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Abstract

Training set bugs are flaws in the data that adversely affect
machine learning. The training set is usually too large for
manual inspection, but one may have the resources to ver-
ify a few trusted items. The set of trusted items may not by
itself be adequate for learning, so we propose an algorithm
that uses these items to identify bugs in the training set and
thus improves learning. Specifically, our approach seeks the
smallest set of changes to the training set labels such that the
model learned from this corrected training set predicts labels
of the trusted items correctly. We flag the items whose labels
are changed as potential bugs, whose labels can be checked
for veracity by human experts. To find the bugs in this way is a
challenging combinatorial bilevel optimization problem, but
it can be relaxed into a continuous optimization problem. Ex-
periments on toy and real data demonstrate that our approach
can identify training set bugs effectively and suggest appro-
priate changes to the labels. Our algorithm is a step toward
trustworthy machine learning.

1 Introduction

A good training set is essential for machine learning. The
presence of bugs — mislabeled training items' — has adverse
effects on learning (Brodley and Friedl 1999; Guruswami
and Raghavendra 2009; Caramanis and Mannor 2008). Bugs
can appear as outliers that are relatively easy to detect, or as
systematic biases. Systematic bugs are much harder to detect
because the data appear self-consistent.

We propose a novel algorithm DUTI (Debugging Using
Trusted Items) which can detect both outlier and systematic
training set bugs. In addition, it can propose fixes, namely
the corrected label for the bugs. To do so, DUTI utilizes the
knowledge of the machine learning algorithm and a small
set of additional “trusted items”. At its core, DUTI finds
the smallest changes to the training set such that, when
trained on the changed training set, the learned model agrees
with the trusted items. The changes are then shown to a
domain expert as suggested bug fixes. We will show how
DUTT can be relaxed and solved efficiently using contin-
uous optimization, and we demonstrate its debugging effi-
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"We focus on label bugs for simplicity, though our framework
can be extended to feature bugs in a straightforward manner.
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Figure 1: Harry Potter Toy Example

cacy on multiple data sets. All code and data are published
at http://pages.cs.wisc.edu/~jerryzhu/DUTI.

To build intuition, consider a toy example a la Harry
Potter in Figure 1a. Each blue point is a Hogwarts student
whose magical heritage ranges from 0 (muggle-born) to 1
(pureblood), and education ranges from O (failed school) to
1 (Hermione level). These blue points form a classification
training set, where the class label is ‘+’ (hired by Ministry
of Magic after graduation) or ‘o’ (not hired). This training
set shows historical bias against muggle-borns with high ed-
ucation. Kernel logistic regression trained on the data re-
flects this bias (black decision boundary). But suppose we
know two more students and how they should be classi-
fied (the red points) — the assumption being that a fair de-
cision is based simply on education > 0.5. These two points
are the trusted items. Simply training on the trusted items
alone will be unsatisfactory — the boundary will not be flat at
education= 0.5. Instead, DUTI can utilize the trusted items
to flag potential bugs in the training set (Fig. 1b). Darker
color represents higher confidence that a training item is a
bug.

2 Training Set Debugging Formulation
DUTI needs three inputs:

1. The training set in the form of feature, label pairs
(X,Y) = {(xi,yi) }1.n- The labels Y can be continuous
for regression or discrete for classification, and are poten-
tially buggy.

2. Trusted items (X,Y) = {(&;, i, ¢i)}1:m. These are



items verified by domain experts typically at considerable
expense. The domain expert can optionally specify a con-
fidence ¢ > 0 for each trusted item. We assume m < n
so that the amount of trusted data is insufficient to train a
good model. We do not assume the trusted items are iid.

3. The learning algorithm .A. In this work, we focus on reg-
ularized empirical risk minimizers

A(X,Y) = argmin — Z€ (i, yi,0) + AQO) (1)

n
OcRP 1

with strongly convex and twice differentiable objective
function, such that argmin returns a unique solution, and
the Hessian matrix is always nonsingular.

