx�x

Table 1: OMD Regret Bounds for Structured Loss Spaces

where p1,p2, . . .pT denotes the sequential predictions of

the algorithm in T rounds. Moreover, setting η∗ = D
G

√
2α
T

(i.e., minimizing the right-hand-side of the above bound), we
have

RegretT (OMD(η∗)) ≤ DG

√
2T

α
.

3 Online Mirror Descent for

Structured Losses

This section shows that, for specific structured loss spaces,
instantiating the OMD algorithm—with a right choice of the
norm ‖ · ‖ and regularizer R—leads to improved (over the
standard O(

√
T lnN) bound) regret guarantees. Proofs of

these results appear in the full version of the paper.

1. Sparse loss space: L = {l ∈ [0, 1]N | ‖l‖0 = s}, s ∈ [N ]
being the loss sparsity parameter. Then using the q-norm,

R(x) = ‖x‖2q =
(∑N

i=1 x
q
i

) 2
q

, where q = ln s′
ln s′−1 , s′ =

(s+ 1)2, as the regularizer, we get,

RegretT ≤ 2
√

ln(s+ 1)T .

2. Spherical loss space: L = {l ∈ [0, 1]N | ‖l‖2A = l�Al ≤
ε}, where A is a positive definite matrix, ε > 0. Then
using the square of the ellipsoidal norm as the regularizer,
R(x) = ε‖x‖2A−1 = εx�A−1x, we get,

RegretT ≤
√

λmax(A−1)εT ,

where λmax(A
−1) denotes the maximum eigenvalue of

A−1.
3. Noisy loss sapce: L = {l ∈ [0, 1]N | ‖l‖22 ≤ ε}, ε > 0.

Then using the square of the standard Euclidean norm as
the regularizer, R(x) = ε‖x‖22, we get,

RegretT ≤
√
εT .

Note that the noisy-loss case is a special case of the
spherical-loss setting, where A = A−1 = IN .

(Hazan et al. 2016) have also used OMD to address the
loss vectors that belong to a low-dimensional subspace.
Specifically, if the loss space L = {l ∈ [0, 1]N | l = Uv },
with U ∈ R

N×d being a rank d matrix and vector v ∈ R
d.

They have shown that the regularizer R(x) = ‖x‖2H =
x�Hx (where H = IN + U�MU, M is the matrix cor-
responding to the Löwner-John ellipsoid (Hazan et al. 2016)

of L and IN is the identity matrix) leads to the following
regret bound:

RegretT ≤ 4
√
dT .

In addition, for the standard loss space L = [0, 1]n, one
can execute the OMD algorithm with the unnormalized neg-
ative entropy, R(x) =

∑N
i=1 xi log xi −

∑N
i=1 xi, as the

regularizer, to obtain:

RegretT ≤
√
2T lnN .

Note that the above regret bound is the same as that for
the Hedge algorithm. In fact, it can be verified that, with
the above choice of regularizer, the OMD algorithm exactly
reduces to Hedge (Bubeck 2011).

4 Online Learning for Additive Losses

We now present a key result of this paper, which enables
us to obtain new regret bounds from old. In particular, we
will develop a framework that provides a low-regret OMD
algorithm for an additive loss space L = L1 + L2, using
the OMD setup of the constituent loss spaces L1 and L2.
Specifically, we detail how to choose an appropriate regu-
larizer for losses from L and, hence, construct a low-regret
OMD algorithm.
Theorem 4. (Main Result) Let L1,L2 ⊆ [0, 1]N be two loss
spaces, such that L1 ⊆ A1, L2 ⊆ A2, where A1, A2 ∈ R

N

are two centrally symmetric, convex, compact sets. We ob-
serve a sequence of loss vectors {lt}Tt=1, such that in any
round t ∈ [T ], lt = l1t + l2t, where l1t ∈ L1 and
l2t ∈ L2. Consider two differentiable, strictly convex func-
tions R1 : Ω1 �→ R, R2 : Ω2 �→ R, where Ω1,Ω2 ⊇ ΔN are
two convex sets. The restrictions of R1 and R2 to ΔN are,
respectively, α1- and α2-strongly convex with respect to the
norms || · ||∗A1

and || · ||∗A2
.

