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Abstract

In this paper, we consider the interpretability of the founda-
tional Laplacian-based semi-supervised learning approaches
on graphs. We introduce a novel flow-based learning frame-
work that subsumes the foundational approaches and addition-
ally provides a detailed, transparent, and easily understood
expression of the learning process in terms of graph flows.
As a result, one can visualize and interactively explore the
precise subgraph along which the information from labeled
nodes flows to an unlabeled node of interest. Surprisingly, the
proposed framework avoids trading accuracy for interpretabil-
ity, but in fact leads to improved prediction accuracy, which
is supported both by theoretical considerations and empirical
results. The flow-based framework guarantees the maximum
principle by construction and can handle directed graphs in an
out-of-the-box manner.

1 Introduction

Classification and regression problems on networks and
data clouds can often benefit from leveraging the underly-
ing connectivity structure. One way of taking advantage of
connectivity is provided by graph-based semi-supervised
learning approaches, whereby the labels, or values, known
on a subset of nodes, are propagated to the rest of the
graph. Laplacian-based approaches such as Harmonic Func-
tions (Zhu, Ghahramani, and Lafferty 2003) and Laplacian
Regularization (Belkin, Niyogi, and Sindhwani 2006) epit-
omize this class of methods. Although a variety of im-
provements and extensions have been proposed (Zhu 2008;
Belkin, Niyogi, and Sindhwani 2006; Zhou and Belkin 2011;
Wu et al. 2012; Solomon et al. 2014), the interpretability of
these learning algorithms has not received much attention
and remains limited to the analysis of the obtained predic-
tion weights. In order to promote accountability and trust,
it is desirable to have a more transparent representation of
the prediction process that can be visualized, interactively
examined, and thoroughly understood.

Despite the label propagation intuition behind these algo-
rithms, devising interpretable versions of Harmonic Func-
tions (HF) or Laplacian Regularization (LR) is challenging
for a number of reasons. First, since these algorithms operate
on graphs in a global manner, any interactive examination of
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the prediction process would require visualizing the underly-
ing graph, which becomes too complex for even moderately
sized graphs. Second, we do not have the luxury of trading
prediction accuracy for interpretability: HF/LR have been
superseded by newer methods and we cannot afford falling
too far behind the current state of the art in terms of the
prediction accuracy. Finally, HF and LR possess useful prop-
erties such as linearity and maximum principle that are worth
preserving.

In this paper, we introduce a novel flow-based semi-
supervised learning framework that subsumes HF and LR
as special cases, and overcomes all of these challenges. The
key idea is to set up a flow optimization problem for each
unlabeled node, whereby the flow sources are the labeled
nodes, and there is a single flow destination—the unlabeled
node under consideration. The source nodes can produce as
much out-flow as needed; the destination node requires a
unit in-flow. Under these constraints, the flow optimizing a
certain objective is computed, and the amount of flow drawn
from each of the labeled nodes gives the prediction weights.
The objective function contains an �1-norm like term, whose
strength allows controlling the sparsity of the flow and, as a
result, its spread over the graph. When this term is dropped,
we prove that this scheme can be made equivalent to either
the HF or LR method.

This approach was chosen for several reasons. First, the
language of flows provides a detailed, transparent, and eas-
ily understood expression of the learning process which fa-
cilitates accountability and trust. Second, the sparsity term
results in flows that concentrate on smaller subgraphs; addi-
tionally, the flows induce directionality on these subgraphs.
Smaller size and directedness allow using more intuitive
graph layouts (Gansner and North 2000). As a result, one
can visualize and interactively explore the precise subgraph
along which the information from labeled nodes flows to
an unlabeled node of interest. Third, the sparsity term in-
jects locality into prediction weights, which helps to avoid
flat, unstable solutions observed with pure HF/LR in high-
dimensional settings (Nadler, Srebro, and Zhou 2009). Thus,
not only do we avoid trading accuracy for interpretability, but
in fact we gain in terms of the prediction accuracy. Fourth, by
construction, the flow-based framework is linear and results
in solutions that obey the maximum principle, guaranteeing
that the predicted values will stay within the range of the
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provided training values. Finally, directed graphs are han-
dled out-of-the-box and different weights for forward and
backward versions of an edge are allowed.

The main contribution of this paper is the proposed flow-
based framework (Section 2). We investigate the theoretical
properties of the resulting prediction scheme (Section 3) and
introduce its extensions (Section 4). After providing compu-
tational algorithms that effectively make use of the shared
structure in the involved flow optimization problems (Section
5), we present an empirical evaluation both on synthetic and
real data (Section 6).

