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Abstract

The Nystrom method is a popular technique for generat-
ing low-rank approximations of kernel matrices that arise in
many machine learning problems. The approximation qual-
ity of the Nystrom method depends crucially on the number
of selected landmark points and the selection procedure. In
this paper, we introduce a randomized algorithm for generat-
ing landmark points that is scalable to large high-dimensional
data sets. The proposed method performs K-means clustering
on low-dimensional random projections of a data set and thus
leads to significant savings for high-dimensional data sets.
Our theoretical results characterize the tradeoffs between ac-
curacy and efficiency of the proposed method. Moreover, nu-
merical experiments on classification and regression tasks
demonstrate the superior performance and efficiency of our
proposed method compared with existing approaches.

Introduction

Kernel methods have been widely used in various learning
problems such as classification and regression. Well-known
examples include support vector machines (SVM) (Cortes
and Vapnik 1995; Suykens and Vandewalle 1999), kernel
principal component analysis (KPCA) (Schoélkopf, Smola,
and Miiller 1998), and kernel ridge regression (KRR) (Saun-
ders, Gammerman, and Vovk 1998). The main idea behind
kernel-based learning is to map the input data points into a
feature space, where all pairwise inner products can be com-
puted via a nonlinear kernel function that satisfies Mercer’s
condition (Scholkopf and Smola 2001). The lifted represen-
tation of the input data points may lead to better performance
on learning problems (Yan and Sarkar 2016).

To be formal, let X = [x1,...,%,] € RP*" be a data
matrix that contains n data points in R” as its columns. The
inner products in feature space are calculated using a non-
linear kernel function « (-, -):

Kij E 5 (x5, %5) = (®(x:), @(x;)), i,§=1,...,n, (1)
where ® : x — ®(x) is the kernel-induced feature map. A
popular choice is the Gaussian kernel function « (x;,x;) =
exp (—||x; — x;]|3/c). with the parameter ¢ > 0. The pair-
wise inner products are stored in the symmetric positive
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semidefinite (SPSD) kernel matrix K € R"*"™, However, it
takes O(n?) memory to store the full kernel matrix and sub-
sequent processing of the kernel matrix within the learning
process is often computationally quite expensive.

A well-studied approach to tackle these challenges is to
use a low-rank approximation of the Kernel matrix, where
the best rank-r approximation K,y = U, A, U7 is com-
puted via the eigenvalue decomposition (EVD) for r <
rank(K). The diagonal matrix A, € R"*" contains the r
leading eigenvalues, and the columns of U, € R"*" span
the top r-dimensional eigenspace of K. Since K is SPSD,
we have a low-rank approximation in the form of:

K~K( =LL", L=U,AY?eR™". (2

When the target rank 7 is small and chosen independently of
n, the benefits of this low-rank approximation are twofold.
First, the complexity of storing the matrix L is O(nr), which
is only linear in the data set size n. The reduction of mem-
ory requirements from quadratic to linear results in signifi-
cant memory savings. Second, the low-rank approximation
leads to substantial computational savings within the learn-
ing process. In this paper, we focus on two important prob-
lems, namely KPCA and KRR, and explain the benefits of
the low-rank approximation of the kernel matrix.

Problem 1: KPCA for feature extraction A key com-
ponent of many learning tasks is the preprocessing step in
which a concise set of low-dimensional features are con-
structed to facilitate their analysis. For example, let us
consider a classification task with n training data points
Xi,...,Xy, and a testing data point x in R?. To extract fea-
tures via KPCA, the kernel matrix K € R™*" of training
data and its best rank-r approximation are computed ac-
cording to (2), i.e., K ~ K(,) = LL”. Let &J(xj) € R"
denote the j-th column of LY € R"*™ and observe that
the low-rank approximation linearizes K because K;; =~
<<f>(xi), i(x])) Thus, @(xj) can be viewed as a mapping of
the input data x; to an r-dimensional feature space (Zhang
et al. 2012; Pourkamali-Anaraki and Becker 2016):

o(x;) =A}*Ufe; = A, /*UKe,

=A;VPUT [K(x1, %), K(X2,%5), -, (%0, %)

3)



where e; € R" is the j-th vector of the canonical basis and
we used UTK = A, UL, Similarly, we can extract an r-
dimensional feature vector for the testing data x by replac-
ing x; with x in (3). After the preprocessing step, one can
employ any off-the-shelf classification method, such as K-
nearest neighbors, on the constructed features in R".