Also, let parameters D1 and D2 be such that R1(p) −
R1(p1) ≤ D2

1 and R2(p)−R2(p1) ≤ D2
2 , for all p ∈ ΔN ;

where p1 := argminp∈ΔN
(R1(p) +R2(p)).

Then (with learning rate η∗ =

√
(D2

1+D2
2)min(α1,α2)

T , reg-
ularizer R := R1 +R2, and p1 as the initial prediction) the
regret of the OMD algorithm is bounded as

RegretT ≤ 2

√
(D2

1 +D2
2)T

min(α1, α2)
.

A proof of the above theorem appears in Section 4.2.
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Loss Space Regret Bound Atomic Norm Regularizer

d-Low Rank ‖ · ‖A, A = A1 +A2, where
+ ε-Noise

√
2(16d+ ε)T A1 =

{
x ∈ R

N |
√
x�H−1x ≤ 1

}
, ‖x‖2H + ε‖x‖22

A2 =
{
x ∈ R

N | 1√
ε

√
xTx ≤ 1

}
.

s-Sparse ‖ · ‖A, A = A1 +A2, where
+ ε-Noise 2

√
2(1 + ε) ln(s+ 1)T A1 =

{
x ∈ R

N | 1√
2
‖x‖p ≤ 1

}
, ‖x‖2q + ε‖x‖22

A2 =
{
x ∈ R

N | 1√
ε

√
xTx ≤ 1

}
.

d-Low Rank ‖ · ‖A, A = A1 +A2, where
+ s-Sparse 2

√
2(16d+ 1) ln(s+ 1)T A1 =

{
x ∈ R

N |
√
x�H−1x ≤ 1

}
, ‖x‖2H + ‖x‖2q

A2 =
{
x ∈ R

N | 1√
2
‖x‖p ≤ 1

}
.

Table 2: Our Results for Additive Loss Spaces

Remark 5. There exist loss spaces L1 and L2 such that
OMD algorithm obtained via Theorem 4 provides an order-
wise optimal regret bound for the additive loss space L =
L1 + L2; see Appendix A for specific examples.

The above theorem leads to the following corollary.
Corollary 6. (New Regret Bounds from Old) Suppose
L1,L2 ⊆ [0, 1]N are two loss spaces such that ‖l‖A1

≤
1, ∀l ∈ L1, and ‖l‖A2

≤ 1, ∀l ∈ L2, where A1,A2 ∈ R
N

are two centrally symmetric, convex, compact sets. Also,
suppose there exists two strictly convex, differentiable func-
tions R1 : Ω1 �→ R and R2 : Ω2 �→ R, (Ω1,Ω2 ⊇ ΔN , con-
vex) such that OMD with regularizer functions R1 and R2

gives the regret bounds of D1

√
2T
α1

and D2

√
2T
α2

over loss
spaces L1 and L2, respectively. Here, α1 (α2) is the strong
convexity parameter of R1 (R2) over ΔN , with respect to
the atomic norm || · ||∗A1

(|| · ||∗A2
).

In addition, let D1 and D2 be parameters such that, for
all p ∈ ΔN ,

R1(p)−R1(p
′
1) ≤ D2

1 with p′
1 = argminq∈ΔN

R1(q),

R2(p)−R2(p
′
2) ≤ D2

2 with p′
2 = argminq∈ΔN

R2(q).

Then, for the additive loss space L = L1 + L2, the OMD
algorithm with regularizer function R = R1 + R2, initial
prediction p1 = argminp∈ΔN

(R1(p) +R2(p)) and learn-

ing rate η∗ =

√
(D2

1+D2
2)min(α1,α2)

T ) enjoys the following
regret guarantee:

RegretT ≤ 2

√
(D2

1 +D2
2)T

min(α1, α2)
.