2 Flow-based Framework

We consider the transductive classification/regression prob-
lem formulated on a graph G = (V,E) with node-set
V = {1, 2, ..., n} and edge-set E = {1, 2, ...,m}. A func-
tion f(·) known on a subset of labeled nodes 1, 2, ..., nl needs
to be propagated to the unlabeled nodes nl + 1, nl + 2, ..., n.
We concentrate on approaches where the predicted values
depend linearly on the values at labeled nodes. Such linearity
immediately implies that the predicted value at an unlabeled
node s is given by

f(s) =

nl∑

i=1

wi(s)f(i), (1)

where for each i = 1, 2, ..., nl, the weight wi(·) captures the
contribution of the labeled node i.

In this section, we assume that the underlying graph is
undirected, and that the edges e ∈ E of the graph are dec-
orated with dissimilarities de > 0, whose precise form will
be discussed later. For an unlabeled node s, our goal is to
compute the weights wi(s), i = 1, 2, ..., nl. To this end, we
set up a flow optimization problem whereby the flow sources
are the labeled nodes, and there is a single flow destination:
the node s. The source nodes can produce as much out-flow
as needed; the sink node s requires a unit in-flow. Under these
constraints, the flow optimizing a certain objective function
is computed, and the amount of flow drawn from each of the
source nodes i = 1, 2, ..., nl gives us the desired prediction
weights wi(s).

With these preliminaries in mind, we next write out the
flow optimization problem formally. We first arbitrarily ori-
ent each edge of the undirected graph, and let A be n ×m
signed incidence matrix of the resulting directed graph: for
edge e, from node i to node j, we have Aie = +1 and
Aje = −1. This matrix will be useful for formulating the
flow conservation constraint. Note that the flow conservation
holds at unlabeled nodes, so we will partition A into two
blocks. Rows 1...nl of A will constitute the nl ×m matrix
Al and the remaining rows make up Au; these sub-matrices
correspond to labeled and unlabeled nodes respectively. The
right hand side for the conservation constraints is captured by
the (n− nl)× 1 column-vector bs whose entries correspond
to unlabeled nodes. All entries of bs are zero except the s-th
entry which is set to −1, capturing the fact that there is a unit
in-flow at the sink node s. For each edge e, let the sought
flow along that edge be xe, and let x be the column-vector

with e-th entry equal to xe. Our flow optimization problem is
formulated as:

min
x∈Rm

1

2

m∑

e=1

de(x
2
e + λ|xe|) subject to Aux = bs, (2)

where λ ≥ 0 is a trade-off parameter.
The prediction weight wi(s) is given by the flow amount

drawn from the labeled node i. More precisely, the weight
vector is computed as w(s) = Alx for the optimal x. Note
that the optimization problem is strictly convex and, as a
result, has a unique solution. Furthermore, the optimization
problem must be solved separately for each unlabeled s, i.e.
for all different vectors bs, and the predicted value at node s
is computed via f(s) =

∑nl

i=1 wi(s)f(i) = (w(s))Tfl.

Flow Subgraphs Our optimization problem resembles that
of elastic nets (Hastie, Tibshirani, and Friedman 2009), and
the �1-norm like first-order term makes the solution sparse.
For a given value of λ, taking the optimal flow’s support—all
edges that have non-zero flow values and nodes incident to
these edges—we obtain a subgraph Gs(λ) along which the
flows get propagated to the node s. This subgraph together
with the flow values on the edges constitutes an expressive
summary of the learning process, and can be analyzed or
visualized for further analysis. Potentially, further insights
can be obtained by considering Gs(λ) for different values of
λ whereby one gets a “regularization path” of flow subgraphs.

In addition, the optimal flow induces directionality on
Gs(λ) as follows. While the underlying graph was oriented
arbitrarily, we get a preferred orientation on Gs(λ) by re-
taining the directionality of the edges with positive flows,
and flipping the edges with negative flows; this process com-
pletely removes arbitrariness since the edges of Gs(λ) have
non-zero flow values. In addition, this process makes the
optimal flow positive on Gs(λ); it vanishes on the rest of the
underlying graph.

Discussion To understand the main features of the pro-
posed framework, it is instructive to look at the tension be-
tween the quadratic and first-order terms in the objective
function. While the first-order term tries to concentrate flows
along the shortest paths, the quadratic term tries to spread
the flow broadly over the graph. This is formalized in Sec-
tion 3 by considering two limiting cases of the parameter
λ and showing that our scheme provably reduces to the HF
when λ = 0, and to the 1-nearest neighbor prediction when
λ → ∞. Thanks to the former limiting case, our scheme
inherits from HF the advantage of leveraging the commu-
nity structure of the underlying graph. The latter case injects
locality and keeps the spread of the flow under control.