Problem 2: KRR Consider a set of instance-label pairs
{(xi,yi)}1—1, where x; € RP and y; € R. KRR performs
linear ridge regression on { (®(x; ), y;) }i~ 4. cf. (1). Since the
explicit form of ® is not known, KRR proceeds by generat-
ing a® which solves the following dual optimization prob-
lem (Saunders, Gammerman, and Vovk 1998):

min a’Ka + Aala —2aly,
acR?

“

where K € R™ " is the kernel matrix with K;; =
k(xi, %),y = [y1,...,yn]T € R™ is the response vector,
and A > 0 is the regularization parameter. In the predic-
tion stage, the response value for a testing data point x is
computed as >, afk(x;,%). The problem in (4) admits
the closed-form solution a* = (K + AL, x,,) 'y, where it
costs O(n?) to compute the matrix inversion. To reduce this
cost, one can use the low-rank approximation in (2) and the
Sherman-Morrison-Woodbury formula to find an approxi-
mate solution & ~ a* (Cortes, Mohri, and Talwalkar 2010):

o= (K('r) + >\In><n)71 y
)\t (Inxn ~LLTL+ AIW)’lLT) y. (5

Here, one needs only to invert a much smaller matrix of size
r x r. The computational cost of LTL is O(nr?) and the
cost of matrix inversion is O(r3). Thus, the computational
cost is noticeably reduced.

Although the low-rank approximation of K is a promis-
ing approach to trade-off accuracy for scalability, an eigen-
value decomposition has at least quadratic time complexity
and takes O(n?) space. To address this issue, one line of
prior work is centered around approximating the best rank-r
approximation, but assumes ready access to K; see (Halko,
Martinsson, and Tropp 2011) for a survey. However, K is
typically unknown in kernel methods and the cost to form
K using using standard kernel functions is O(pn?), which
is extremely expensive for large high-dimensional data sets.

For this reason, the Nystrom method (Williams and
Seeger 2001) has been a popular technique to compute a
low-rank approximation of kernel matrices. The Nystrom
method works by selecting a small set of points referred
to as landmark points, and computes the kernel similar-
ities between the input data points and landmark points.
Hence, the performance of the Nystrom method depends
crucially on the number of selected landmark points as
well as the procedure according to which these landmark
points are selected (Kumar, Mohri, and Talwalkar 2012;
Sun, Zhao, and Zhu 2015).

Contributions In this paper, we present an efficient
method for landmark selection in the Nystrom method that
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scales well to large high-dimensional data sets. The pro-
posed method generates a set of landmark points based
on low-dimensional random projections of the data. Our
theoretical results characterize the tradeoffs between the
accuracy of the low-rank approximations and the mem-
ory/computational savings. Specifically, for a fixed accuracy
level, we show that the dimension of the projected data is
independent of the ambient dimension. Extensive numerical
experiments are provided to demonstrate the performance
and efficiency of our method on three tasks: (1) low-rank
approximation of kernel matrices, (2) classification using
KPCA, and (3) KRR. We also examine the out-of-sample
extension problem for classification and regression on two
data sets with dimensionality up to p = 150,360. It is ob-
served that our method generates low-rank approximations
that are as accurate as the ones obtained by the exact eigen-
value decomposition (i.e., the best rank-r approximation),
but runs in roughly the same amount of time as the simplest
landmark selection technique (i.e., uniform sampling). Fur-
thermore, we empirically investigate a variant of our method
that is suitable for scenarios when only one pass over the in-
put data is allowed.

Notation We denote column vectors with lower-case bold
letters and matrices with upper-case bold letters; I,, «, is the
identity matrix of size n X n. The Frobenius norm for a ma-
wix A € R™™is Al = (3211, Y20, AZ)Y/2, where
A,;; represents the (i, j)-th entry of A. The Moore-Penrose
pseudo-inverse of A is denoted by AT,

Background and Related Work

In this section, we explain how the Nystrom method gen-
erates the rank-r approximation of kernel matrices. Also, a
few related landmark selection techniques are discussed.

