
Approximate and Exact
Enumeration of Rule Models

Satoshi Hara,1,2 Masakazu Ishihata3

1) Osaka University, Osaka, Japan
2) JST, ERATO, Kawarabayashi Large Graph Project

3) Hokkaido University, Hokkaido, Japan
satohara@ar.sanken.osaka-u.ac.jp, ishihata.masakazu@ist.hokudai.ac.jp

Abstract

In machine learning, rule models are one of the most popular
choices when model interpretability is the primary concern.
Ordinary, a single model is obtained by solving an optimiza-
tion problem, and the resulting model is interpreted as the
one that best explains the data. In this study, instead of find-
ing a single rule model, we propose algorithms for enumer-
ating multiple rule models. Model enumeration is useful in
practice when (i) users want to choose a model that is par-
ticularly suited to their task knowledge, or (ii) users want to
obtain several possible mechanisms that could be underlying
the data to use as hypotheses for further scientific studies.
To this end, we propose two enumeration algorithms: an ap-
proximate algorithm and an exact algorithm. We prove that
these algorithms can enumerate models in a descending order
of their objective function values approximately and exactly.
We then confirm our theoretical results through experiments
on real-world data. We also show that, by using the proposed
enumeration algorithms, we can find several different models
of almost equal quality.

1 Introduction

Background and Motivation Machine learning models
are nowadays ubiquitous in society. They have a wide
range of applications, in fields such as medical diagno-
sis (Ong, Wang, and Mu 2014), judicial decisions (Jordan
and Freiburger 2015), and education (Lakkaraju et al. 2015),
to name a few. While these models are expected to make ac-
curate predictions, we often face another concern, namely
the interpretability of the models. That is, we want humans
to be able to easily understand the information contained in
the models. The need for model interpretability is particu-
larly strong in some practical situations, such as the follow-
ing (Kim 2015; Doshi-Velez and Kim 2017).

• When machine learning models are used to support user
decision making: If the model is a complete black-box,
users have no way of verifying that the model is correct.
Interpretable models allow humans to check whether or
not the models are reliable. Moreover, with interpretable
models, users can find and correct undesirable biases or
bugs contained in the models based on task knowledge.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• When users are interested in finding interesting mecha-
nisms underlying the data, as is often the case in data min-
ing: Users want to obtain useful insights through fitting
machine learning models to data. Highly interpretable
models are essential if we are to obtain insights from
them.

Of the various machine learning models, rule models,
such as decision trees (Breiman et al. 1984; Quinlan 2014),
rule lists (Rivest 1987; Letham et al. 2015; Angelino et al.
2017) and rule sets (Li, Shen, and Topor 2002; Lakkaraju,
Bach, and Leskovec 2016), are preferred when model inter-
pretability is the primary concern. These models describe
their predictions using “if-then” rules (see Figure 1 for ex-
amples). Because of their simple structures, it is easy for
humans to understand how these models behave.

In this study, instead of finding a single rule model, we
enumerate several rule models with different structures that
perform almost equally well. Enumerating rule models is
helpful from both model reliability and data mining perspec-
tives, for the following reasons.

• Model reliability: In many real-world tasks, we usually
believe that the single model we have found is the one
that best fits the data. This, however, is not always the
case when we take the user’s domain knowledge into ac-
count: sometimes, the model is counterintuitive, making
it difficult to rely on. In such cases, enumerating a vari-
ety of models and then selecting the one that best fits the
domain knowledge will help to improve the user’s trust in
the model.

• Data understanding: For many real-world datasets, there
exist multiple rule models that can explain the data al-
most equally well. Thus, by considering several rule mod-
els, we can gain many more important insights into the
data than would have been possible with just a single rule
model.

Contributions In this study, we make the following con-
tributions.

1. We formulate a rule model enumeration problem as enu-
merating rule models in descending order of their objec-
tive function values (Section 3).

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3157

Rule List
IF (sex = Male ∧ juvenile-crimes > 0) THEN recidivate-within-
two-years = Yes
ELSE IF (priors > 3) THEN recidivate-within-two-years = Yes
ELSE recidivate-within-two-years = No

Rule Set
IF (sex = Male ∧ current-charge-degree = Felony)
OR (priors > 3)
THEN recidivate-within-two-years = Yes

Figure 1: Example of rule list (left) and rule set (right) learned from the same COMPAS dataset (see Section 6).

2. We propose an efficient approximate rule model enumer-
ation algorithm (Section 4). The proposed algorithm gives
a certain approximation guarantee when the targeting rule
model can be learned with a guaranteed approximation
ratio.

3. We propose an exact enumeration algorithm for rule mod-
els whose objective functions are submodular (Section 5).
While the exact algorithm can be too slow for large prob-
lems, one of the advantages of having an exact algorithm
is that it allows us to evaluate the quality of the models
found by the approximate method.

4. We conduct experiments to confirm our theoretical re-
sults. We also show that, by using the proposed enumer-
ation algorithms, we can find several different models of
almost equal quality.