Limiting the spread of the flow is crucially important for in-
teractive exploration. The flow subgraphs Gs(λ) get smaller
with the increasing parameter λ > 0. As a result, these sub-
graphs, which serve as the summary of the learning process,
can be more easily visualized and interactively explored.
Another helpful factor is that, with the induced orientation,
Gs(λ) is a directed acyclic graph (DAG); see Section 3 for
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a proof. The resulting topological ordering gives an overall
direction and hierarchical structure to the flow subgraph, ren-
dering it more accessible to a human companion due to the
conceptual resemblance with the commonly used flowchart
diagrams.

Limiting the spread of the flow seemingly inhibits fully
exploiting the connectivity of the underlying graph. Does
this lead to a less effective method? Quite surprisingly the
complete opposite is true. HF and LR have been known to suf-
fer from flat, unstable solutions in high-dimensional settings
(Nadler, Srebro, and Zhou 2009). An insightful perspective
on this phenomenon was provided in (von Luxburg, Radl, and
Hein 2010; 2014) which showed that random walks of the
type used in Laplacian-based methods spread too thinly over
the graph and “get lost in space” and, as a result, carry mini-
mal useful information. Therefore, limiting the spread within
our framework can be seen as an antidote to this problem.
Indeed, as empirically confirmed in Section 6, in contrast
to HF/LR which suffer from almost uniform weights, flow-
based weights with λ > 0 concentrate on a sparse subset of
labeled nodes and help to avoid the flat, unstable solutions.

3 Theoretical Properties

In this section we prove a number of properties of the pro-
posed framework. We first study its behavior at the limiting
cases of λ = 0 and λ → ∞. Next, we prove that for all
values of the parameter λ, the subgraphs Gs(λ) supporting
the flow are acyclic and that the maximum principle holds.

Limiting Behavior Introduce the column-vector d con-
sisting of dissimilarities de, and the diagonal matrix D =
diag(d). It is easy to see that the matrix L = AD−1AT is
the un-normalized Laplacian of the underlying graph with
edge weights (similarities) given by 1/de. As usual, the edge
weights enter the Laplacian with a negative sign, i.e. for each
edge e = (i, j) we have Lij = −1/dij .

Proposition 1. When λ = 0, the flow-based prediction
scheme is equivalent to the Harmonic Functions approach
with the Laplacian L = AD−1AT.

Proof. The Harmonic Functions method uses the Lapla-
cian matrix L and constructs predictions by optimizing
minf∈Rn

∑
(i,j)∈E −Lij(fi − fj)

2 subject to reproducing
the values at labeled nodes, fi = f(i) for i ∈ {1, 2, ..., nl}.
By considering the partitions of the Laplacian along labeled
and unlabeled nodes, we can write the solution of the HF
method as fu = −L−1

uuLulfl, compare to Eq. (5) in (Zhu,
Ghahramani, and Lafferty 2003).

When λ = 0, the flow optimization problem Eq. (2)
is quadratic with linear constraints, and so can be car-
ried out in a closed form (see e.g. Section 4.2.5 of (Boyd
et al. 2011)). The optimal flow vector is given by x =
D−1AT

u(AuD
−1AT

u)
−1bs, and the weights are computed

as w(s) = Alx = AlD
−1AT

u(AuD
−1AT

u)
−1bs. When

we plug these weights into the prediction formula (1), we
obtain the predicted value at s as f(s) = (w(s))Tfl =
bT
s(AuD

−1AT
u)

−1AuD
−1AT

l fl. Since bs is zero except at
the position corresponding to s where it is −1 (this is the

reason for the negative sign below), we can put together the
formulas for all separate s into a single expression

fu = −(AuD
−1AT

u)
−1AuD

−1AT
l fl.

By using the Laplacian L = AD−1AT and considering its
partitions along labeled and unlabeled nodes, we can re-write
the formula as fu = −L−1

uuLulfl, giving the same solution as
the HF method.

Remark. The converse is true as well: for any Laplacian
L built using non-negative edge weights (recall that off-
diagonal entries of such Laplacians are non-positive), the
same predictions as HF can be obtained via our approach
at λ = 0 with appropriate costs de. When the Laplacian
matrix L is symmetric, this easily follows from Proposi-
tion 1 by simply setting dij = −1/Lij for all (i, j) ∈ E.
However, when L is not symmetric (e.g. after Markov nor-
malization), we can still match the HF prediction results
by setting dij = −2/(Lij + Lji) for all (i, j) ∈ E. The
main observation is that while L may be asymmetric, it
can always be symmetrized without inducing any change
in the optimization objective of the HF method. Indeed the
objective

∑
(i,j)∈E −Lij(fi − fj)

2 is invariant to setting
Lij ← (Lij + Lji)/2. Now using Proposition 1, we see that
by letting dij = −2/(Lij +Lji), our framework with λ = 0
reproduces the same predictions as the HF method.