The Nystrom Method

Consider a set of input data points X = [x1,...,X,] €
RP*™ and let Z = [z, ..., Zy] € RP*™ be a set of m land-
mark points in R?, often but not always chosen from among
the columns of X, as we will discuss later. The Nystrom
method first constructs two matrices C € R"*™ and W €
R™*™ where Cij = H(Xi7 Zj) and Wij = H(Zi, Zj). Next,
it uses both C and W to construct an approximation of the
kernel matrix as K ~ G = CWTCT, where G has rank at
most m. Although the final goal is to find an approximation
that has rank no greater than r, it is often preferred to select
n > m > r landmark points and then restrict the resultant
approximation to have rank at most r. The intuition is that
selecting m > r landmark points for the target rank r and
then restricting the approximation to a lower rank-r space
has a regularization effect, which leads to an improved rank-
r approximation. We will thoroughly examine this observa-
tion in our numerical experiments.

In order to restrict the rank of G from m to r and find
approximate eigenvalues/eigenvectors of K in linear time
with respect to n, one can compute the thin QR decom-
position of C; C = QR, where Q € R"™ ™ has m or-
thonormal columns and R € R™*"™ is an upper triangular



matrix. Then, the eigenvalue decomposition of the m x m
matrix RWTRT is computed, RWTR” = VXV, where
the diagonal matrix ¥ € R contains m eigenvalues in
descending order, and the columns of V. € R™*™ are the
eigenvectors. Thus, we get:

G =CWc? = Q(RWRT) QT = (QV)Z(QV)".

(6)
Since Q and V have orthonormal columns, QV € R™*™
contains m orthonormal eigenvectors of G. As a result,
the rank-r approximation of G can be computed using the
r leading eigenvalues 3, € R"™ " and the correspond-
ing eigenvectors QV, € R™ ", where V, contains the
first » columns of V. This means that the estimates of the
top r eigenvalues and eigenvectors of the kernel matrix K

from the Nystrom approximation CWCT are IAJT =QV,

and K,, = 3, (Pourkamali-Anaraki and Becker 2017a;
Tropp et al. 2017; Wang, Gittens, and Mahoney 2017).

Landmark Selection Techniques

The importance of landmark points in the Nystrom method
has driven much recent work into various probabilistic and
deterministic selection techniques in order to improve the
accuracy of Nystrom-based approximations; see (Sun, Zhao,
and Zhu 2015) for a comprehensive survey.

The simplest and most common selection method is uni-
form sampling without replacement (Williams and Seeger
2001). In this case, each data point is sampled with the same
probability, i.e., p; %, for7 = 1,...,n. The advantage of
this technique is the low computational complexity associ-
ated with sampling landmark points. However, it has been
shown that uniform sampling does not take into account
the nonuniform structure of many data sets (Bach 2013).
Therefore, sampling mechanisms based on nonuniform dis-
tributions have been proposed to address this problem. In
this line of work, a popular technique is sampling landmark
points with respect to statistical leverage scores, which re-
quires performing (approximate) EVD of the kernel matrix
K (Gittens and Mahoney 2016). Moreover, an alternative
nonuniform sampling based on Determinantal Point Pro-
cesses (DPP) was introduced in (Li, Jegelka, and Sra 2016).
However, these landmark selection techniques require com-
puting and storing the entire kernel matrix K, which negates
one of the principal benefits of the Nystrém method.

Recently, a nonuniform sampling technique motivated
by KRR was proposed (Alaoui and Mahoney 2015). This
method uses what are known as the A-ridge leverage scores,
for a ridge regression problem on K with regularization .
In this case, m data points are sampled with probabilities
proportional to the diagonal entries of K(K + AL, x,)~
The exact computation of this quantity is as expensive as
solving the original KRR problem, thus a large body of
theoretical work computes approximate A-ridge leverage
scores, including (Calandriello, Lazaric, and Valko 2016;
2017).