We note that model enumeration is an emerging topic
in recent years. In our previous study (Hara and Maehara
2017), we proposed an algorithm for enumerating sparse lin-
ear models. An enumeration algorithm for decision trees was
proposed by Ruggieri (2017).

Settings and Notations In this paper, for simplicity, we
focus on binary classification of categorical data, but this can
be naturally extended to multi-class classification. The algo-
rithms described in this paper can also be applied to real-
valued data by using discretization techniques (Srikant and
Agrawal 1996; Fukuda et al. 1996; Rastogi and Shim 2002).

Suppose there are total of L items. We denote the set of all
items by [L] = {1, 2, . . . , L} and its power set by 2[L]. Let
(x, y) ∈ 2[L] ×{0, 1} be an input-output pair for the predic-
tion problem. Here, x ∈ 2[L] is an itemset, and y ∈ {0, 1}
is the class category corresponding to x. We then consider
finding a model m ∈ F that maximizes the objective func-
tion f(m), where F is the set of feasible models. For the
maximization problem maxm∈F f(m), we say that m ∈ F
is an α-approximate solution if f(m) ≥ αf(m∗) where
α ∈ [0, 1] and m∗ = argmaxm∈F f(m). We refer to α
as an approximation ratio. For a proposition a, I(a) denotes
the indicator of a, i.e., I(a) = 1 if a is true, and I(a) = 0 if
a is false

2 Preliminaries

Three major types of rule models are used for building
interpretable models: decision trees (Breiman et al. 1984;
Quinlan 2014), rule lists (Rivest 1987; Letham et al. 2015;
Angelino et al. 2017), and rule sets (Li, Shen, and Topor
2002; Lakkaraju, Bach, and Leskovec 2016). An enumera-
tion method for decision trees has recently been studied by

Ruggieri (2017), so we focus on enumerating rule lists and
rule sets in this study. Here, we review some of the possible
learning methods for rule models.

We first give a general formulation of rule model learning
problems. Suppose there is a set of itemsets T = {tj}Jj=1 ⊆
2[L], where each itemset tj indicates an association be-
tween data and its category, i.e., tj ⊆ x ⇒ y = 0 or
tj ⊆ x ⇒ y = 1 for j ∈ [J]. Such a set T can be found,
e.g., by using association rule mining (Agrawal, Imieliński,
and Swami 1993; Agrawal and Srikant 1994) or emerging
pattern mining (Dong and Li 1999; Dong and Bailey 2012;
Komiyama et al. 2017). Then, learning the rule list or the
rule set can generally be expressed as the following maxi-
mization problem:

max
m∈FT

f(m), (1)

where FT is the set of all rule models, such as rule lists and
rule sets, that can be expressed using the set T . We later
show examples of m and FT .

Rule List Rule lists are models that present their pre-
dictions in “if-then-else” format, as shown in Figure 1. A
rule list of length I can be expressed using two parame-
ters Z = {z1, z2, . . . , zI} and U = {u1, u2, . . . , uI} where
zi ∈ {0, 1} and ui ∈ T , as follows:

g(x|Z,U) =
∑
i∈[I]

zicap(x|U, i), (2)

where

cap(x|U, i) =
{
1 if (ui ⊆ x) ∧

(∧
i′∈[i−1](ui′ �⊆ x)

)
,

0 otherwise.
(3)

Here, cap(x|U, i) = 1 means that the input x does not match
the first i− 1 lines of the rule list, but is captured by the i-th
line. The rule list model g(x|Z,U) then returns the corre-
sponding label zi as output. We note that, usually, the last
line of the rule list is just “else” without any other condition,
which can be realized by setting uI = ∅.

A recent study proposed formulating the task of learn-
ing a rule list as combinatorial problem (Angelino et al.
2017). While the original problem was formulated as a mini-
mization problem, here we consider the following equivalent
maximization problem so that the formulation to be consis-
tent with (1).

max
Z∈{0,1}I ,U∈T I

1

N

N∑
n=1

I(y(n) = g(x(n)|Z,U))− ρI. (4)

3158

This is the problem of maximizing regularized classification
accuracy, where {x(n), y(n)}Nn=1 is the training set and ρ is
a regularization parameter that penalizes the length of the
resulting rule list. Here, m = (Z,U) and FT = {0, 1}I×T I

in the formulation of the problem (1).
An efficient optimization algorithm called CORELS (An-

gelino et al. 2017; Larus-Stone 2017) has been proposed for
finding globally optimal rule lists by using several pruning
techniques.

Rule Set In contrast with rule list, rule sets present their
predictions in an “if-or-then” format, as shown in Figure 1.
A recent study proposed formulating the task of learning
a rule set as a non-monotone submodular function maxi-
mization problem (Lakkaraju, Bach, and Leskovec 2016),
and presented a polynomial-time approximation algorithm
for solving this maximization problem.