Proposition 2. When one formally sets λ = ∞, the flow
based prediction scheme is equivalent to the 1-nearest neigh-
bor prediction.

Proof. In this setting, the first-order term dominates the cost,
and the flow converges to a unit flow along the shortest path
(with respect to costs de) from the closest labeled node, say
i∗(p), to node p. We can then easily see that the resulting
prediction weights are all zero, except wi∗(p)(p) = 1. Thus,
the prediction scheme (1) becomes equivalent to the 1-nearest
neighbor prediction.

Acyclicity of Flow Subgraphs Recall that the optimal so-
lution induces a preferred orientation on subgraph Gs(λ);
this orientation renders the optimal flow positive on Gs(λ)
and zero on the rest of the underlying graph.

Proposition 3. For all λ ≥ 0, the oriented flow subgraph
Gs(λ) is acyclic.

Proof. Suppose that Gs(λ) has a cycle of the form k1 →
... → kr → k1. The optimal flow x is positive along all
of the edges of Gs(λ), including the edges in this cycle; let
x0 > 0 be the smallest of the flow values on the cycle. Let
xsub be the flow vector corresponding to the flow along this
cycle with constant flow value of x0. Note that x− xsub is
a feasible flow, and it has strictly lower cost than x because
the optimization objective is diminished by a decrease in
the components of x. This contradiction proves acyclicity of
Gs(λ).

3978



Maximum Principle It is well-known that harmonic func-
tions satisfy the maximum principle. Here we provide its
derivation in terms of the flows, showing that the maximum
principle holds in our framework for all settings of the pa-
rameter λ.

Proposition 4. For all λ ≥ 0 and for all s, we have
∀i, wi(s) ≥ 0 and

∑nl

i=1 wi(s) = 1.

Proof. Non-negativity of weights holds because a flow hav-
ing a negative out-flow at a labeled node can be made less
costly by removing the corresponding sub-flow. The formal
proof is similar to the proof or Proposition 3. First, make
the flow non-negative by re-orienting the underlying graph
(which was oriented arbitrarily). Now suppose that the opti-
mal solution x results in wi(s) < 0 for some i, meaning that
the labeled node i has an in-flow of magnitude |wi(s)|. Since
all of the flow originates from labeled nodes, there must exist
j ∈ {1, ..., nl}/{i} and a flow-path j → k1 → ...→ kr → i
with positive flow values along the path; let x0 > 0 be the
smallest of these flow values. Let xsub be the flow vector
corresponding to the flow along this path with constant flow
value of x0. Note that x− xsub is a feasible flow, and it has
strictly lower cost than x because the optimization objective
is diminished by a decrease in the components of x. This
contradiction proves the positivity of weights.

The weights, or equivalently the out-flows from the labeled
nodes, add up to 1 because the destination node absorbs a
total of a unit flow. More formally, note that by definition,
1TA = 0. Splitting this along labeled and unlabeled nodes we
get 1TA = 1Tl Al+1TuAu = 0. Right-multiplying by x gives
1Tl Alx+ 1TuAux = 1Tl w(s) + 1Tubs = 1Tl w(s)− 1 = 0, or∑nl

i=1 wi(s) = 1 as desired.

This proposition together with Eq. (1) guarantees that the
function f(·) obeys the maximum principle.

4 Extensions

LR and Noisy Labels Laplacian Regularization has the
advantage of allowing to train with noisy labels. Here, we
discuss modifications needed to reproduce LR via our frame-
work in the limit λ = 0. This strategy allows incorporating
noisy training labels into the flow framework for all λ ≥ 0.

Consider the objective used by LR: μ−1
∑nl

i=1(fi–f̃i) +∑
(i,j)∈E −Lij(fi − fj)

2, where f̃i are the provided noisy
labels/values and μ is the strength of Laplacian regulariza-
tion. In this formulation, we need to learn fi for both labeled
and unlabeled nodes. The main observation is that the soft
labeling terms μ−1(fi–f̃i)2 can be absorbed into the Lapla-
cian by modifying the data graph. For each labeled node
i ∈ {1, 2, ..., nl}, introduce a new anchor node ia with a
single edge connecting ia to node i with the weight of μ−1/2
(halving offsets doubling in the regularizer sum). Consider
the HF learning on the modified graph, where the labeled
nodes are the anchor nodes only—i.e. optimize the HF ob-
jective on the modified graph with hard constraints fia = f̃i;
clearly, this is equivalent to LR. Given the relationship be-
tween HF and the flow formulation, this modification results
in a flow formulation of LR at the limiting case of λ = 0.