The Clustered Nystrom method (Zhang, Tsang, and Kwok
2008; Zhang and Kwok 2010) is a non-probabilistic ap-
proach that uses out-of-sample extensions to select informa-
tive landmark points. The key observation of their work is
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that the Nystrom approximation error depends on the quan-
tization error of encoding the entire data set with the land-
mark points. In the following, we restate the main result of
Clustered Nystrom on the approximation error in terms of
the Frobenius norm.

Proposition 1 (Clustered Nystrom (Zhang and Kwok
2010)). Assume that r satisfies the following property:

(r(a,b) = k(c.d)* <n (la—c[3+[b-d[3),

for a,b,c,d € RP and n is a constant depending on k.
Consider the data set X = [x1,...,%,] € RP*" and
the landmark set Z = [z1,...,2y] € RP*™ which parti-
tions X into m clusters S = {S1,...,Sm}. Let p(x;) de-
note the closest landmark point to each data point x;, i.e.,
u(x;) = arg minzje{m’wzm} |x; — z;||2. The Nystrom ap-
proximation error is upper bounded:

||K - CWTCTHF < v E (X7S) —+ 772E (X7S) ; (8)

where 11 and 1y are two constants and E (X, S) is the total
quantization error of encoding each data point x; with the
closest landmark point ju(x;), i.e., E(X,8) =Y 1, [|x; —
(%) |I3.

It is shown that for a number of widely used kernel func-
tions, e.g., Gaussian kernels, the property in (7) is satisfied
(Zhang and Kwok 2010). Based on Proposition 1, the Clus-
tered Nystrom method tries to minimize the total quanti-
zation error—and thus the Nystrom approximation error—
by applying the K-means clustering algorithm to the n in-
put data points x1,...,X,. In K-means clustering (Bishop
2006), the input data points x1, . .., X, are partitioned into
acollection § = {8y, ..., S} of m disjoint and nonempty
sets (each representing a cluster) such that their union cov-
ers the entire data set. The resulting m cluster centroids are
then chosen as the landmark points to generate the low-rank
approximation G = CWTC”'. One benefit of the approach
is that the full kernel matrix K is never formed.

Randomized Clustered Nystrom

The Clustered Nystrom method has been shown to be a pow-
erful technique for generating highly accurate low-rank ap-
proximations compared to uniform sampling and other sam-
pling methods (Kumar, Mohri, and Talwalkar 2012). How-
ever, the main drawbacks of this method are the high mem-
ory and computational complexities associated with per-
forming K-means clustering on large high-dimensional data
sets.

To introduce our proposed method, we begin by explain-
ing the process of generating landmark points in the Clus-
tered Nystrom method. As mentioned in the previous sec-
tion, the Nystrom approximation error depends on the total
quantization error of encoding each data point with the clos-
est landmark point. Thus, landmark points are chosen to be
centroids resulting from the K-means clustering algorithm.
Given an initial set of m centroids {p;}72; € R, the K-
means clustering algorithm iteratively updates assignments
and cluster centroids as follows:

1. Update assignments for ¢ = 1,
argming e oy oy (1% — pyoll2

LNl X € Sj & €



1,...

2. Update cluster centroids for j = ,m:

ﬁ in €S; Xi
where |S;| denotes the number of data points in S; and p;
is the sample mean of the j-th cluster.

For large high-dimensional data sets, the memory require-
ments and computational cost of performing K-means clus-
tering become expensive (Pourkamali-Anaraki and Becker
2017b). First, the K-means algorithm requires several passes
on the entire data set and thus the data should often be stored
in a centralized location which takes O(pn) memory. Sec-
ond, the time complexity of K-means clustering is O(pnm)
per iteration to partition n data points into m clusters and
typically at least 10 (if not 50 or 100) iterations are needed.
Hence, the high dimensionality of massive data sets presents
a considerable challenge to the design of efficient alterna-
tives for the Clustered Nystrom method.

Our strategy builds on recent work in random projections
(Achlioptas 2003; Mahoney 2011; Woodruff 2014) to con-
struct a new set of data with compressed features. For some
parameter p’ < p, the data matrix X is multiplied on the left
by a random zero-mean matrix H € RP' *?:

X = HX = [Hxy,...,Hx,] e R¥*", p/ <p.

