
Nonlinear Pairwise Layer and Its Training for Kernel Learning

Fanghui Liu,� Xiaolin Huang,� Chen Gong,� Jie Yang,�∗ Li Li�
�Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University

�School of Computer Science and Engineering, Nanjing University of Science and Technology
�Department of Automation, Tsinghua University

Abstract

Kernel learning is a fundamental technique that has been in-
tensively studied in the past decades. For the complicated prac-
tical tasks, the traditional “shallow” kernels (e.g., Gaussian
kernel and sigmoid kernel) are not flexible enough to produce
satisfactory performance. To address this shortcoming, this
paper introduces a nonlinear layer in kernel learning to en-
hance the model flexibility. This layer is pairwise, which fully
considers the coupling information among examples. So our
model contains a fixed single mapping layer (i.e. a Gaussian
kernel) as well as a nonlinear pairwise layer, thereby achieving
better flexibility than the existing kernel structures. Moreover,
the proposed structure can be seamlessly embedded to Support
Vector Machines (SVM), of which the training process can be
formulated as a joint optimization problem including nonlinear
function learning and standard SVM optimization. We theoret-
ically prove that the objective function is gradient-Lipschitz
continuous, which further guides us how to accelerate the opti-
mization process in a deep kernel architecture. Experimentally,
we find that the proposed structure outperforms other state-of-
the-art kernel-based algorithms on various benchmark datasets,
and thus the effectiveness of the incorporated pairwise layer
with its training approach is demonstrated.

Introduction

Kernel learning (Schölkopf and Smola 2003) is one of the
enduring topics in machine learning community. The family
of kernel-based methods have been extensively studied over
the past decade, such as support vector machines (SVM)
(Vapnik 2000), kernel logistic regression (KLR) (Zhu and
Hastie 2002), and kernel PCA (Zhang et al. 2016). These
methods work by mapping the data from the original input
space into a high-dimensional (possibly infinite-dimensional)
feature space. The mapping is implicitly defined through
a kernel, namely a function that defines an inner product
between any two examples in the reproducing kernel Hilbert
space (RKHS) (Evgeniou, Pontil, and Poggio 2000).

Although these kernel-based methods obtain good per-
formance to some extent, many empirical studies (Zhuang,
Tsang, and Hoi 2011; Huang et al. 2017a) suggest that they
are not sufficiently flexible to accurately describe the data

∗Corresponding Author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

distribution due to their shallow architecture. Accordingly,
some recent approaches (Lloyd et al. 2014; Zhong et al.
2014) target to develop more expressive kernels than the
traditional kernels to discover rich structure embedded in
the data. Existing advanced kernel-based algorithms can be
roughly grouped into two categories: multiple kernel learn-
ing (MKL) and deep kernel learning. MKL (Nen, Alpayd,
and Ethem 2011; Varma and Babu 2009) aims at learning
a combination of a set of predefined kernels to obtain a
good integrated kernel, which would yield a “broader” kernel.
The heuristic approaches, Bayesian approaches, and boost-
ing approaches are usually adopted by the representative
models in implement MKL (see a survey in (Nen, Alpayd,
and Ethem 2011)). Recently, motivated by the successes of
deep learning framework, some emerging studies (Cho 2012;
Zhuang, Tsang, and Hoi 2011; Wilson et al. 2016) have at-
tempted to incorporate deep architecture into kernel learning
to further enhance the flexibility of regular MKL and other
traditional kernel-based methods. As a result, deep kernel
architecture substantially increases the “richness” of repre-
sentations when compared to a shallow architecture.

However, there are two main drawbacks of these deep
kernel based methods. First, there has so far been no satis-
fied or proper optimization algorithms for these nested ker-
nels in deep architecture during the training process. Second,
such deep kernel based methods often use a fixed or regular
scheme to generate a nested kernel. The model flexibility is
generally limited to such insufficient scheme, and thus these
methods can hardly yield a promising performance as we
expected. To address such limitations, we introduce a nonlin-
ear pairwise layer in kernel learning as shown in Fig. 1. One
can see that the kernel learning framework in SVM can be
analogous to the structure of a neural network. In our model,
we use a fixed single mapping layer but add a nonlinear pair-
wise layer which is highly coupled with training examples to
capture the different local statistics of the input data. Such
pairwise layer can be interpreted as a nonlinear function
g(xi,xj) that we need to learn, where xi is the ith example
of the input X = {x1,x2, · · · ,xn}. By doing so, one hand,
we do not limit the specific formulation for the function g(·),
which provides more flexibility when compared with other
deep nested kernels. On the other hand, we only need to learn
the function g(·) instead of learning a multi-layer kernel in
deep architecture to simplify the training process. As a result,

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3659

Figure 1: The structure of our KNPL model in SVM.

our model not only can capture the different local statistics of
the input data, but also is much easier to learn a nested kernel
in the network without too many hyper-parameters.