Note that we can prove this corollary—using Theo-
rem 4—by simply verifying the following inequalities:
R1(p) − R1(p1) ≤ D2

1 and R2(p) − R2(p1) ≤ D2
2 , for

all p ∈ ΔN and p1 := argminq∈ΔN
(R1(q) +R2(q)).

This follows, since R1(p
′
1) ≤ R1(p1) and R2(p

′
2) ≤

R2(p1); recall that p′
1 := argminq∈ΔN

R1(q) and p′
2 :=

argminq∈ΔN
R2(q).

4.1 Applications of the main result

In this section, we will derive novel regret bounds for ad-
ditive loss spaces (L = L1 + L2) wherein the individual
components (L1 and L2) are the loss spaces which were con-
sidered in Section 3. These results are derived by applying
Theorem 4; detailed proofs appear in the full version of the
paper.

Corollary 7 (Noisy Low Rank Losses). Suppose L1 =
{l ∈ [0, 1]N | l = Uv } is a d-dimensional loss space
(1 ≤ d ≤ lnN), perturbed with noisy losses L2 = {l ∈
[0, 1]N | ‖l‖22 ≤ ε, ε > 0}. Then, the regret of the OMD
algorithm over the loss space L = L1 + L2—with regu-
larizer R(x) = x�Hx + ε‖x‖22 and learning rate η∗ =√

2(16d+ε)
T —is upper bounded as follows

RegretT ≤
√
2(16d+ ε)T .

Corollary 8 (Noisy Sparse Losses). Suppose L1 = {l ∈
[0, 1]N | ‖l‖0 = s} is an s-sparse loss space (s ∈ [N ]), per-
turbed with noisy losses from L2 = {l ∈ [0, 1]N | ‖l‖22 ≤
ε, ε > 0}. Then, the regret of the OMD algorithm over
the loss space L = L1 + L2—with regularizer R(x) =

‖x‖2q + ε‖x‖22 and learning rate η∗ =
√

1+ε
(2 ln(s+1)−1)T —

is upper bounded as follows

RegretT ≤ 2
√
2(1 + ε) ln(s+ 1)T .

Corollary 9 (Low Rank losses with Sparse noise). Sup-
pose L1 = {l ∈ [0, 1]N | l = Uv } is a d rank loss
space (1 ≤ d ≤ lnN), perturbed with s-sparse losses
L2 = {l ∈ [0, 1]N | ‖l‖0 = s}, s ∈ [N ]. Then, the regret
of the OMD algorithm over the loss space L = L1 + L2—
with regularizer R(x) = x�Hx + ‖x‖2q and learning rate

η∗ =
√

16d+1
(2 ln(s+1)−1)T —is upper bounded as follows

RegretT ≤ 2
√
2(16d+ 1) ln(s+ 1)T .
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4.2 Proof of Theorem 4

Before proceeding to prove the theorem, we will establish
the following useful lemmas. Let A1,A2 be any two con-
vex, compact, centrally symmetric subsets of Rn and A =
A1 + A2 (Minkowski Sum). Then, note that A is also con-
vex, compact, and centrally symmetric. This follows from
the fact that conv(X ) + conv(Y) = conv(X + Y) for any
X ,Y ⊂ R

n. In addition, we have
Lemma 10. ||x||A ≤ max{||x1||A1

, ||x2||A2
}, where x =

x1 + x2, x1 ∈ A1, x2 ∈ A2.

Proof. Recall the definition of atomic norm ‖·‖A from Sec-
tion 2.1. Suppose for any x = (x1+x2) ∈ R

n, t1 = ||x1||A1

and t2 = ||x2||A2 . Clearly, x = x1+x2 ∈ (t1A1+t2A2) ⊆
t(A1+A2), where t = max{t1, t2}. The proof now follows
directly from the definition of atomic norm, ‖x‖A.

Lemma 11. ||x||∗A = ||x||∗A1
+ ||x||∗A2

, for all x ∈ R
n.