In this paper, for simplicity, we consider the follow-
ing simplified version of the rule set learning method of
Lakkaraju, Bach, and Leskovec (2016). Specifically, we fo-
cus on learning a rule set that describes the category y = 1.
Such a rule set, of length I , can be described using V =
{v1, v2, . . . , vI}, vi ∈ T as

g(x|V) =

{
1 if ∃i ∈ [I], vi ⊆ x,

0 otherwise.
(5)

This rule set can be learned by solving the following opti-
mization problem:

max
V⊆T

1

|N+|
∑

n∈N+

g(x(n)|V), s.t. |V | ≤ I, (6)

where N+ := {n; y(n) = 1}. Here, m = V and FT =⋃
i∈[I]

(
T
i

)
in the formulation of the problem (1), where(

T
i

)
:= {V ⊆ T ; |V | = i}.

The problem (6) is equivalent to the well-known max-
imum coverage problem (Feige 1998) under a cardinal-
ity constraint: 1

|N+|
∑

n∈N+
g(x(n)|V) is the fraction of

positively-categorized training data that is covered by the
set V . This function is known to be a monotone submodular
function that can be approximated, with an approximation
ratio of α = 1− 1/e, using a greedy algorithm (Nemhauser,
Wolsey, and Fisher 1978; Hochbaum 1996). One can also
use the filtered search method (Chen, Chen, and Weinberger
2015) to solve the problem (6) with an arbitrary approxima-
tion ratio α.

3 Problem Formulation

In this section, we formulate our rule model enumeration
problem.

An important observation about the problem (1) is that,
usually, the model m derived by solving the optimization
problem uses only a fraction of the set T for the model de-
scription. For example, the problem (4) has a regularization
term that penalizes the length of the rule list, so the result-
ing rule lists will tend to use a small subset of T . Simi-
larly, the problem (6) imposes an explicit cardinality con-

straint on the model size that means the length of the result-
ing rule set will be at most I . To describe which itemsets
in T are used for the model m, we define the “support” of
the model m as supp(m) := {tj ; tj appears in m} ⊆ T .
Specifically, supp(m) = U if m = (Z,U) is a rule list and
supp(m) = V if m = V is a rule set.

For a given subset S ⊆ T , we consider the problem (1)
with an additional constraint supp(m) ⊆ S:

max
m∈FT

f(m), s.t. supp(m) ⊆ S. (7)

We note that this problem is equivalent to the problem (1)
with its model class restricted to FS . In this study, we as-
sume that we are given a solution algorithm Algα to solve
the problem (1), which can also be used to solve the problem
(7) by replacing T with S: for a given set S, Algα returns
one of solution models m ∈ FS for Problem (1), which we
write as m = Algα(S). In this study, we assume that a so-
lution algorithm Algα satisfies the following property.
Assumption 1. The solution algorithm Algα : 2T → FT

has the following properties:
(i) It returns an α-approximate solution.

(ii) ∀S, S′ ∈ 2T , Algα(S) = Algα(S
′) if

supp(Algα(S)) ⊆ S′ ⊆ S.

We note that Assumption (ii) requires the output of
Algα to be independent of redundant elements S \
supp(Algα(S)). Assumption 1 holds both on rule list and
rule set learning algorithms presented in Section 2. If the
model is a rule list, one can use CORELS (Angelino et al.
2017) as Algα with α = 1. If the model is a rule set, one
can use a greedy method as Algα with α = 1− 1/e for the
formulation (6), and the filtered search method (Chen, Chen,
and Weinberger 2015) as Algα with an arbitrary α.

We now formulate our enumeration problem. Here, we
let Mall = {Algα(S);S ∈ 2T } be the set of all models
that can be obtained by using Algα. The problem is then
formulated as enumerating models in Mall in descending
order of their objective function values.
Problem 2 (Model Enumeration). Find a set of models
M = {m(1),m(2), . . .} ⊆ Mall such that supp(m(k)) �=
supp(m(�)) and f(m(k)) ≥ f(m(�)) for 1 ≤ k < �.

In the next two sections, we propose two enumeration al-
gorithms: an approximate algorithm and an exact algorithm.
We also prove the correctness of the proposed algorithms
defined below, which is essential for a valid enumeration.
Definition 3 (Correctness of Enumeration). The set of enu-
merated models M = {m(1),m(2), . . .} is α-correct when
the following two conditions hold, where α ∈ [0, 1]:

• Necessity: ∀k, � ∈ [|M|], k < � ⇒ f(m(k)) ≥
αf(m(�)).

• Sufficiency: ∀m ∈ Mall, m ∈ M if ∃m′ ∈ M such that
αf(m) > f(m′).
The necessity is a guarantee that the models are enumer-

ated in a descending order of their objective function values
approximately (α < 1) or exactly (α = 1). The sufficiency
is a guarantee that no models are missed while enumeration

3159

Table 1: Correctness of the proposed enumeration algo-
rithms, where α is an approximation ratio of Algα.

Approximate
Algorithm
(Section 4)

Exact
Algorithm
(Section 5)

Rule List
(Problem (4)) α-correct (Not Applicable)

Rule Set
(Problem (6)) α-correct 1-correct

approximately (α < 1) or exactly (α = 1). Table 1 sum-
marizes the correctness of the proposed enumeration algo-
rithms.