K

©))

The columns of X = [Xy,...,X,] are known as sketches
and the random map H preserves the geometry of the data
under certain conditions (Tropp 2011). The task of cluster-
ing is then performed on these low-dimensional data points
by minimizing £(X, S) = S |I%i — p(x4)]|3, which par-
titions the data points in the reduced space into m clusters.
After finding the partition in the reduced space, the same
partition is used on the original data points to compute clus-
ter centroids in R?.

The Proposed Method

In this paper, we introduce a random-projection-type
Clustered Nystrom method, called Randomized Clustered
Nystrom, for generating landmark points. In the first step, a
random sign matrix H € RP'*P whose entries are indepen-
dent realizations of {+1/+/p’} Bernoulli random variables
is constructed:

g [TV with probability 12,
Y =1/y/p’  with probability 1/2.
Next, HX is computed to find the sketches Xi,...,X, in

R?'. The standard implementation of matrix multiplication
costs O(p'pn). The matrix multiplication can also be per-
formed in parallel which leads to noticeable accelerations in
practice (Halko, Martinsson, and Tropp 2011). Moreover, it
is possible to use the mailman algorithm (Liberty and Zucker
2009) which takes advantage of the binary nature of H to
further speed up the matrix multiplication. In our experi-
ments, we use Intel MKL BLAS version 11.2.3 which is
bundled with MATLAB, which we found to be sufficiently
optimized and to not form a bottleneck in the computational
cost, and for this reason we did not pursue asymptotically
faster sketches such as the Hadamard transform (Ailon and
Chazelle 2009).
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Algorithm 1 Randomized Clustered Nystrom

Input: data set X, number of landmark points m, sketching
dimension p’ < p

Output: landmark points Z

1: Generate a random sign matrix H € RP' %P as in (10)

2: Compute X = HX € RP' *"

3: Perform K-means clusteringon X = [Xy, ...
gopt

,Xp] to get

4: Compute the sample mean in the original space, cf. (11)
5: Z=z1,...,2,) € RP*™

In the second step, the K-means clustering algorithm is
performed on X = [X1,...,X,] to partition the data, i.e.,
8Pt ~ arg ming E(X, S), where §oPt = {SP', . §ort}
is the resulting m-partition. We cannot guarantee that K-
means returns the globally optimal partition as the prob-
lem is NP-hard (Dasgupta 2008) but seeding using K-
means++ (Arthur and Vassilvitskii 2007) guarantees a par-
tition with expected objective within a log(m) factor of the
optimal one, and other variants of K-means, under mild
assumptions (Ostrovsky et al. 2012), can either efficiently
guarantee a solution within a constant factor of optimal, or
guarantee solutions arbitrarily close to optimal, so-called
polynomial-time approximation schemes (PTAS). Lastly,
the landmark points are generated as:

Z X, J=1,...,m.

Sopt
xiES;'p

Y

B 1
Zj = |§9pt|
J

The proposed method is summarized in Algorithm 1. Let
us define the compression factor ~ as the ratio of param-
eter p’ to the ambient dimension p. Regarding the mem-
ory complexity, our method requires only two passes on the
original data set, the first to compute the low-dimensional
sketches, and the second to compute the sample means.
In fact, our Randomized Clustered Nystrom only stores
the low-dimensional sketches which takes O(p'n) space,
whereas Clustered Nystrom has memory complexity of
O(pn), meaning our method reduces the memory complex-
ity by a factor of 1/+. In terms of time complexity, the com-
putation cost of K-means on the dimension-reduced data in
our method is O(p'nm) per iteration compared to the cost
O(pnm) in the Clustered Nystrom method, so the speedup
is up to 1/~ (the exact amount depends on the number of
iterations, since we must amortize the cost of the one-time
matrix multiply HX).

Theoretical Guarantees

The following theorem presents an error bound on the
Nystrom approximation for a set of landmark points gen-
erated via our Randomized Clustered Nystrom method.

Theorem 1 (Randomized Clustered Nystrom). Assume that
the kernel function r satisfies (7). Consider the data set
X = [x1,...,%,] € RP*" and K € R"*" with entries
Ki;; = k(x;,x;). The optimal partitioning of X into m



clusters is denoted by S°*, i.e., S°P* = arg ming E (X, S),
where E (X, S) = 31, [Ixi — p(xi) 3.