Directed Graphs Being based on flows, our framework
can treat directed graphs very naturally. Indeed, since the
flow can only go along the edge direction, we have a new
constraint xe ≥ 0, giving the optimization problem:

min
x∈R

m
+

1

2

m∑

e=1

de(x
2
e + λxe) subject to Aux = bs, (3)

Even when λ = 0, this scheme is novel—due to the non-
negativity constraint the equivalence to HF no longer holds.
The naturalness of our formulation is remarkable when com-
pared to the existing approaches to directed graphs that use
different graph normalizations (Zhou, Schölkopf, and Hof-
mann 2004; Zhou, Huang, and Schölkopf 2005), co-linkage
analysis (Wang, Ding, and Huang 2010), or asymmetric dis-
similarity measures (Subramanya and Bilmes 2011).

This formulation can also handle graphs with asymmetric
weights. Namely, one may have different costs for going
forward and backward: the cost of the edge i→ j can differ
from that of j → i. If needed, such cost differentiation can
be applied to undirected graphs by doubling each edge into
forward and backward versions. In addition, it may be useful
to add opposing edges (with higher costs) into directed graphs
to make sure that the flow problem is feasible even if the
underlying graph is not strongly connected.

5 Computation

The flow optimization problems discussed in Section 4 can
be solved by the existing general convex or convex quadratic
solvers. However, general purpose solvers cannot use the
shared structure of the problem—namely that everything ex-
cept the vector bs is fixed. Here, we propose solvers based
on the Alternating Direction Method of Multipliers (ADMM)
(Boyd et al. 2011) that allow caching the Cholesky factoriza-
tion of a relevant matrix and reusing it in all of the iterations
for all unlabeled nodes. We concentrate on the undirected
version because of the space limitations.

In the ADMM form, the problem (2) can be written as

min
x,z∈Rm

g(x) +
1

2

∑

e∈E

dex
2
e + λ

∑

e∈E

de|ze|

subj to x− z = 0,

where g(x) is the 0/∞-valued indicator function of the set
{x|Aux = bs}. Stacking the dissimilarities de into a column-
vector d, and defining the diagonal matrix D = diag(d), the
ADMM algorithm then consists of iterations:

xk+1 := argmin
x

g(x) +
1

2
xTDx+

ρ

2
‖x− zk + uk‖22

zk+1 :=Sdλ/ρ(x
k+1 + uk)

uk+1 :=uk + xk+1 − zk+1

Here, Sa(b) = (b−a)+−(−b−a)+ is the component-wise
soft-thresholding function.

The x-iteration step can be computed in a closed form
as the solution of an equality constrained quadratic pro-
gram, cf. Section 4.2.5 of (Boyd et al. 2011). Letting
M = diag(1/(ρ + d)), we first solve the linear system
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Figure 1: f(·) for a mixture of two Gaussians in R
10 for a number of methods.

AuMAT
uy = 2ρAuM(zk − uk) − bs for y, and then let

xk+1 := 2ρM(zk−uk)−MAT
uy. The most expensive step

is the involved linear solve. Fortunately, the matrix AuMAT
u

is both sparse (same fill as the graph Laplacian) and positive-
definite. Thus, we compute its Cholesky factorization and
use it throughout all iterations and for all unlabeled nodes,
since AuMAT

u contains only fixed quantities.
We initialize the iterations by setting z0 = u0 = 0,

and declare convergence when both max |xk+1 − zk+1|
and max |zk+1 − zk| fall below a pre-set threshold. As ex-
plained in Section 3.3 of (Boyd et al. 2011), these quantities
are related to primal and dual feasibilities. Upon conver-
gence, the prediction weights are computed using the formula
w(s) = Alz; thanks to soft-thresholding, using z instead of
x avoids having a multitude of negligible non-zero entries.

6 Experiments

In this section, we validate the proposed framework and then
showcase its interpretability aspect.

6.1 Validation

We experimentally validate a number of claims made about
the flow based approach: 1) limiting the spread of the
flow via sparsity term results in improved behavior in high-
dimensional settings; 2) this improved behavior holds for
real-world data sets and leads to increased predictive accu-
racy over HF; 3) our approach does not fall far behind the
state-of-the-art in terms of accuracy. We also exemplify the
directed/asymmetric formulation on a synthetic example.