4 Approximate Enumeration Algorithm
In this section, we propose an approximate algorithm for
solving Problem 2. The proposed algorithm is applicable to
any algorithm Algα with any α ∈ [0, 1] as long as it satisfies
Assumption 1. This setting is practical because the problem
(7) is usually a combinatorial optimization which tends to
require exponential time to solve exactly, while the approxi-
mate solutions can be obtained in a polynomial time in many
situations.

Before we describe the algorithm, we summarize the pros
and cons of the approximate enumeration algorithm:

Pros. It is computationally efficient because it requires
Algα to return only an approximate solution.

Cons. The enumeration is α-correct, i.e., it is correct only
approximately unless α = 1.

We now turn to details of the algorithm. The algorithm
is based on Lawler’s framework (Lawler 1972), which
was previously used for enumerating feature selection re-
sults (Hara and Maehara 2017). In Lawler’s framework, we
successively computes the solution and then constructs sub-
problems that exclude the obtained solution.

The approximate enumeration algorithm is summarized
in Algorithm 1, which is an application of our previous al-
gorithm for sparse linear models (Hara and Maehara 2017)
to rule models. In this algorithm, we maintain a heap
data structure that stores pairs of a tuple and its priority
value: a tuple consists of one model and two subsets of T ,
(m,S, F) ∈ FT × 2T × 2T , where m = Algα(S). The pri-
ority value of the tuple (m,S, F) is f(m) and the heap pops
a tuple with the maximum priority value. The set F is used
to avoid inserting the same candidate set S into to the data
structure twice.

The algorithm starts by computing a model without any
support constraint m = Algα(T), and inserting the tuple
(m,T, ∅) into the heap. The algorithm then repeats the fol-
lowing steps until a given termination condition is met.

1. Extract a tuple (m,S, F) with the maximum priority
value f(m) from the heap (line 5).

2. Output m as the k-th model if it has not already been out-
put (lines 7–8).

3. “Branch” the search space: compute m′ = Algα(S \
{tj}) and insert the result into the heap for tj ∈ supp(m)
(lines 15–19).

Algorithm 1 Approximate Enumeration Algorithm

1: Compute m = Algα(T).
2: Insert (m,T, ∅) into the heap.
3: M ← ∅
4: for k = 1, 2, . . . do
5: Extract (m,S, F) from the heap.
6: /* output m as the k-th solution m(k) */
7: if m /∈ M then
8: M ← M∪ {m}
9: end if

10: /* terminate when a certain condition is met */
11: if Terminate(M) is True then
12: break
13: end if
14: /* branch the search space */
15: for tj ∈ supp(m) and tj �∈ F do
16: Compute m′ = Algα(S \ {tj}).
17: Insert (m′, S \ {tj}, F) into the heap.
18: F ← F ∪ {tj}
19: end for
20: end for

The most important step in the algorithm is the third step,
where we branch the search space. From Assumption 1(ii),
if a set S′ satisfies supp(m) ⊆ S′ ⊆ S, m is also the so-
lution to Algα(S

′). We therefore branch the search space
in shrinking directions S \ {tj}. The set F is used to avoid
enumerating the same set multiple times, which is achieved
by skipping branching on any tj ∈ F . Enumeration stops
when a certain condition is met, e.g., when a certain num-
ber of models has been enumerated (Terminate(M) =
“|M| > K”), or the quality of the solution is a factor of θ
worse than the best solution found so far (Terminate(M) =
“minm∈M f(m) ≤ θmaxm∈M f(m)”). We note that Al-
gorithm 1 is complete: it enumerates all models m ∈ Mall

if it is not terminated (Hara and Maehara 2017).

Correctness We prove the correctness of Algorithm 1.

Theorem 4. Algorithm 1 is α-correct, where α is an ap-
proximation ratio of Algα.

Proof. Necessity: Consider the step at which m(k) is ex-
tracted from the heap. Then, there are two possible situa-
tions: either m(�) is in the heap or it is not.

In the first case, f(m(k)) ≥ f(m(�)) holds by the defini-
tion of the heap. Hence, f(m(k)) ≥ αf(m(�)) follows from
α ∈ [0, 1].

In the second case, there exists a tuple (m′, S′, F ′) in
the heap such that m(�) is obtained from its branches, i.e.,
(m′, S′, F ′) is a descent of (m(�), S(�), F (�)). Here, we note
that f(m(k)) ≥ f(m′) holds by the definition of the heap.
Let m∗(S′) and m∗(S(�)) be the exact maximum solutions
to the problem (7) with S′ and S(�), respectively. Then,
f(m∗(S′)) ≥ f(m∗(S(�))) holds because S(�) is a branch
of S′, i.e., S(�) ⊂ S′. Moreover, f(m′) ≥ αf(m∗(S′))
holds from Assumption 1(i). From these results, we have

3160

f(m(k)) ≥ f(m′) ≥ αf(m∗(S′)) ≥ αf(m∗(S(�))) ≥
αf(m(�)), which proves the necessity.