Formally, in this paper, we propose a flexible kernel learn-
ing framework with a nonlinear pairwise layer in SVM,
termed as KNPL, to enhance the model flexibility. We for-
mulate the learning of such nonlinear function g(·) and the
induced classification model as a joint optimization prob-
lem using an efficient iterative algorithm. Specifically, train-
ing such nonlinear function is conducted by least squares
semi-definite programming via alternating direction methods.
Moreover, the objective function is theoretically proved to
be gradient-Lipschitz continuous, which makes it possible to
accelerate the optimization process in a deep kernel architec-
ture. Numerous experiments on various data sets demonstrate
that the proposed KNPL model with the nonlinear pairwise
layer can effectively enhance the model flexibility, and thus
achieving superior classification performance to other state-
of-the-art kernel learning based algorithms.

KNPL Model

In this section, we firstly investigate the relationship between
a deep kernel and our KNPL model, and then introduce the
KNPL model in SVM.

In deep kernel architecture, the kernel with l layers (Cho
2012) is defined by:

K(l)(xi,xj) = φ(l)
(· · ·φ(1)(xi)

) · φ(l)
(· · ·φ(1)(xj)

)
,

which computes the inner product between two examples
xi and xj after l successive applications of the nonlinear
mapping φ(·). For example, the two layer composition of
Gaussian kernel K(xi,xj) = exp(−λ‖xi − xj‖2) with the
kernel width λ is formulated as:

K(2)(xi,xj) = φ(2)(φ(1)(xi)) · φ(2)(φ(1)(xj))

= e−2λ exp(−2λK(xi,xj))
. (1)

This formulation demonstrates that an iterated mapping
φ(φ(x)) essentially changes the input, and would generate
a more comprehensive or complex representation than the
single mapping φ(x). Here we observe that the nested kernel
in Eq. (1) can be decomposed into a fixed Gaussian ker-
nel K(xi,xj) and a nonlinear pairwise function g(xi,xj),

namely:

K(2)(xi,xj) � g(xi,xj) · K(xi,xj) . (2)

That is to say, using a single kernel as well as a nonlinear
pairwise layer is able to achieve a comparable and even better
model flexibility when compared to the deep kernel architec-
ture as demonstrated by our KNPL model. Note that g(·) can
be in an arbitrary type, and thus one can always find a proper
function to satisfy such decomposition in Eq. (2) when any
two examples (xi,xj) are given.

To intuitively illustrate the superiority of the introduced
nonlinear layer g(·), here we give a two-dimensional example
in the KNPL model. In Fig. 2, data of class +1 (marked by
green stars) are a mixture of Gaussian which takes in sand-
wiches of the class −1 (marked by red crosses). We compare
the proposed KNPL model with a baseline method, i.e., SVM
with Gaussian kernel, in which the kernel width λ and the
trade-off parameter C are respectively tuned via a five-fold
cross validation (termed as “SVM-CV”). The classification
accuracy on the training data ranges from 86.87% by “SVM-
CV” to 94.93% yielded by the learned KNPL model. One
can see that KNPL provides a more complex and accurate
boundary, and thus is more flexible to capture the different
local statistics of the training data. Specifically, the induced
boundary of KNPL on some outliers is isolated, which means
that it just works on a neighborhood of such outliers and
has little unfavorable effect on other data. Further, the right
of Fig. 2 indicates that the nonlinear function values ranges
from 0.95 to 1.05. Such small and steadily fluctuation indi-
cates that such sophisticated classification boundary is not
generated by a too large kernel width λ, which makes the
learned model not easy to be over-fitting.

In the next, we introduce the formulation of KNPL
model. Let Sn be the space of n × n symmetric matri-
ces, and Sn

+ be the cone of positive semi-definite matri-
ces in Sn. A set of training examples are given by the in-
put X = {x1,x2, · · · ,xn}, where xi ∈ R

d with its label
yi ∈ {±1}, and the output y = {yi}ni=1 forms the label
matrix Y = diag(y). Let 1 be a n-dimensional vector of all
ones, and C is a positive trade-off parameter. Accordingly,
the dual formulation of soft margin SVM is given by:

max
α

1�α− 1

2
α�YKYα

s.t. 0 ≤ α ≤ C1, α�y = 0
, (3)

where the dual variable is α ∈ R
n and the kernel matrix

K ∈ Sn
+ is derived by a kernel K, namely Kij = K(xi,xj).

When K is positive semi-definite, this problem is a convex
quadratic programming.

As presented in Introduction, we design a nonlinear pair-
wise layer and need to learn the nonlinear function g(xi,xj).
Here, we seek to estimate its function value instead of directly
learning the function g(·) for simplicity. They are totally
equivalent when the training data are given. Formally, we in-
troduce a pairwise matrix G ∈ R

n×n where Gij = g(xi,xj)
into problem (3). By Slater’s condition (Boyd and Vanden-
berghe 2004), strong duality holds, so the optimal values of
the primal and dual soft-margin SVM problems will be equal.

3660

Figure 2: Left figure: Data of two classes are marked by green
stars and red crosses. The solid and dashed lines illustrate the
boundary of our method and SVM-CV, respectively. Right
figure: The values of the pairwise matrix G.