Let us generate a random sign matrix H € RP'XP gg
in (10) with p' = O(m/e?) for some parameter ¢ €
(0,1/3). The Randomized Clustered Nystrom method com-
putes X = HX 1 generate a set of m landmark points
Z = |z1,...,2y] by partitioning of X € RP™ into m
clusters. We assume that the partitioning Sovt of X leads to
E ()A(, S °Pt) within a constant factor of the optimal value, cf.
(Arthur and Vassilvitskii 2007; Ostrovsky et al. 2012). Given
C and W whose entries are C;; = k(x;,2;) and W;; =
k(2zi,2;), the Nystrom approximation error is bounded with
probability at least 0.96 over the randomness of H:

£<K - cWic|p

</ (2 +)E (X, 8%) + (2 + ) E (X, 87)
(12)

where 11 and 12 are two positive constants.

Proof. Based on Proposition 1, we get the following approx-
imation error for our randomized method:

& <my E(X,8ort) + na B(X, S°t),

where S is the optimal partitioning of the reduced data
X and E(X,S°P!) represents the quantization error when
S°Pt is used to cluster the high-dimensional data X. We
assume the partitioning in the reduced data set is within a
constant factor of optimal, so this constant is absorbed into
71 and 72. In (Boutsidis et al. 2015), it is shown that by
choosing p’ = O(m/e?) dimensions for the random pro-
jection matrix H, the following inequality holds with proba-
bility at least 0.96 over the randomness of H: F(X, S°Pt) <
(2 + ) E(X, 8°P!). Thus, employing this inequality in (13)
completes the proof. O

(13)

Theorem 1 reveals important insights about the perfor-
mance of our method. Although our algorithm generates
landmark points based on the random projections of data,
we can relate the approximation error to the total quantiza-
tion error of partitioning the original data. In fact, the worst-
case bounds for our proposed method with p’ = O(m) and
the original Clustered Nystrom method (Proposition 1) are
roughly similar. Thus, the dimension of reduced data p’ is
independent of the ambient dimension p and depends only
on m (the number of landmark points) and ¢ (the distortion
factor). As a result, for high-dimensional data, the dimen-
sion of reduced data p’ can be fixed based on the desired
number of landmark points and accuracy.

Experimental Results

In this section, we present experimental results compar-
ing our Randomized Clustered Nystrom (Algorithm 1) with
state-of-the-art methods. Our proposed approach is imple-
mented in MATLAB with the C/mex implementation for
computing the sample mean. To perform K-means cluster-
ing, we use MATLAB’s built-in function kmeans and the
maximum number of iterations is set to 10.
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Our Randomized Clustered Nystrom (denoted by Ours) is
compared with six kernel approximation methods:

1. The eigenvalue decomposition (denoted by EVD), where
the best rank-r approximation of K is computed.

The standard Nystrom method (denoted by Uniform),
where landmark points are selected uniformly at random
without replacement.

The Clustered Nystrom method (denoted by Clustered
Nys), where landmark points are generated using cen-
troids resulting from K-means clustering on the original
data (Zhang and Kwok 2010).

The Nystrom method based on leverage score sampling
(denoted by Lev), which requires performing EVD of the
kernel matrix K (Gittens and Mahoney 2016).

The Nystrom method based on landmark points selected
using Determinantal Point Processes (denoted by DPP)
(Li, Jegelka, and Sra 2016).

The Nystrom method based on A-ridge leverage scores
(denoted by A-Ridge Lev) for the regression task, where
landmark points are selected with probabilities propor-
tional to the diagonal entries of the matrix K(K +
AL, )~ (Alaoui and Mahoney 2015).

The exact computations of leverage scores and A-ridge lever-
age scores require computing the eigenvalue decomposition
of the kernel matrix and matrix inversion, respectively. Thus,
the complexity of these two landmark selection techniques is
at least quadratic with respect to the data set size n, in addi-
tion to the cost of forming the entire kernel matrix O(pn?).
To reduce the computational burden, there exist some algo-
rithms to compute approximate leverage scores. For this rea-
son, we exclude the running time for leverage sampling.