Sufficiency: Thanks to the completeness of Algorithm 1,
M = Mall holds if we don’t terminate the algo-
rithm. We denote M = {m(1), . . . ,m(K)} and Mall =
{m(1), . . . ,m(W)}: M is the first K models of Mall. We
also denote the model with the minimum objective func-
tion value as m(k) where k = argmink∈[K] f(m

(k)). We
here assume that there exists � ∈ [W] such that � > k
and αf(m(�)) > f(m(k)). From the necessity and the fact
� > k, we have f(m(k)) ≥ αf(m(�)); however, it is in ap-
parent conflict with the assumption αf(m(�)) > f(m(k)).
Consequently, there exits no � ∈ [W] such that � > k and
αf(m(�)) > f(m(k)), which proves the sufficiency.

Applications As a special case of Algorithm 1, it can be
1-correct if we use an exact algorithm as Algα with α = 1.
For example, one can use CORELS (Angelino et al. 2017)
as an exact algorithm for rule lists and the filtered search
method (Chen, Chen, and Weinberger 2015) with α = 1 for
rule sets. For rule sets, Algorithm 1 is also (1− 1/e)-correct
if we use a greedy method as Algα to solve the problem (6).

5 Exact Enumeration Algorithm

In this section, we propose an exact enumeration algorithm
for solving Problem 2. We note that, although Algorithm 1
can be 1-correct if we use an exact algorithm as Algα, it can
be computationally inefficient for rule sets when we use the
filtered search method (Chen, Chen, and Weinberger 2015)
as Algα. This is because the search space of the filtered
search highly overlaps between independent runs of Algα

in Algorithm 1, i.e., it searches for same solution candidates
many times. To overcome this computational inefficiency,
we propose an exact enumeration algorithm for rule sets by
extending the filtered search so that we can avoid searching
same solution candidates multiple times. Here, we note that
the exact enumeration is still computationally challenging
even if we use the proposed algorithm because it involves
solving the problem (1) exactly. To summarize, the pros and
cons of the exact enumeration algorithm is as follows:

Pros. The enumeration is exact, i.e., it is 1-correct.

Cons. It is computationally expensive.

First, we make the following two assumptions. Here, for
notational convenience, for a model m, we denote a model
whose support is supp(m) ∪ P by mP for P ⊆ T . If P =
{tj}, we write as mP = mj .

A1. The function f(m) is submodular, i.e., f(tj |m) ≥
f(tj |m′) holds whenever supp(m) ⊆ supp(m′) and
tj ∈ T \ supp(m′), where f(tj |m) := f(mj)− f(m).

A2. If m ∈ FT , m′ ∈ FT holds whenever supp(m′) ⊆
supp(m) ⊆ T .

A1 requires the objective function to be submodular, which
is essential for correct filtered search. A2 requires the model
space FT to be down-monotone, which is true, e.g., when

the model space obeys cardinality, matroid, or knapsack con-
straints. We note that these assumptions are all valid for the
formulation of Lakkaraju, Bach, and Leskovec (2016) and
for the problem (6).

In the proposed exact enumeration algorithm, which is
based on the best-first search, we use the heuristic function
h(m) : FT → [0,+∞). Here, the heuristic function h(m)
is the amount how much we overestimate the quality of the
model m during enumeration. In the filtered search, we as-
sume that h(m) satisfies the following critical admissibility
condition (Chen, Chen, and Weinberger 2015).
Definition 5 (Critical Admissibility). The heuristic function
h(m) is critically admissible if and only if, for all m ∈ FT ,
it satisfies

CA1. h(m) = 0, if f(tj |m) ≤ 0 or mj /∈ FT , ∀tj ∈ T,

CA2. h(m) ≥ max
P⊆T :mP∈FT

∑
tj∈P

f(tj |m), otherwise.

If the value of the heuristic function h(m) is zero, this
means that the model m cannot be improved by the addi-
tion of an itemset tj (CA1), which implies that the model
m is locally optimal. On the other hand, a positive heuristic
function h(m) implies that the model m can be improved
without violating any constraints (CA2). Examples of crit-
ically admissible heuristic functions can be found in Chen,
Chen, and Weinberger (2015).

The proposed exact enumeration algorithm is summarized
in Algorithm 2. Intuitively, we search for local optima using
the heuristic function, and output them in descending order
of their objective function values. Throughout the algorithm,
we maintain a heap data structure that stores pairs of a model
m ∈ FT and its priority value. The priority value of the
model m is f(m) + h(m) and the heap pops a model with
the maximum priority value.

The algorithm starts by inserting an empty set to the heap
as the initial model. Then, the algorithm repeats the follow-
ing steps until a given termination condition is met.