Hence, as we expect, the loss of the primal problem would
decrease by optimizing G. And then, following max-min
approach (see details in (Boyd and Vandenberghe 2004)), we
have:

max
α

min
G∈Sn

+

1�α− 1

2
α�Y

(
G�K

)
Yα+ γ‖G‖2F

s.t. α�y = 0, 0 ≤ α ≤ C1,G1 = n1

,

(4)

where γ > 0 is a regularization parameter and the operator
� denotes Hadamard product. The inner minimization prob-
lem in Eq. (4) is a convex conic program on G. The outer
maximization problem is a point-wise minimum of a family
of concave quadratic functions of α, and hence the outer
optimization problem is also convex. For the pairwise matrix
G, we restrict it to be a positive semi-definite matrix, so the
learned kernel matrix K̃ = G�K is guaranteed to be a pos-
itive semi-definite one1. Besides, the constraint G1 = n1 is
incorporated into Eq. (4) for scaling invariant. And also, such
shift-invariant constraint is able to avoid a trivial solution
G = 0n×n.

Accordingly, the proposed nonlinear layer is embedded to
SVM, of which the training process is formulated as a joint
optimization problem including nonlinear function learning
and standard SVM optimization as demonstrated by Eq. (4).
Before we introduce an optimization algorithm to solve the
KNPL model, we need to investigate the differentiable prop-
erty of Eq. (4), which would help us to optimize this problem.

Differentiability of Problem (4)
For notational simplicity, let A = {α ∈ R

n : α�y =
0, 0 ≤ α ≤ C1} be the constraint for a standard SVM, B be
a convex polyhedron defined by the affine equality G1 = n1
and then we introduce a function:

H(α,G) = 1�α− 1

2
α�Y

(
G�K

)
Yα+ γ‖G‖2F .

Therefore, problem (4) is equivalent to:

max
α∈A

min
G∈Sn

+

⋂B
H(α,G) . (5)

1It is admitted by Schur Product Theorem (Styan 1973) which
relates positive semi-definite matrices to the Hadamard product.

For simplicity, we investigate the following function:

h(α) = min
G∈Sn

+

⋂B
H(α,G) . (6)

It is obviously concave since h is the minimum of a se-
quence of concave functions. We term the associated function
H(α,G) as the saddle representation of the objective func-
tion h(α).

In (Bonnans and Shapiro 1998), the authors outline a useful
characterization of differentiable properties of the optimal
value function, and thus we have:
Proposition 1. The objective function h(α) defined by
Eq. (6) is differentiable and its gradient is given by:

∇h(α) = 1−Y
(
G∗ �K

)
Yα , (7)

where G∗ = argmin
G

H(α,G).

Based on the strongly convex of H(α, ·), the uniqueness
of G∗ holds and thus this proposition is easily obtained.

In the next, we analyze the differentiable property of
∇h(α). To this end, we first establish two useful lemmas.
Lemma 1. For any α1, α2 ∈ A, we have:

‖Γ(α1)− Γ(α2)‖ ≤ ‖K‖(‖α1‖+ ‖α2‖
)

4γ

∥∥α1 −α2

∥∥ ,
where Γ = 1

4γ diag(α�Y)K diag(α�Y).

Proof. The proof is presented in Eq. (8) (see in the next page).

Lemma 2. For any α1, α2 ∈ A, suppose that G∗1 =
argmin

G
H(α1,G) and G∗2 = argmin

G
H(α2,G), there

holds:

‖G∗1 −G∗2‖ ≤ ‖K‖(‖α1‖+ ‖α2‖
)

4γ

∥∥α1 −α2

∥∥ .
Proof. Let ∂GH(α, ·) denote the gradient w.r.t. G. Now
consider the minimization problem argmin

G
H(α,G), by the

first order optimality conditions, we have:{ 〈∂GH(α1,G
∗
1),G

∗
2 −G∗1〉 ≥ 0

〈∂GH(α2,G
∗
2),G

∗
1 −G∗2〉 ≥ 0

. (10)

Consequently, we have:

〈∂GH(α1,G
∗
1)− ∂GH(α2,G

∗
2),G

∗
2 −G∗1〉 ≥ 0 .

Substituting the fact that:

∂GH(α,G) = 2γG− 2γΓ(α) . (11)

And then:〈
2γG∗1 − 2γΓ(α1)− 2γG∗2 + 2γΓ(α2),G

∗
2 −G∗1

〉 ≥ 0 .

Accordingly, we have:∥∥G∗1 −G∗2‖2 ≤ 〈
Γ(α2)− Γ(α1),G

∗
2 −G∗1

〉
≤ ∥∥Γ(α2)− Γ(α1)

∥∥∥∥G∗1 −G∗2‖ .
By Lemma 1, we conclude the proof.