Proof. Consider any x ∈ R
n,

||x||∗A = sup{x.z | z ∈ A}
= sup{x.(z1 + z2) | z1 ∈ A1, z2 ∈ A2}
= sup{x.z1 | z1 ∈ A1}+ sup{x.z2 | z2 ∈ A2}
= ||x||∗A1

+ ||x||∗A2
.

Lemma 12. Let Ω̃ ⊆ R
n be a convex set. Consider two

differentiable functions R1 : Rn �→ R and R2 : Rn �→ R,
that are respectively α1 and α2-strongly convex with respect
to || · ||∗A1

and || · ||∗A2
over Ω̃. Then, R = R1 + R2 is α =

1
2 min(α1, α2)-strongly convex with respect to || · ||∗A over
Ω̃.

Proof. For any x,y ∈ Ω̃,

R(x)−R(y)−∇R(y)(x− y)

= R1(x)−R1(y) +R2(x)−R2(y)−∇R1(y)
T (x− y)

+∇R2(y)(x− y)

≥ α1

2
‖x− y‖∗2A1

+
α2

2
‖x− y‖∗2A2

≥ α

2
(2‖x− y‖∗2A1

+ 2‖x− y‖∗2A2
), (α =

1

2
min(α1, α2))

≥ α

2
(‖x− y‖∗A1

+ ‖x− y‖∗A2
)2,(

since 2(a2 + b2) > (a+ b)2, ∀a, b ∈ R
)

=
α

2
(‖x− y‖∗2A ) (via Lemma 11) .

Hence, R = R1+R2 is α = 1
2 min(α1, α2)-strongly convex

with respect to || · ||∗A over Ω̃.

Proof. of Theorem 4 Consider the norm ‖ · ‖ = ‖ · ‖A,
and its dual norm ‖ · ‖∗ = ‖ · ‖∗A. Note that:

1. Lemma 10 along with the bounds ‖l1‖A1
≤ 1 and

‖l2‖A2
≤ 1 imply that ‖l‖A ≤ 1, for any l = l1+l2 ∈ L.

Hence, L ⊆ A.

2. For any p ∈ ΔN , R(p)−R(p1) = (R1(p)−R1(p1))+

(R2(p)−R2(p1)) ≤ D2
1+D2

2 . Hence, D =
√
D2

1 +D2
2 .

3. R(x) = R1(x) + R2(x) is min{α1,α2}
2 -strongly convex

with respect to ‖ · ‖∗A, ∀x ∈ ΔN (Lemma 12). Hence,
α = min{α1,α2}

2 .

The result now follows by applying Theorem 3.

5 Lower Bounds
In this section we will derive lower bounds for the problem
of learning with expert advice, for various structured loss
spaces. Relevant definitions and missing proofs can be found
in the full version of the paper. We first state the lower bound
for a general loss space L ⊆ R

N (Theorem 13) based on a
lower-bound result of (Ben-David, Pál, and Shalev-Shwartz
2009) for online learning of binary hypotheses classes in
terms of Littlestone’s dimension.4

Theorem 13 (A Generic Lower Bound). Given parame-
ters V > 0 and s > 0 along with any online learning al-
gorithm, there exists a sequence of V -dimensional loss vec-
tors l1, l2, . . . , lT ∈ {0,±s}N of sparsity 2V ≤ N (i.e.,
rank ([l1, l2, . . . , lT ]) = V and ‖lt‖0 = 2V , for all t ∈ [T ])
such that

RegretT ≥ 2s

√
V T

8
.

The following corollary is a direct consequence of Theo-
rem 13.
Corollary 14. Given parameters V ∈ [lnN ] and s > 0
along with any online learning algorithm, there exists a
sequence of loss vectors l1, l2, . . . , lT ∈ [−s, s]N of VC-
dimension V (i.e., V C({l1, l2, . . . , lT }) = V ), such that

RegretT ≥ 2s

√
V T

8
.

Proof. Consider the set of loss vectors L = {l ∈ {0,±s}N |
‖l‖0 ≤ 2V }. From the definition of VC dimension,5 it fol-
lows that V C(L) = V . Hence, Theorem 13 implies the
stated claim.