We compare the flow framework to the original HF for-
mulation and also to two improvements of HF designed to
overcome the problems encountered in high-dimensional set-
tings: p-Voltages—the method advocated in Alamgir and
von Luxburg (Alamgir and von Luxburg 2011) (they call
it q-Laplacian regularization) and further studied in (Bridle
and Zhu 2013; Alaoui et al. 2016); Iterated Laplacians—a
state-of-the-art method proposed in (Zhou and Belkin 2011).

For data clouds we construct the underlying graph as a
weighted 20-nearest neighbor graph. The edge weights are
computed using Gaussian RBF with σ set as one-third of the
mean distance between a point and its tenth nearest neigh-
bor (Chapelle, Schölkopf, and Zien 2006). The normalized
graph Laplacian L is used for HF and Iterated Laplacian
methods. The edge costs for the flow approach are set by

dij = −2/(Lij+Lji) as described in Section 3. The weights
for p-Voltages are computed as d−1/(p−1)

ij , see (Alamgir and
von Luxburg 2011; Bridle and Zhu 2013).

Mixture of Two Gaussians Consider a mixture of two
Gaussians in 10-dimensional Euclidean space, constructed as
follows. We sample 500 points from each of the two Gaus-
sians with μ1 = μ2 = 0 and Σ1 = Σ2 = I . The points from
each Gaussian are respectively shifted by −1.5 and +1.5
units along the first dimension. A single labeled point is used
for each Gaussian; the labels are −1 for the left Gaussian
and +1 for the right one. According to (Alamgir and von
Luxburg 2011; Alaoui et al. 2016), an appropriate value of p
for p-Voltages is (10 + 1)/10 = 1.1.

In Figure 1, we plot the estimated functions f for various
methods. The sampled points are projected along the first
dimension, giving the x-axis in these plots; the y-axis shows
the estimator f . Figure 1 (a) confirms the flatness of the HF
solution as noted in (Nadler, Srebro, and Zhou 2009). In
classification problems flatness is undesirable as the solution
can be easily shifted by a few random labeled samples to
favor one or the other class. For regression problems, the
estimator f is unsuitable as it fails to be smooth, which can
be seen by the discrepancy between the values at labeled
nodes (shown as red triangles) and their surrounding.

The p-Voltages solution, Figure 1 (b), avoids the insta-
bility issue, but is not completely satisfactory in terms of
smoothness. The iterated Laplacian and flow methods, Fig-
ure 1 (c,d), suffer neither from flatness nor instability. Note
that in contrast to iterated Laplacian method, the flow for-
mulation satisfies the maximum principle, and f stays in the
range [−1, 1] established by the provided labels.

Benchmark Data Sets Next we test the proposed method
on high-dimensional image and text datasets used in (Zhou
and Belkin 2011), including MNIST 3vs8, MNIST 4vs9,
aut-avn, ccat, gcat, pcmac, and real-sim. For each of these,
we use a balanced subset of 1000 samples. In each run we
use nl = 50 labeled samples; in addition, we withheld 50
samples for validation. The misclassification rate is computed
for the remaining 900 samples. The results are averaged
over 20 runs. For p-Voltages, the value of p for each run
is chosen from {1.0625, 1.125, 1.25, 1.5, 2} using the best
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Dataset Harmonic p-Voltages Iterated Flow

MNIST 3vs8 8.5 ± 2.4 7.8 ± 1.8 6.1 ± 2.3 6.2 ± 1.6

MNIST 4vs9 22.3 ± 8.2 13.3 ± 2.8 8.5 ± 2.0 9.6 ± 2.7

AUT-AVN 27.9 ± 13.7 19.0 ± 5.1 11.5 ± 2.0 14.6 ± 2.7

CCAT 33.3 ± 8.5 25.4 ± 3.5 21.5 ± 3.4 22.3 ± 3.2

GCAT 20.0 ± 11.6 13.6 ± 3.7 9.2 ± 2.6 10.0 ± 1.7

PCMAC 30.6 ± 11.2 21.4 ± 3.2 14.1 ± 1.6 18.2 ± 3.3

REAL-SIM 31.5 ± 12.1 22.4 ± 3.6 15.3 ± 2.8 17.6 ± 3.3

Table 1: Misclassification rates (%) and standard deviations
for different methods.