3661

‖Γ(α1)− Γ(α2)‖ =
1

4γ

∥∥∥ diag (α1
�Y

)
K diag

(
α1
�Y

)− diag
(
α2
�Y

)
K diag

(
α2
�Y

)∥∥∥
=

1

4γ

∥∥∥ diag (α1
�Y +α2

�Y
)
K diag

(
α1
�Y −α2

�Y
)∥∥∥

≤ 1

4γ
‖K‖

∥∥∥ diag (α1
�Y +α2

�Y
)∥∥∥∥∥∥ diag (α1

�Y −α2
�Y

)∥∥∥
≤ ‖K‖

4γ
‖α1 +α2‖‖α1 −α2‖ (Y is an orthogonal matrix)

. (8)

‖∇h(α1)−∇h(α2)‖ =
∥∥Y(

G∗
1 �K

)
Yα1 −Y

(
G∗

2 �K
)
Yα2

∥∥ =
∥∥Y(

G∗
1 −G∗

2

)�KYα1 −Y
(
G∗

2 �K
)
Y
(
α2 −α1

)∥∥
≤ ∥∥Y(

G∗
1 −G∗

2

)�KYα1

∥∥+
∥∥Y(

G∗
2 �K

)
Y
(
α2 −α1

)∥∥
≤ ∥∥(G∗

1 −G∗
2

)�K
∥∥‖α1‖+

∥∥G∗
2 �K

∥∥‖α1 −α2‖ (Y is an orthogonal matrix)

≤ ∥∥G∗
1 −G∗

2

∥∥‖K‖‖α1‖+ ‖G∗
2‖‖K‖‖α1 −α2‖ (Using ‖A�B‖F ≤ Tr(AB�) ≤ ‖A‖F ‖B‖F)

≤ ‖K‖2
4γ

‖α1‖
(‖α1‖+ ‖α2‖

)‖α1 −α2‖+ ‖G∗
2‖‖K‖‖α1 −α2‖ (Using Lemma 2)

≤ ‖K‖2
4γ

(
‖α1‖

(‖α1‖+ ‖α2‖
)
+ ‖α2‖2

)
‖α1 −α2‖

(
Using G∗

2 = Γ(α2) by Eq. (11)
)

≤ 3nC2‖K‖2
4γ

‖α1 −α2‖ (Using 0 ≤ α ≤ C, ‖α‖2 ≤ nC2)

. (9)

Based on the above lemmas, we can establish the gradient-
Lipschitz continuity of the objective function h(α). Formally,
we present the following theorem.

Theorem 1. The gradient of the objective function given by
Eq. (7) is Lipschitz continuous with Lipschitz constant L =
3nC2‖K‖2

4γ i.e. for any α1, α2 ∈ A, the following inequality
holds ‖∇h(α1)−∇h(α2)‖ ≤ L‖α1 −α2‖.

Proof. For any α1, α2 ∈ A, from representation of ∇h(α)
in Proposition 1, the term ‖∇h(α1) − ∇h(α2)‖ can be
bounded by Eq. (9), which concludes the proof.

The theoretical analysis above, mainly Theorem 1, pro-
vides a justification for utilizing the backward propagation
algorithm with Nesterov’s acceleration method (Flammar-
ion and Bach 2015) to train a deep kernel network. While
in our model, we just use a single layer kernel to empha-
size the effectiveness of the introduced nonlinear pairwise
layer. Such problem is well formulated as a joint optimization
model, and thus we develop an iterative algorithm to solve
the optimization problem (4).

Optimization for Problem (4)
In this section, we present an alternate iterative algorithm to
solve the optimization problem (4). In each iteration of the
algorithm, α and G are alternatively optimized. When G
is fixed, the standard SVM can be solved by the SMO algo-
rithm (Platt 1998); When α is fixed, the inner optimization
problem for G is semi-definite least squares, which can be
solved by the fast Alternating Direction Method of Multipli-
ers (ADMM) approach (Boyd et al. 2011).

Optimization for G via ADMM

Just consider the variable G in Eq. (4) with some algebraic
manipulations2, we have:

min
G∈Sn

+

⋂B
−2Tr

(
γΓG

)
+ γ‖G‖2F . (12)

where Γ = 1
4γ diag(α�Y)K diag(α�Y). Further, Eq. (12)

is equivalent to solve the following problem:

min
G∈Sn

+

⋂B
‖G− Γ‖2F . (13)

Such problem aims to seek the projection of Γ onto the in-
tersection of two spaces Sn

+ and B (the projection is well
defined since both Sn

+ and B are convex). Throughout, we
assume that the solution set of Eq. (13) is not empty. Hence
this issue is a typical semi-definite least-squares problem
with several dedicated methods (see a survey in (Henrion
and Malick 2012)). Here we choose the alternating directions
based algorithm to solve this problem.

Following (He, Xu, and Yuan 2011), we reformulate
Eq. (13) as:

min
G∈Sn

+

1

2
‖G− Γ‖2F +

1

2
‖Q− Γ‖2F

s.t. G−Q = 0n×n,Q1 = n1

. (14)

By introducing augmented Lagrange multipliers to incor-
porate the equality constraints into the objective function
Eq. (14), we obtain the augmented Lagrangian function as

2x�A � By = Tr(DxADyB
�), where Dx = diag(x) and

Dy = diag(y).