1. Extract a model m with the maximum priority value
f(m) + h(m) from the heap (line 4).

2. Output m as the k-th model if h(m) = 0 (lines 5–7).
3. “Branch” the search space: insert mj into the heap for

j > max{j; tj ∈ supp(m)} (lines 14–16).
The most important step in the algorithm is the third step,
where we branch the search space. The heuristic function
h(m) is positive as long as the model m can be improved
by adding some itemset to the model. We therefore add each
itemset tj to the current model m in turn and insert the re-
sulting model mj into the heap.

Correctness We prove the correctness of Algorithm 2.
The correctness follows from the fact that a subumodular
function is bounded above by its modular approximation.
Lemma 6 (Nemhauser and Wolsey 1978). For any submod-
ular function f and for any model m ∈ FT , we have

f(m) ≤ f(m′) +
∑

tj∈supp(m)\supp(m′)

f(tj |m′), (8)

3161

Algorithm 2 Exact Enumeration Algorithm

1: Insert the initial model m = ∅ into the heap.
2: M ← ∅
3: while the heap is not empty do
4: Extract m from the heap.
5: if h(m) = 0 then
6: /* output m as the k-th solution m(k) */
7: M ← M∪ {m}
8: /* terminate when a certain condition is met */
9: if Terminate(M) is True then

10: break
11: end if
12: else
13: /* branch the search space */
14: for j = max{j; tj ∈ supp(m)}+ 1, . . . , J do
15: Insert mj into the heap.
16: end for
17: end if
18: end while

whenever supp(m′) ⊆ supp(m) ⊆ T .

Theorem 7. Algorithm 2 is 1-correct.

Proof. Necessity: Recall that h(m(k)) = h(m(�)) = 0 holds
for enumerated models m(k) and m(�). Consider the step at
which m(k) is output. Then, there are two possible situa-
tions: either m(�) is in the heap or it is not.

In the first case, f(m(k)) ≥ f(m(�)) holds by the defini-
tion of the heap.

In the second case, there exists an m′ in the heap such
that m(�) is obtained from branches of m′, which is assured
by Assumption A2. Here, we note that f(m(k)) ≥ f(m′) +
h(m′) holds by the definition of the heap. Moreover, because
m(�) is branched from m′, supp(m′) ⊂ supp(m(�)) holds
and we have that

f(m(�)) ≤ f(m′) +
∑

tj∈supp(m(�))\supp(m′)

f(tj |m′)

≤ f(m′) + max
P⊆T :mP∈FT

∑
tj∈P

f(tj |m′)

≤ f(m′) + h(m′), (9)

which implies f(m(k)) ≥ f(m(�)). Here, we have used
Lemma 6 for the first inequality and the critical admissibility
of the heuristic function for the last inequality.

Sufficiency: Let k = argmink∈[|M|] f(m
(k)). Consider

the step at which m(k) is extracted from the heap. If f(m) >
f(m(k)), the search must reach the model m before step k
because of the necessity and the fact that Algorithm 2 is
complete, i.e., the search graph of Algorithm 2 is strongly
connected. Hence, m ∈ M.

6 Experiments

In this section, we conduct experiments to evaluate the pro-
posed algorithms. Specifically, we confirm the correctness

of the proposed algorithms, and present some advantages
of model enumeration. In the experiments, we considered
the following three settings: (S1) Rule List (1-correct) that
uses Algorithm 1 with CORELS as Algα; (S2) Rule Set
((1 − 1/e)-correct) that uses Algorithm 1 with a greedy
method as Algα; (S3) Rule Set (1-correct) that uses Al-
gorithm 2. In the experiments, Algorithm 1 was imple-
mented in Python 3.5, while Algorithm 2 was implemented
in C. To evaluate the algorithms, we used two classification
datasets of categorical data: COMPAS (Larson et al. 2016)
and Mushroom (Lichman 2013).

COMPAS Dataset We used COMPAS dataset distributed
at the github repository (Larus-Stone 2017). It comprises
19 categorical attributes of individual people, relating their
criminal history, with a total of 6,489 training samples and
721 test samples. The task is binary classification, where the
positive category y = 1 indicates that the individual recidi-
vate within two years.

For learning rule lists with CORELS, we used the prede-
fined set of itemsets T in the github repository which con-
sists of 155 itemsets. For learning rule sets, we prepared an-
other set TP ⊆ T where if t ∈ TP then t ⊆ x∧y = 1 is held
for at least 50% of the samples satisfying t ⊆ x in the train-
ing set, i.e., t ⊆ x indicated y = 1 with 50% confidence. We
used TP instead of T because we were interested in char-
acterizing the positive category in the formulation (6), and
none of the itemsets other than TP were useful for this.

Figure 2 shows the results on the two settings (S1) and
(S2). The result on (S3) is omitted because it was identical
with (S2). Examples of learned rule models are shown in
Figure 1. For CORELS, we used the configurations recom-
mended in the github repository with regularization parame-
ter ρ = 0.015. We set the length of the rule sets to be I = 2.
Rule list enumeration stopped after 40 models because at
that point the heap became empty, i.e., |Mall| = 40. For
the rule sets, we enumerated the top-50 models. The figures
show that the models were enumerated in descending order
of their objective function values both on (S1) and (S2). We
note that, although only (1− 1/e)-correctness was expected
to the setting (S2), it attained the exact enumeration in this
experiment (Figure 2(b)), and hence its result got identical
with (S3). These results confirm the correctness of the pro-
posed algorithms. Figure 2(c) shows that, for both (S1) and
(S2), first few models attained comparative test accuracies
with the optimal models. That is, there were several differ-
ent models of almost equal quality.