Dataset Harmonic λ = 0.025 λ = 0.05 λ = 0.1 λ = 0.2

MNIST 3vs8 8.5 ± 2.4 5.8 ± 1.6 5.9 ± 1.5 6.2 ± 1.4 6.7 ± 1.4

MNIST 4vs9 22.3 ± 8.2 9.4 ± 2.8 9.3 ± 2.7 9.7 ± 2.7 10.3 ± 2.7

AUT-AVN 27.9 ± 13.7 14.0 ± 2.6 14.8 ± 2.4 16.3 ± 2.3 18.4 ± 2.4

CCAT 33.3 ± 8.5 21.9 ± 3.0 22.5 ± 2.8 23.2 ± 2.5 24.5 ± 2.5

GCAT 20.0 ± 11.6 9.9 ± 1.6 10.8 ± 1.6 12.4 ± 1.8 14.1 ± 1.7

PCMAC 30.6 ± 11.2 17.2 ± 2.9 18.0 ± 2.5 19.5 ± 2.2 21.0 ± 2.2

REAL-SIM 31.5 ± 12.1 17.1 ± 3.4 17.7 ± 3.0 19.1 ± 2.7 21.1 ± 2.4

Table 2: Misclassification rates (%) and standard deviations
for different settings of the parameter λ.

performing value on the validation samples; note that p =
2 corresponds to HF. For iterated Laplacian method, m is
chosen from {1, 2, 4, 8, 16} with m = 1 being equivalent to
HF. For the flow approach, the value of λ is chosen from
{0, 0.025, 0.05, 0.1, 0.2}, where λ = 0 is equivalent to HF.

The results summarized in Table 1 show that the flow ap-
proach outperforms HF and p-Voltages, even with the added
benefit of interpretability (which the other methods do not
have). The flow approach does have slightly lower accuracy
than the state-of-the-art iterated Laplacian method, but we
believe that this difference is a tolerable tradeoff for applica-
tions where interpretability is required.

Next, we compare HF and the flow approach but this time
instead of selecting λ by validation we use fixed values. The
results presented in Table 2 demonstrate that the flow ap-
proach for each of the considered values consistently outper-
forms the base case of HF (i.e. λ = 0). Note that larger values
of λ lead to increased misclassification rate, but the change
is not drastic. This is important for interactive exploration be-
cause larger λ values produce smaller flow subgraphs Gs(λ)
that are easier for the human companion to grasp.

Finally, we show that the improvement over HF observed
in these experiments relates to the flatness issue and, there-
fore, is brought about by limiting the spread of the flow. By
analyzing the prediction weights in Eq. (1), we can compare
HF to the flow based approach in terms of the flatness of solu-
tions. To focus our discussion, let us concentrate on a single
run of MNIST 3vs8 classification problem. Since the weights
for the flow based and HF approaches lend themselves to a
probabilistic interpretation (by Proposition 4, they are non-
negative and add up to 1), we can look at the entropies of the
weights, H(s) = −∑

i wi(s) logwi(s) for every unlabeled
node s = nl+1, ..., n. For a given unlabeled s, the maximum
entropy is achieved for uniform weights: ∀i, wi(s) = 1/nl.
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Figure 2: Weight statistics for MNIST 3vs8.
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Figure 3: f(·) for symmetric and asymmetric edge costs.

Figure 2 shows the histograms of entropies, together with
the red vertical line corresponding to the maximum possible
entropy. In contrast to the flow based approach, the entropies
from HF method are clustered closely to the red line, demon-
strating that there is little variation in HF weights, which is a
manifestation of the flatness issue.

Directed/Asymmetric Graphs In this synthetic example,
we demonstrate the change in the estimated f(·) induced by
the use of asymmetric edge costs in the directed formulation
given by Eq. (3). The underlying graph represents the road
network of Minnesota, with edges showing the major roads
and vertices being their intersections. As in the previous ex-
ample, we pick two nodes (shown as triangles)) and label
them with ±1 and depict the resulting estimator f(·) for the
remaining unlabeled nodes using the shown color-coding. In
Figure 3 (a), the graph is undirected, i.e. the edge costs are
symmetric. In Figure 3 (b), we consider the directed graph
obtained by doubling each edge into forward and backward
versions. This time the costs for edges going from south
to north (lati < latj) are multiplied by four. The latter set-
ting makes flows originating at the top labeled node cheaper
to travel towards south, and therefore shifts the “decision
boundary” to the south.

6.2 Interpretability

As stated previously, one of the core benefits of the pro-
posed framework is how it provides a detailed, transparent,
and easily understood expression of the learning process.
To exemplify this aspect of the proposed framework, we
focus our discussion on a fixed data-point s from MNIST
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3vs8 and study the corresponding flow subgraphs Gs(λ) for
λ = 0.2, 0.1 and 0.05; see Figure 4. The digit image for un-
labeled node s is outlined in red; the labeled node images are
outlined in blue. The flows along the edges are in percents,
and have been rounded up to avoid the clutter.