In the following, we examine the quality and general-
ization performance of the kernel approximation methods
on classification and regression tasks using three bench-
mark high-dimensional data sets from the LIBSVM archive
(Chang and Lin 2011):

e svhn: p = 3,072 and n = 60,000
e rcvl-binary:p = 47,236 and n = 20,242
e E2006-tfidf:p = 150,360 and n = 6,000

In all experiments, based on (Zhang and Kwok
2010), the Gaussian kernel function & (x;,%;)
exp (—|x; —x;][3/c) is used with the parameter c
chosen as the averaged squared distances between all the
data points and sample mean.

Task 1: Kernel Approximation Error

We examine the quality of low-rank approximations in the
form of K ~ LL”, where L € R™*" for fixed rank = 10
and varying numbers of landmark points m. Although both
benchmark data sets are high-dimensional, we set p’ = 20
independent of the original dimension p, as suggested by
Theorem 1. The accuracy is measured by the normalized
kernel approximation error: |K — LLT|| /|| K| 7. We re-
port the mean and standard deviation of the approximation
error over 20 trials in Fig. 1a and Fig. 1b. These results show
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Figure 1: Kernel approximation error and runtime over 20 trials on svhn and rcvl-binary data sets.

that the accuracies of our method and Clustered Nystrom
reach the accuracy of the best rank-r approximation (EVD)
even for small values of m, e.g., m = 2r. Uniform sampling
and two nonuniform sampling techniques (leverage score
and DPP) do not reach this accuracy even if a large num-
ber of landmark points are used, such as m = 8r = 80 for
rcvl-binary. Therefore, in this example, our random-
ized method is more accurate than the state-of-the-art land-
mark selection techniques based on nonuniform sampling.

Moreover, based on Fig. 1a and Fig. 1b, it is observed that
the runtime of our method is reduced at least by one order of
magnitude compared to the Clustered Nystrom method. In
fact, our approach runs in roughly the same amount of time
as uniform sampling, while achieving an accuracy compara-
ble to the best rank-r approximation. It is worth pointing out
that the actual time just to compute the full kernel matrix is
about 80 and 50 seconds for the svhn and rcvl-binary
data sets, respectively, while our method takes only about
1.2 and 3.1 seconds to find an accurate rank-r approxima-
tion of the kernel matrix.

Task 2: Classification via KPCA

In this experiment, we demonstrate the performance and
generalization error of our method on a classification task
using the features extracted via KPCA as described in the
Introduction. We randomly sample 7;rqin, = 0.8n data
points from rcvl-binary for training and the remaining
ntest = 0.2n data points for testing. The K-nearest neigh-
bors classifier is employed to classify the test data based on
the features extracted via KPCA using 10 nearest neighbors
with the fixed parameter r = 20 and two values of p’ = 20
and p’ = 100.

S,

classification accura

time in seconds (log scale)

0

20 40 60 80 100

120 140 160
number of landmark points m

20 40 60 80 100 120 140

number of landmark points m

Figure 2: Classification accuracy and runtime over 20 trials
using KPCA features on rcvl-binary.

As we see in Fig. 2, our method outperforms the uni-
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form and nonuniform sampling techniques by almost 10 per-
cent in classification accuracy when the number of landmark
points is small, e.g., m = 20. The classification accuracy
of the same classifier on the original data set without using
KPCA features is about 0.92, thus the rank-r approximation
of K using our method leads to more accurate classification
of the input data points for all values of m. Moreover, we see
that our method achieves an almost 30 times speedup over
the Clustered Nystrom method when m = 20. Thus, our
approach outperforms other landmark selection techniques
using the same amount of time.

Task 3: KRR

In this experiment, we study the quality and generaliza-
tion error of the kernel approximation methods when used
with KRR. We randomly sample 7n4,4;, = 0.8n data points
fromE2006-t £idf for training and the remaining nes; =
0.2n for testing. We set the rank parameter r = 20, regu-
larization A = 27%, and p’ = 20. The values of r and \
are chosen such that KRR with the Gaussian kernel function
achieves a better accuracy than the linear regression.