Mushroom Dataset The Mushroom dataset comprises 22
categorical attributes of 8,124 different mushrooms. The
task is binary classification into the categories poisonous
(positive, y = 1) and edible (negative, y = 0). For the pur-
pose of evaluation, we randomly split the samples into 6,499
(80%) training samples and 1,625 (20%) test samples.

To prepare the set of itemsets T , we used emerging pat-
tern mining (Komiyama 2017) with winning rate = 0.9. By
applying this technique to the positive category, we obtained
a set TP with |TP| = 69. Here, if t ∈ TP then t ⊆ x∧ y = 1

3162

0 20 40
0.55

0.6

0.65

k-th model

Fu
nc

tio
n

va
lu

e

Objective function value f(m(k))

(a) Setting (S1): Rule List (1-correct)

0 20 40
0.6

0.65

0.7

0.75

k-th model

Fu
nc

tio
n

va
lu

e

Objective function value f(m(k))

(b) Setting (S2): Rule Set ((1 − 1/e)-
correct)

0 20 40
0.5

0.6

0.7

k-th model

A
cc

ur
ac

y

Test accuracy

(S1) (S2)

(c) Test accuracies on (S1) and (S2)

Figure 2: [Results for COMPAS dataset] Figures (a) and (b) are the results on the two setting (S1) Rule List (1-correct) that
uses Algorithm 1 with CORELS as Algα, and (S2) Rule Set ((1 − 1/e)-correct) that uses Algorithm 1 with a greedy method
as Algα, respectively. Figure (c) is the test accuracy of enumerated models.

0 20 40
0.985

0.990

0.995

1.000

k-th model

Fu
nc

tio
n

va
lu

e

Objective function value f(m(k))

(a) Setting (S2): Rule Set ((1 − 1/e)-
correct)

0 20 40
0.985

0.990

0.995

1.000

k-th model

Fu
nc

tio
n

va
lu

e

Objective function value f(m(k))

(b) Setting (S3): Rule Set (1-correct)

0 20 40
0.94
0.96
0.98

1

k-th model

A
cc

ur
ac

y

Test accuracy

(S2) (S3)

(c) Test accuracies on (S2) and (S3)

Figure 3: [Results for Mushroom dataset] Figures (a) and (b) are the results on the two settings (S2) Rule Set ((1−1/e)-correct)
that uses Algorithm 1 with a greedy method as Algα, and (S3) Rule Set (1-correct) that uses Algorithm 2, respectively. Figure
(c) is the test accuracy of the enumerated models using the exact algorithm.

is held for more than 90% of the samples satisfying t ⊆ x in
the training set. We then used TP to learn rule lists.

Figure 3 shows the results on (S2) and (S3). The result
on (S1) is omitted because there was a memory issue in
CORELS: too much memory was required and the optimal
rule list was not found. In the experiment, we set the length
of the rule sets to be I = 4. Figure 3(a) shows that the output
of (S2) were not enumerated in an exact order. However, it
is important to note that the (1 − 1/e)-correctness was still
kept as expected. By contrast, in (S3), the models were enu-
merated in an exact order, as shown in Figure 3(b). From the
results, we observed three important findings.

1. There were four models whose objective function values
were equally one. That is, these models could explain the
training data equally well. This result implies that, by fo-
cusing only on a single optimal model, we may overlook
other possible explanations of data, which is not favor-
able from the data mining perspective. The result shows
that we can aid this risk by enumerating models.

2. 40 models out of 50 enumerated models coincided be-
tween the outputs of (S2) and (S3). That is, the approx-
imate enumeration (S2) could goodly mimic the output of
the exact enumeration (S3). This result indicates that the
approximate enumeration can be a pragmatic alternative
of the exact enumeration when the problem size is large
and the exact enumeration takes too much time.

3. The enumerated models sometimes attained better test ac-
curacy than the optimal models, as shown in Figure 3(c).

We note that the observations 1 and 3 show advantages of
model enumeration that we can obtain several different mod-
els of almost equal quality. Obtaining these models can be
useful when (i) users want to choose a model that is par-
ticularly suited to their task knowledge, or (ii) users want to
obtain several possible mechanisms that could be underlying
the data to use as hypotheses for further scientific studies.

7 Conclusion

In this paper, we have proposed algorithms for enumerat-
ing rule lists and rule sets with different supports. In addi-
tion, we have proved that these algorithms can enumerate
the models in descending order of their objective function
values, both approximately and exactly. The experimental
results then confirmed the correctness of the enumeration
algorithms. In the experiments, we also found that, by us-
ing the enumeration algorithms, we were able to find several
different models of almost equal quality.