Next we instantiate Theorem 13 to derive the regret lower
bounds for the structured loss spaces introduced in Section
3. In particular, we begin by stating a lower bound for sparse
loss vectors.
Corollary 15. (Lower Bound for Sparse losses) Given k ∈
[N ] and s > 0 along with any online learning algorithm,
there exists a sequence of loss vectors l1, l2, . . . , lT ∈
[−s, s]N of sparsity k ∈ N (i.e. ‖lt‖0 = k for all t ∈ [T ])
such that

RegretT ≥ 2s

√
�ln k�T

8
.

4For online learning problems, Littlestone’s dimension is used
as a characterization of complexity of a hypothesis class, learnable
in an online fashion. Further details can be found in the full version
of the paper.

5The full version of the paper provides a definition of VC di-
mension along with relevant references.
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Along the same lines, Theorem 13 leads to a lower bound
for losses with small �p norm.
Corollary 16. (Lower Bound for �p losses) Given p ≤
[lnN ] and s > 0 along with any online learning algo-
rithm, there exists a sequence of loss vectors l1, l2, . . . , lT ∈
[−s, s]N of �p norm at most s (i.e., ‖lt‖p ≤ s) such that

RegretT ≥ s

√
pT

8
.

Proof. Consider the set of all 2p-sparse loss vectors in
[− s

2 ,
s
2 ]

N . Any such loss vector l ∈ [− s
2 ,

s
2 ]

N has ‖l‖p ≤ s.
The stated claim now follows by applying Theorem 13 with
parameters s

2 and V = p.

Corollary 17. (Lower Bound for Noisy Losses) Given ε > 0
and any online learning algorithm, there exists a sequence of
ε-noisy loss vectors l1, l2, . . . , lT ∈ [−ε, ε]N (i.e., ‖lt‖22 ≤
ε) such that

RegretT ≥
√

εT

4
.

Proof. Consider the set of all 2-sparse loss vectors
in [−√

ε
2 ,
√

ε
2 ]

N . Clearly any such loss vector l ∈
[−√

ε
2 ,
√

ε
2 ]

N has ‖l‖22 ≤ ε. Hence with parameters s =√
ε
2 and V = 1, the result follows directly from theorem

13.

Remark 18. Note that Theorem 13 (with parameter V =
d, s = 1) recovers the lower bound for low rank loss spaces
as established by (Hazan et al. 2016): given 1 ≤ d ≤ lnN
and any online learning algorithm, there exists a sequence
of d-rank loss vectors l1, l2, . . . , lT ∈ [−1, 1]N such that

RegretT ≥ 2

√
dT

8
.

We next derive the regret lower bounds for few instances
of additive loss spaces.
Corollary 19. (Lower Bound for Noisy Low Rank) Given
parameters ε > 0 and d ∈ [lnN ] along with any online
learning algorithm, there exists a sequence of loss vectors
l1, l2, . . . , lT ∈ [−(1 + ε), (1 + ε)]N , where lt = lt1 + lt2,
with lt1 ∈ {l ∈ [−1, 1]N | l = Uv} (U ∈ R

N×d is a rank
d matrix), and ‖lt2‖22 ≤ ε, such that

RegretT ≥ 2

(
1 +

√
ε

2d

)√
dT

8
.

Proof. Let N = 2d. Consider the matrix H ∈ {−1, 1}N×d

where 2d rows of H represent 2d vertices of the d-
hypercube in [−1, 1]N . Let, L1 = {H(:, 1), . . .H(:, d)},
and L2 =

{
l ∈ {−√

ε
2d
,
√

ε
2d

}N | ‖l‖22 = ε
}
. Note that

any loss vectors in L2 is 2d-sparse. Consider L = L1 + L2.
The result now follows from Theorem 13, noting that with
s =

(
1 +

√
ε
2d

)
and V = d, the lower-bounding loss vec-

tors assured in Theorem 13, l1, . . . , lT , are contained in
L.