3662

follows:

L(G,Q,Z, β) =

1

2
‖G−Γ‖2F +

1

2
‖Q−Γ‖2F −Z�

(
G−Q

)
+
β

2
‖G−Q‖2F

,

(15)

where Z ∈ Sn is the Lagrangian multiplier and β ≥ 0 is
the penalty parameter. The ADMM algorithm is to update
the variables G, Q, and Z alternately, by minimizing L with
other variables fixed. Consequently, we have three update
steps corresponding to all the variables as follows.

Step 1: Update G: The pairwise matrix G is updated by
solving the following optimization problem:

Gk+1 = argmin
G

PSn
+

(1

1 + βk

(
βkQk + Zk + Γ

))
,

where PSn
+

denotes the projection onto Sn
+. The optimal

solution to this problem is then given by:

Gk+1 =
(1

1 + βk

(
βkQk + Zk + Γ

))
+
, (16)

where the notation V+ denotes the positive part of the matrix
V , i.e., V+ =

∑
i max(0, λi)viv

�
i where λi and vi are the

ith eigenvalue and eigenvector of V, respectively.
Step 2: Update Q: The minimization problem (15) with

respect to Q is:

Qk+1=argmin
Q∈B

1

2
‖Q−Γ‖2F −Z�

(
G−Q

)
+
β

2
‖G−Q‖2F

= PB
(1

1 + βk

(
βkGk+1 − Zk + Γ

)
︸ ︷︷ ︸

�Ξ

)
.

(17)

Here computing the projection PB(Ξ) requires to solve a
standard quadratic programming, which arrives at:

min
Q

‖Q− Ξ‖2F , s.t. Q1 = n1 .

Note that the above problem with the shift-invariant con-
straint is separable, and thus we can obtain its closed form
solution. For example, we take an arbitrary column of Q,
termed as q, and the corresponding column vector ξ in Ξ,
namely:

min
q

‖q− ξ‖22, s.t. 1�q = n . (18)

Let τ be the Lagrange multiplier for the shift-variant con-
straint 1�q = n, then the related Lagrangian function is
L(q, τ) = ‖q − ξ‖22 + τ(1�q − n). The partial derivative
of L(q, τ) with respect to q is:

∂L(q, τ)
∂q

= 2q− 2ξ + τ1 .

By the shift-variant constraint and the Karush-Kuhn-Tucker
condition, we have:

2nq− 2ξ1�q+ τ1n = 0 .

Accordingly, the analytic solution is:

q∗ = τ(2ξ1� − 2nIn)
−11n , (19)

where In is an identity matrix, and τ can be further obtained
by the shift-invariant constraint. Specifically, the matrix in-
version in Eq. (19) can be avoided by the Sherman-Morrison
formula, and hence the solution q∗ can be further simplified
to:

q∗ = −2τ
(
In +

ξ1�

n− 1�ξ
)
1 . (20)

Accordingly, we directly obtain the closed-form solution
Q = [q∗1,q

∗
2, · · · ,q∗n] without employing or designing any

inefficient iterative method for this particular purpose.
Step 3: Update Multipliers Z and β: The Lagrange mul-

tiplier Z and the penalty parameter β are updated as follows:

Zk+1 = Zk − βk

(
Gk+1 −Qk+1

)
, (21)

βk+1 = min
{
ρβk, 10

8
}
, (22)

where ρ = 1.1 is the parameter that makes β gradually in-
crease in each loop so that the normalization constraint can
be finally satisfied.

The entire iterative process for solving Eq. (15) is summa-
rized in Algorithm 1. Its convergence has been theoretically
proved in (He, Xu, and Yuan 2011) and will be empirically
illustrated by the experiments.

Algorithm 1: Optimization for (15) via ADMM
Input: A given α, the kernel matrix K, the label

matrix Y; Initialization of G, Q, Z by all-one
matrices, and β; Stopping criteria kmax = 15
and ε = 10−4.

Output: The optimal G∗ that minimizes Eq. (15).
1 Set k = 0.
2 Repeat
3 Update G via Eq. (16);
4 Update Q = [q1,q2, · · · ,qn] via Eq. (20);
5 Update Lagrange multipliers Z and β as in

Eq. (21) and Eq. (22), respectively;
6 Until k = kmax or

Diff = max
{‖Qk+1−Qk‖F , ‖Zk+1−Zk‖F

} ≤ ε;

Optimization for α in Problem (4)
When obtaining the optimal G∗, the learned flexible kernel
K̃∗ = G∗ � K can be used for solving the dual variable
α in SVM iteratively. Therefore, the algorithm for solving
the KNPL model is summarized in Algorithm 2. Specifically,
such iteration algorithm converges very fast, usually within
10 iterations.