As expected, the size of the subgraph depends on the pa-
rameter λ. Recall that for each λ > 0, the flow optimization
automatically selects a subset of edges carrying non-zero
flow—this is akin to variable selection in sparse regression
(Hastie, Tibshirani, and Friedman 2009). The figure confirms
that the larger the strength of the sparsity penalty, the fewer
edges get selected, and the smaller is the resulting subgraph.
The amount of reduction in size is substantial: the underlying
graph for this experiment has 1K nodes and ~15K edges.

As claimed, the acyclicity of the flow subgraphs Gs(λ)
leads to more intuitive layouts. We used the “dot” filter from
Graphviz (Gansner et al. 1993; Gansner and North 2000)
which is targeted towards visualizing hierarchical directed
graphs. Since our flow subgraphs are DAGs, the “dot” filter
gave satisfactory layouts without any manual tweaking. In-
deed, all of the visualizations depicted in Figure 4 provide an
overall sense of directionality, here from top to bottom: due to
acyclicity there are no edges going “backward”. This makes
it easy to trace the flow from sources, the labeled nodes, to
the sink, the unlabeled node s.

Of course, the visualizations in Figure 4 benefit from the
fact that the data points are digits, which allows including
their images in lieu of abstract graph nodes. The same ap-
proach could be used for general image data sets as well. For
other data types such as text, the nodes could depict some
visual summary of the data point, and then provide a more
detailed summary upon a mouse hover.

7 Discussion and Future Work
We have presented a novel framework for graph-based semi-
supervised learning that provides a transparent and easily un-
derstood expression of the learning process via the language
of flows. The nature of interpretability in this work differs
from approaches that use feature vectors directly, which pro-
vide feature level interpretability revealing how much each
feature contributes to the classification result. Our framework
provides “relational interpretability” that exposes how each
of the data points, labeled and unlabeled, contributes to the
classification of a test example.

Our work is inspired by (Alamgir and von Luxburg 2011)
which pioneered the use of the flow interpretation of the
standard resistance distances (c.f. (Bollobas 1998)) to in-
troduce a novel class of resistance distances that avoid the
pitfalls of the standard resistance distance by concentrating
the flow on fewer paths. They also proved an interesting
phase transition behavior that led to specific suggestions for
Laplacian-based semi-supervised learning. However, their
proposal for semi-supervised learning is not based on flows,
but rather on an appropriate setting of the parameter in
the p-Voltages method (which they call q-Laplacian regu-
larization); it was further studied in (Bridle and Zhu 2013;
Alaoui et al. 2016). Although it is already apparent from
the experimental results that our proposal is distinct from
p-Voltages, we stress that there is a fundamental theoretical
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(a) Flow, λ = 0.2 | 16 nodes, 22 edges
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(b) Flow, λ = 0.1 | 38 nodes, 55 edges
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(c) Flow, λ = 0.05 | 69 nodes, 105 edges

Figure 4: Flow subgraphs Gs(λ) showing the information
propagation from the labeled nodes (outlined in blue) to the
unlabeled node s (outlined in red). The flow values on the
edges are in percents, and may fail to add up due to rounding.
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difference: p-Voltages method is non-linear and so cannot
be expressed via Eq. (1), except when p = 2. At a deeper
level, these methods regularize the estimated function via its
value discrepancies at adjacent nodes, and, therefore, do not
directly provide a detailed understanding of how the values
propagate along the graph.

One immediate direction for future work is to obtain a flow
formulation for the iterated Laplacian method which gave
best accuracy on the benchmark data sets. This may seem
straightforward to do as iterated Laplacian method basically
replaces the Laplacian operator L in the regularizer by its
power Lm. However, the matrix Lm contains both positive
and negative off-diagonal entries, and so, the corresponding
edge costs are no longer positive, which renders the flow
interpretation problematic. An indirect manifestation of this
issue is the lack of a maximum principle for the iterated
Laplacian method. Another complicating factor is that the
stencils of Lm grow very fast with m, e.g. L4 is nearly a full
matrix in the benchmark examples of Section 6.

Additional avenues for future study include algorithmic
improvements and applications in other areas. The locality of
the resulting weights can be used to devise faster algorithms
that operate directly on an appropriate neighborhood of the
given unlabeled node. Studying the sparsity parameter λ for
phase transition behavior can provide guidance for its optimal
choice. In another direction, since the flow-based weights
are non-negative and add up to 1, they are suitable for semi-
supervised learning of probability distributions (Solomon et
al. 2014). Finally, the flow-based weights can be useful in
different areas, such as descriptor based graph matching or
shape correspondence in computer vision and graphics.
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