In the training process, the normalized approximation er-
ror of the solution in (5) is defined as ||a* — a||2/||a*]|2,
where a* is the exact solution to the optimization prob-
lem in (4). We report the mean and standard deviation of
the approximation error over 20 trials in Fig. 3a. These re-
sults show that our method is more accurate than those based
on uniform sampling, DPP sampling, and A-ridge leverage
scores. In fact, the accuracy of our method and Clustered
Nystrom reaches the accuracy of the best rank-r approxima-
tion of K for m = 2r = 40.

In the prediction stage, the response vector for the test
data points, i.e., Yiesr € R™test, is estimated using the ap-
proximate solution &. The normalized estimation error is
defined as ||y est —Yiest||2/ ||Ytest||2 and we report the mean
of the approximation error over 20 trials in Fig. 3b. It is
observed that our method and Clustered Nystrom signifi-
cantly outperform the other landmark selection techniques
for small values of m. Moreover, the accuracy of our method
and Clustered Nystrom reaches the accuracy of the best
rank-r approximation obtained via EVD for the number of
landmark points m = 3r = 60. In this figure, “Full Ker-
nel Matrix” shows the normalized estimation error of y;es;
when a* is computed using the full kernel matrix K without
any low-rank approximation, cf. (4).
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Figure 3: KRR on E2006-t £idf. The normalized error of &, y+est, and runtime over 20 trials are reported.

Fig. 3c shows average runtime for varying values of m.
We see that our method achieves an almost 50 times speedup
over Clustered Nystrom when m = 60. Hence, our method
is more accurate and efficient than the other landmark selec-
tion techniques in this example.

One-pass Variant of Algorithm 1

In some cases, it is not feasible to store and process large
high-dimensional data in the main memory or RAM. Thus,
such data sets are often analyzed in a streaming fashion,
where the data points are presented sequentially without
making extra passes over the data (Mitliagkas, Caramanis,
and Jain 2013; Gilbert, Park, and Wakin 2012). In this exper-
iment, we show that Randomized Clustered Nystrom (Algo-
rithm 1) can be implemented in single pass over the data.
To see this, note that our proposed method maintains a
low-dimensional sketch of each data point x; € R? as X; =
Hx; € RP, i = 1,...,n. Therefore, the required mem-
ory/storage space to store X1, . . ., X, is reduced by a factor
of p/p’ > 1. The K-means clustering algorithm is then per-

formed on these sketches to find m clusters S, . .. S
and the corresponding cluster centroids:

. 1 ~ .
Z %, j=1,...,m. (14)

Zj = Sopt
195" g cgom

Because the sketching approximately preserves Euclidean
distances, for kernel functions that depend only on the Eu-
clidean distance, like the Gaussian kernel, the one-pass vari-
ant of our method directly computes matrices C € R™*"
and W € R™*"™ in the Nystrom method based on the low-
dimensional sketches:

Cij = r(Xi,2;), Wi = K(24,2;). (15)
Next, we examine the quality of low-rank approximations
in the form of K ~ LLT, where L € R"™*" for fixed
rank 7 = 3 on E2006-t £idf. The one-pass variant of our
method with p’ = 20 is compared with the standard Nystrom
method, where landmark points are selected uniformly at
random from the input data set. We exclude the other ker-
nel approximation methods since they require many passes
over the input data set. Note that even the standard Nystrom
method requires more than one pass over the data to form the
matrix C; one partial pass over the original data set to select
landmark points and one full pass over the original data to
compute the matrix C.

—6— Uniform

-+&+- Ours (one pass), p/ = 20

time in seconds

approximation error

3 6 9 12 15 3 6 9 12 15
number of landmark points m number of landmark points m

Figure 4: Kernel approximation error and runtime over 20
trials on E2006-t £idf data set.

In Fig. 4, we see that our method clearly outperforms the
uniform sampling technique for small values of m, such as
m = 3. Meanwhile, our method reduces the computational
cost by a factor of 3. Thus, we see that the one-pass variant
of our randomized method leads to more accurate and effi-
cient low-rank approximations with only a single pass over
the data. Providing theoretical guarantees for the one-pass
variant is an important question for future work.
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