Predict for the Test Data

By Algorithm 1, we learn the pairwise matrix G∗ and the
induced flexible kernel matrix K̃∗ = G∗ � K. Thereby,
the nonlinear pairwise function g(xi,xj) can be faultlessly
approximated by G∗ when the training data are given. How-
ever, such function g(·) is not unknown on the test data and

3663

Algorithm 2: Algorithm for the KNPL model.
Input: The training set label Y, the kernel matrix K,

and the pairwise matrix G
Output: The optimal α∗

1 Set the maximum iteration number T = 10.
2 Initialize i = 0 and α.
3 Repeat

4 Obtain G(i+1) by Algorithm 1;
5 Solve α with the learned kernel G(i+1) �K by

SMO algorithm (Platt 1998);
6 i := i+ 1;
7 Until i ≥ T ;

must be approximated by the learned G∗. Suppose that the
pairwise matrix G′ ∈ R

n×m is conducted on the test data
X ′ = {x′i}mi=1. The corresponding flexible kernel matrix on
the test data is K̃′ = G′�K′, where K′ij = K(xi,x

′
j). Here,

we build a mapping between G∗ and G′ by exploiting the
nearest relationship between the training and test data, that
is:

G′i ← G∗j , if xj = N (x′i,X) . (23)

This formulation suggests that if xj is the nearest neighbor
of x′i among the training data X , the jth column of G∗ is
assigned to the ith column of G′. By doing so, the corre-
sponding flexible kernel matrix K̃′ can be obtained. Finally,
the labels of test data are predicted by K̃′ and the optimal
α∗. Actually, there is a gap between the learned K̃′ and K̃∗
due to a simple nearest neighbor approximation scheme. We
would like to develop sophisticated learning schemes to learn
the test kernel matrix K̃′.

Algorithm Complexity

The proposed algorithm contains two parts: solving G by
Algorithm 1 and solving α in Algorithm 2. For the optimiza-
tion of G, we use alternating directions to solve this problem
with the following three steps. Herein, updating G (step 1)
needs to solve an eigenvalue problem by a k-step Arnoldi
process. Thereby, the complexity of a straightforward imple-
mentation of the Arnoldi process is at least O(kn2 + k2n),
where n is the number of training data, and k is a constant
irrelevant to n, see details in (Lee et al. 2009). Updating Q
in step 2 is related to matrix addition and multiplication op-
erations, and thus the complexity of step 2 reaches to O(n).
In step 3, the computation cost for updating Z and β can be
ignored. Finally, the computational complexity of Algorithm
1 is O(t(kn2+k2n+n)), where t is the number of iterations.
In Algorithm 2, the computational complexity of solving α
by SMO is about O(dn2) where d is the feature dimension.
Finally, the total computational complexity of our algorithm
is O(T (dn2 + t(kn2 + k2n))), where T is the number of
iterations in Algorithm 2. It can be observed that the com-
putation load of Algorithm 1 is large and we would like to
further accelerate the solving process for G.

Experiments

In this section, we compare the KNPL model with other rep-
resentative kernel-based methods on the benchmark with a
collection of several datasets. In addition, the convergence
analyse of the optimization algorithm in KNPL is also pro-
vided.

Experimental Setup

In the experiments, fifteen real-word datasets from UCI Ma-
chine Learning Repository (Blake and Merz 1998) are used to
evaluate the performance of KNPL with other kernel learning
algorithms. The dataset description including the number of
training set n and the problem dimension d is presented in Ta-
ble 1. All data are normalized to [0, 1] in advance. For some
datasets, there are both training and test data (e.g., monks1).
Otherwise, we randomly pick half of the data for training and
the rest for test. In our model, the regularization parameter
γ is tuned by 5-fold cross validation. That is, we randomly
partition the training data into 5 subsets, one of which is used
for validation in turn and the remaining ones for training. We
compare the proposed KNPL model in SVM with several
state-of-the-art kernel-based algorithms including SVM-CV,
BMKL (Gonen 2012), DMKL (Strobl and Visweswaran
2014), and EasyMKL (Aiolli and Donini 2015).

Experimental Results

We test the above algorithms on fifteen datasets, where the
procedure is repeated 10 times, and then the average classi-
fication accuracy and its standard deviation on test data are
reported in Table 1. Specifically, the classification accuracies
of “SVM-CV” and our method on the training data are also
presented in order to show their respective model flexibilities.

Compared with DMKL, BMKL, and EasyMKL, the pro-
posed KNPL model provides a favorable performance, i.e.
ranking first on eight datasets and second on four datasets.
The promising performance effectively demonstrates the su-
periority of the introduced nonlinear pairwise layer that con-
veys richer information than other methods. Accordingly, our
model is able to have good adaptiveness to the training and
test data.

In terms of the results in Table 1 when comparing to “SVM-
CV”, we firstly analyze four datasets in which the classifica-
tion accuracy on the training data is not satisfactory, namely:
diabetic, haberman, heart, and SPECT. It can be observed
that KNPL significantly improves the flexibility of SVM on
the training data, and thus works well for the test data with
a favorable generation ability. Specifically, in diabetic and
haberman datasets, the proposed KNPL model outperforms
with the respective margins about 9% and 12% than “SVM-
CV”, which verifies the effectiveness of the learned pairwise
function. Besides, in monks, spambase, and EEG datasets,
the proposed KNPL model often slightly outperforms than
“SVM-CV” with the margin about 1%∼3%. And also, in
the remaining eight datasets, the training accuracy yielded
by“SVM-CV” indicates that the flexibility is enough. There-
fore, our model can hardly achieve a huge promotion on these
datasets to some extent, and even is inferior than “SVM-CV”
on brest-cancer and monks2.