One important problem remains open. That is, how one
can find a good model out of enumerated ones. Naively
checking all the models would be practically too exhaus-
tive for users. It is therefore important to design an efficient
strategy for identifying a single good model.

Acknowledgments

This work was partly supported by JST ERATO Grant
Number JPMJER1201, Japan, and JSPS KAKENHI(S)
15H05711.

3163

References

Agrawal, R., and Srikant, R. 1994. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, 487–499.
Agrawal, R.; Imieliński, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases. In
Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, 207–216.
Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; and
Rudin, C. 2017. Learning certifiably optimal rule lists
for categorical data. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 35–44.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and Regression Trees. CRC press.
Chen, W.; Chen, Y.; and Weinberger, K. 2015. Filtered
search for submodular maximization with controllable ap-
proximation bounds. In Proceedings of the 18th Interna-
tional Conference on Artificial Intelligence and Statistics,
156–164.
Dong, G., and Bailey, J. 2012. Contrast Data Mining: Con-
cepts, Algorithms. Chapman & Hall/CRC.
Dong, G., and Li, J. 1999. Efficient mining of emerging
patterns: Discovering trends and differences. In Proceed-
ings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 43–52.
Doshi-Velez, F., and Kim, B. 2017. Towards a rigorous sci-
ence of interpretable machine learning. arXiv:1702.08608.
Feige, U. 1998. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM) 45(4):634–652.
Fukuda, T.; Morimoto, Y.; Morishita, S.; and Tokuyama,
T. 1996. Mining optimized association rules for nu-
meric attributes. In Proceedings of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems, 182–191.
Hara, S., and Maehara, T. 2017. Enumerate lasso solutions
for feature selection. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence, 1985–1991.
Hochbaum, D. S. 1996. Approximating covering and pack-
ing problems: set cover, vertex cover, independent set, and
related problems. In Approximation Algorithms for NP-
Hard Problems, 94–143.
Jordan, K. L., and Freiburger, T. L. 2015. The effect of
race/ethnicity on sentencing: Examining sentence type, jail
length, and prison length. Journal of Ethnicity in Criminal
Justice 13(3):179–196.
Kim, B. 2015. Interactive and interpretable machine learn-
ing models for human machine collaboration. Ph.D. Disser-
tation, Massachusetts Institute of Technology.
Komiyama, J.; Ishihata, M.; Arimura, H.; Nishibayashi, T.;
and Minato, S.-I. 2017. Statistical emerging pattern min-
ing with multiple testing correction. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 897–906.
Komiyama, J. 2017. https://github.com/jkomiyama/qtlamp.

Lakkaraju, H.; Bach, S. H.; and Leskovec, J. 2016. Inter-
pretable decision sets: A joint framework for description and
prediction. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 1675–1684.
Lakkaraju, H.; Aguiar, E.; Shan, C.; Miller, D.; Bhanpuri,
N.; Ghani, R.; and Addison, K. L. 2015. A machine learning
framework to identify students at risk of adverse academic
outcomes. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 1909–1918.
Larson, J.; Mattu, S.; Kirchner, L.; and Angwin, J. 2016.
How we analyzed the compas recidivism algorithm. ProP-
ublica.
Larus-Stone, N. 2017. https://github.com/nlarusstone/
corels.
Lawler, E. L. 1972. A procedure for computing the k best
solutions to discrete optimization problems and its appli-
cation to the shortest path problem. Management Science
18(7):401–405.
Letham, B.; Rudin, C.; McCormick, T. H.; Madigan, D.;
et al. 2015. Interpretable classifiers using rules and bayesian
analysis: Building a better stroke prediction model. The An-
nals of Applied Statistics 9(3):1350–1371.
Li, J.; Shen, H.; and Topor, R. 2002. Mining the opti-
mal class association rule set. Knowledge-Based Systems
15(7):399–405.
Lichman, M. 2013. UCI machine learning repository.
Nemhauser, G. L., and Wolsey, L. A. 1978. Best algorithms
for approximating the maximum of a submodular set func-
tion. Mathematics of Operations Research 3(3):177–188.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functionsI. Mathematical Programming 14(1):265–294.
Ong, H. Y.; Wang, D.; and Mu, X. S. 2014. Diabetes pre-
diction with incomplete patient data. Technical Report.
Quinlan, J. R. 2014. C4.5: Programs for Machine Learning.
Elsevier.
Rastogi, R., and Shim, K. 2002. Mining optimized
association rules with categorical and numeric attributes.
IEEE Transactions on Knowledge and Data Engineering
14(1):29–50.
Rivest, R. L. 1987. Learning decision lists. Machine Learn-
ing 2(3):229–246.
Ruggieri, S. 2017. Enumerating distinct decision trees. In
Proceedings of the 34th International Conference on Ma-
chine Learning, 2960–2968.
Srikant, R., and Agrawal, R. 1996. Mining quantitative as-
sociation rules in large relational tables. In Proceedings of
the 1996 ACM SIGMOD International Conference on Man-
agement of Data, 1–12.

3164