Corollary 20. (Lower Bound for Noisy Sparse) Given pa-
rameters ε > 0 and k ∈ [N ] along with any online
learning algorithm, there exists a sequence of loss vectors
l1, l2, . . . , lT ∈ [−(1 + ε), (1 + ε)]N , where lt = lt1 + lt2,
with lt1 ∈ {l ∈ [−1, 1]N | ‖l‖0 ≤ k}, and ‖lt2‖22 = ε, such
that

RegretT ≥ 2

(
1 +

√
ε

k

)√
�ln k�T

8
.

Proof. Consider the loss spaces: L1 = {l ∈ {−1, 1}N |
‖l‖0 = k}, and L2 =

{
l ∈ {−√

ε
k ,

√
ε
k

}N | ‖l‖22 = ε
}
.

Note that any loss vectors in L2 is k-sparse. Write L =
L1 + L2. The corollary now follows from Theorem 13, not-
ing that—with s =

(
1 +

√
ε
k

)
and V = �ln k�—the lower-

bounding loss vectors assured in Theorem 13, l1, . . . , lT , are
contained in L.

6 Conclusion

In this paper, we have developed a theoretical framework
for online learning with structured losses, namely the broad
class of problems with additive loss spaces. The framework
yields both algorithms that generalize standard online mir-
ror descent and also novel regret upper bounds for rele-
vant settings such as noisy + sparse, noisy + low-rank, and
sparse + low-rank losses. In addition, we have derived lower
bounds—i.e., fundamental limits—on regret for a variety of
online learning problems with structured loss spaces. In light
of these results, tightening the gap between the upper and
lower bounds for structured loss spaces is a natural, open
problem.

Another relevant thread of research is to study settings
wherein the learner knows that the loss space is structured,
but is oblivious to the exact instantiation of the loss space,
e.g., the losses might be perturbations of vectors from a low-
dimensional subspace, but, a priori, the learning algorithm
might not know the underlying subspace.6 Addressing struc-
tured loss spaces in bandit settings also remains an interest-
ing direction for future work.

Appendix

A Tight Examples for Theorem 4

In this section, we present loss spaces L1 and L2 such
that OMD algorithm obtained via Theorem 4 provides an
order-wise optimal regret guarantee for the additive loss
space L = L1 + L2.

Composition of Low Ranks: Let L1 = {l ∈ [0, 1]N | l =
U1v } and L2 = {l ∈ [0, 1]N | l = U2v} be loss spaces
of rank d1 and d2, respectively (i.e., rank of the matrices U1

and U2 are respectively d1 and d2). Here (d1 + d2) ≤ lnN .
Consider the regularizer R(x) = x�(H1 + H2)x, where
H1 = IN+U�

1 M1U1, and H2 = IN+U�
2 M2U2, M1 and

M2 being the Löwner John ellipsoid matrix for L1 and L2.

6The results of (Hazan et al. 2016) address the noiseless version
of this problem.
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That is, R(x) = R1(x) + R2(x), where R1(x) and R2(x)
are the regularizers for L1 and L2 respectively.

Theorem 4 assets that the OMD algorithm, with regular-
izer R, for the loss space L = L1 + L2 achieves the follow-
ing regret bound:

RegretT ≤ 4
√

2(d1 + d2)T .

This regret guarantee is tight, since Rank(L) can be as high
as (d1 + d2) and, hence, we get a nearly matching lower
bound by applying the result of (Hazan et al. 2016); see also
Remark 18 in Section 5.

Composition of Noise Let loss spaces L1 = {l ∈ [0, 1]N |
‖l‖22 ≤ ε1} and L2 = {l ∈ [0, 1]N | ‖l‖22 ≤ ε2}. Then,
via an instantiation of Theorem 4, we get that the regret of
the OMD algorithm over the loss space L = L1 + L2, with

regularizer R(x) = (ε1 + ε2)‖x‖22 (and η∗ =
√

2(ε1+ε2)
T ) is

upper bounded as follows:

RegretT ≤
√

2(ε1 + ε2)T .

Again, modulo constants, this is the best possible regret
guarantee for L; see Corollary 17.
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