3664

Table 1: Comparison results in terms of classification accuracies (mean±std. deviation %) on UCI datasets. The best performance
is highlighted in bold. The classification accuracy on the training data is presented by italic, and does not participate in ranking.

Dataset Description DMKL BMKL EasyMKL SVM-CV KNPL

(d, n) Test Test Test Training Test Training Test

breast-cancer (10, 699) 96.56±1.04 98.95±1.32 99.52±0.13 97.42±1.24 96.53±0.84 100.0±0.00 97.35±0.74
climate (20, 540) 94.00±1.69 93.11±0.46 90.30±1.12 99.22±1.27 94.74±0.83 100.0±0.00 95.14±0.98

diabetic (19, 1151) 72.95±1.03 74.97±0.49 76.72±1.50 80.71±3.98 73.00±1.74 91.23±0.56 81.98±1.72

guide1-t (4, 4000) 96.94±0.62 97.00±0.01 94.75±0.92 97.44±0.43 96.86±0.31 98.25±0.27 97.12±0.19

haberman (3, 306) 69.93±3.01 69.86±1.86 74.56±4.23 77.38±4.51 73.26±3.89 88.81±3.21 85.81±4.28

heart (13, 270) 80.29±2.70 87.33±0.23 86.67±1.23 88.96±3.07 81.92±2.47 92.59±4.97 87.47±3.90

ionosphere (33, 351) 90.51±1.90 91.08±1.08 97.41±0.56 98.75±0.99 90.85±1.37 100.0±0.00 93.17±1.19
monks1 (6, 124) 84.12±3.62 78.91±2.55 76.73±1.25 90.32±0.00 81.48±0.00 100.0±0.00 83.38±3.35
monks2 (6, 169) 77.24±5.72 82.12±1.31 76.68±1.44 100.0±0.00 85.81±1.40 100.0±0.00 83.33±1.68
monks3 (6, 122) 90.69±3.20 94.00±1.09 81.00±0.67 96.22±1.50 93.07±1.24 100.0±0.00 88.78±1.23

sonar (60, 208) 80.57±5.06 84.80±0.60 81.73±3.11 99.90±0.30 85.36±3.17 100.0±0.00 85.86±2.86

SPECT (21, 80) 78.75±4.47 78.88±0.84 82.50±3.24 87.00±3.78 73.10±3.23 92.75±6.99 79.73±4.82
splice (60, 1000) 83.87±0.82 85.80±0.63 83.97±1.33 99.56±1.25 84.96±1.52 99.96±0.08 84.90±0.81

spambase (57,2300) 88.45±2.27 92.91±0.53 95.43±0.53 95.41±0.72 92.95±0.48 98.12±0.33 95.52±0.46

EEG (14,14980) 73.02±6.13 78.79±4.53 75.22±3.32 86.32±1.81 78.34±1.48 98.77±0.64 80.07±4.06

Figure 3: (a) Residual error Diff versus iteration in Algorithm
1 to solve G; (b) Objective function values versus iteration
in Algorithm 2 to solve α.

As a result, KNPL not only makes the baseline SVM algo-
rithm more flexible on the training data, but also outperforms
several kernel based methods a statistically significant evi-
dence in terms of test accuracy. Moreover, the experimental
results indicate that designing an advanced and delicate non-
linear pari-wise layer is rich enough to achieve promising
performance when compared to a deep kernel based method.

Convergence Experiments

The experiments about the convergence of our KNPL model
are conducted on Heart as shown in Fig. 3. We plot the resid-
ual error Diff in Algorithm 1 on a logarithmic scale versus
iterations as shown in Fig. 3(a). One can see that only a few it-
erations (about 3) are taken to obtain the optimal solution G∗,
so the feasibility of employing ADMM for solving Eq. (12)
is verified. In Fig. 3(b), we plot the objective values versus it-
eration to solve α. We can see that the objective values of the
maximization sub-problem converges quickly and generally
terminates within 10 iterations on Heart. This suggests the
proposed iterative algorithm can effectively solve the target
convex optimization.

Discussion

We have explored a nonlinear pairwise layer, which com-
bines the structural properties of deep architectures with the
flexibility of kernel methods, termed “Kernel with Nonlinear
Pairwise Layer” (KNPL). As a result of learning the coupling
information between any two examples by such layer, the
different local statistics of the data is effectively captured.
The introduced structure in KNPL consequently enhances the
model flexibility of the standard SVM, and also is effectively
solved by an iterative algorithm. Thorough experimental re-
sults demonstrate that our KNPL model is superior to sev-
eral state-of-the-art kernel learning methods on classification
tasks. However, several issues would be further considered,
and we list them as follows: 1) the experimental results on
classification accuracy gap suggest we may impose more
appropriate constraints on G to achieve a good trade-off be-
tween the model flexibility and over-fitting. In this case, the
learned kernel associated with the kernel matrix G�K might
be an indefinite kernel (Ying, Campbell, and Girolami 2009;
Huang et al. 2017b) and even asymmetric, which would be
further investigated because of both practical and theoreti-
cal need. 2) the inconsistency between the training kernel
and the test kernel learning prevents our model achieving
excited performance on the test data, which suggest us to em-
ploy out-of-sample extension (Pan et al. 2017) for the kernel
learning.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China (No. 61572315,
6151101179, 61603248, 61602246, 61703077), in part by
the Natural Science Foundation of Jiangsu Province un-
der Grant BK20171430, in part by 973 Plan, China (No.
2015CB856004).

3665

References

Aiolli, F., and Donini, M. 2015. Easymkl: a scalable multiple
kernel learning algorithm. Neurocomputing 169:215–224.
Blake, C., and Merz, C. J. 1998. UCI Repository of Machine
Learning Databases.
Bonnans, J. F., and Shapiro, A. 1998. Optimization problems
with perturbations: A guided tour. SIAM Review 40(2):228–
264.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
Cambridge university press.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein, J.
2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends in Machine Learning 3(1):1–122.
Cho, Y. 2012. Kernel methods for deep learning. In Proceed-
ings of Neural Information Processing Systems, 342–350.
Evgeniou, T.; Pontil, M.; and Poggio, T. 2000. Regulariza-
tion networks and support vector machines. Advances in
Computational Mathematics 13(1):1–50.
Flammarion, N., and Bach, F. 2015. From averaging to
acceleration, there is only a step-size. In Proceedings of the
Conference on Learning Theory, 658–695.
Gonen, M. 2012. Bayesian efficient multiple kernel learning.
In Proceedings of the International Conference on Machine
Learning, 1–8.
He, B.; Xu, M.; and Yuan, X. 2011. Solving large-scale least
squares semidefinite programming by alternating direction
methods. SIAM Journal on Matrix Analysis and Applications
32(1):136–152.
Henrion, D., and Malick, J. 2012. Projection Methods in
Conic Optimization. Springer US.
Huang, X.; Maier, A.; Hornegger, J.; and Suykens, J. A. K.
2017a. Indefinite kernels in least squares support vector
machines and principal component analysis. Applied and
Computational Harmonic Analysis 43(1):162–172.
Huang, X.; Suykens, J. A.; Wang, S.; Hornegger, J.; and
Maier, A. 2017b. Classification with truncated �1 distance
kernel. IEEE Transactions on Neural Networks and Learning
Systems.
Lee, J.; Balakrishnan, V.; Koh, C. K.; and Jiao, D. 2009.
From O(k2N) to O(N): A fast complex-valued eigenvalue
solver for large-scale on-chip interconnect analysis. In Mi-
crowave Symposium Digest, 2009. MTT ’09. IEEE MTT-S
International, 181–184.
Lloyd, J. R.; Duvenaud, D.; Grosse, R.; Tenenbaum, J. B.; and
Ghahramani, Z. 2014. Automatic construction and natural-
language description of nonparametric regression models. In
Proceedings of AAAI Conference on Artificial Intelligence,
1242–1250.
Nen, M.; Alpayd; and Ethem, N. 2011. Multiple kernel
learning algorithms. Journal of Machine Learning Research
12:2211–2268.
Pan, B.; Chen, W. S.; Chen, B.; Xu, C.; and Lai, J. 2017.
Out-of-sample extensions for non-parametric kernel meth-

ods. IEEE Transactions on Neural Networks and Learning
Systems 28(2):334–345.
Platt, J. C. 1998. Sequential minimal optimization: A fast
algorithm for training support vector machines. In Advances
in Kernel Methods-support Vector Learning, 212–223.
Schölkopf, B., and Smola, A. J. 2003. Learning with kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press.
Strobl, E. V., and Visweswaran, S. 2014. Deep multiple
kernel learning. In Proceedings of International Conference
on Machine Learning and Applications, 414–417.
Styan, G. P. H. 1973. Hadamard products and multivari-
ate statistical analysis. Linear Algebra and Its Applications
6:217–240.
Vapnik, V. N. 2000. The Nature of Statistical Learning
Theory. Springer.
Varma, M., and Babu, B. R. 2009. More generality in efficient
multiple kernel learning. In Proceedings of the International
Conference on Machine Learning, 1065–1072.
Wilson, A. G.; Hu, Z.; Salakhutdinov, R.; and Xing, E. P.
2016. Deep kernel learning. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics,
370–378.
Ying, Y.; Campbell, C.; and Girolami, M. 2009. Analysis
of SVM with indefinite kernels. In Proceedings of Neural
Information Processing Systems, 2205–2213.
Zhang, L.; Yang, T.; Jin, R.; Jin, R.; and Zhou, Z. H. 2016.
Stochastic optimization for kernel PCA. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2316–2322.
Zhong, S.; Chen, T.; He, F.; and Niu, Y. 2014. Fast gaussian
kernel learning for classification tasks based on specially
structured global optimization. Neural Network 57(9):51–62.
Zhu, J., and Hastie, T. 2002. Kernel logistic regression and
the import vector machine. Journal of Computational and
Graphical Statistics 14(1):185–205.
Zhuang, J.; Tsang, I. W.; and Hoi, S. C. H. 2011. Two-
layer multiple kernel learning. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics,
volume 15, 909–917.

3666