Conceptually, DUTI solves the following optimization prob-
lem:

argmin Distance(Y',Y) (2)
Y/

s.t. Predictor = A(X,Y") 3)
Predictor(X) =Y A Predictor(X) =Y’ (4)

That is, we find an alternative labeling Y’ for the train-
ing data, as close as possible to the original labels Y, such
that the model trained with the original feature vectors X
and the alternative labels Y correctly predicts the labels Y
of the trusted items X, and the alternative labeling is self-
consistent. We call the training items for which y; # y; the
flagged bugs; we give them to the domain expert for further
inspection to see if they are true bugs.

Our next step is to relax it into a continuous single level
optimization problem that can be solved efficiently.

2.1 Debugging for Regression

In regression, Y’ and Y are both vectors in R”. We define
d =Y’ — Y, and choose ||d]|; as the distance metric to en-
courage sparsity of 6. We will denote the predictor A(X,Y”)
as 6. Instead of requiring equalities as in (4), we relax them
by the learner’s surrogate loss function, and place them in
the objective in the Lagrangian form:

516%3171‘1,9 7207 xzayu
1 l[0]]1
+n;m,yl+6z,e>+v - (5)
s.t. 0= argmlanE (i, yi + 05, B) + AQ(B).
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where c;’s are the confidence levels assigned to each of the
trusted items. This is a bilevel optimization problem. We
now convert the lower level problem to a nonlinear con-
straint. Notice that since the lower problem is unconstrained
and strongly convex, it can be replaced equivalently with its
Karush—Kuhn-Tucker (KKT) condition:

1 n
9(0,0) = — > Vol(wi, yi + 6, 0) + AVo2(0) = 0. (6)

i=1
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Now, since g is continuously differentiable and % is invert-
ible, the solution to g(d,#) = 0 defines an implicit function
6(0). We can now replace 6 with 0( ) in (5), and call the re-
sult O, (5) Using the fact % 86 £+ gz gg, we can compute
the gradient of O, (0) as

1 & o
VsO, = EZCiJTvef(m,yiﬂ)\a(a) (7

=1

1 s 0(s, i + 05,60(8))

ta 06, ©
=1

1 & ~

+ 3T TVl yi + 8, 6(5)) + —sen(d)
=1

where e; is the ¢th canonical vector and J is defined by the
implicit function theorem:

-1
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With V50O, we then solve (5) with a gradient method.

2.2 Debugging for Classification

Let there be k classes. To avoid a combinatorial problem, we
relax the optimization variable to the k-probability simplex
Ay. Concretely, we first augment the learner A so that it
takes weighted training items:

n

0 = argmin 1 Z szg i, J, B) + AQ(B)

B 11]1

(®)

where w; € Ay, that is, w;; > 0 and Z?Zl wij = 1, Vi, j.
The original learner (1) can be recovered with w; = ey, , V.

We then represent the ith proposed new class label y. by
0; € Ay. Note that d; here represents the new set of labels,
not a difference in labels. One way to measure the distance
to the old label y; is 1 —§; ,,, namely the probability mass si-
phoned away from the old label. We thus obtain a bilevel op-
timization problem with continuous variables similar to (5):

m

. 1 -
s, ;cif(xi,yiﬁ) )
1 n k
+ﬁ2251]€(1‘17]7 Z Zy,
i=1 j=1 i=1
s.t. 0= argmln — Z Z 0iil(xi, 4, B) + AQ(B).

zljl

Finally, we go through similar steps as in regression: replac-
ing the lower problem with its KKT condition; defining an
implicit function 6(); obtaining the objective O, () of (9);
and computing its gradient Vs0, using implicit function
theorem. We then optimize O, (9) to solve for ¢. The details
can be found at the aforementioned website.



Input : Training set (X, Y), trusted items (X, Y, ¢),
learner A, examination budget b < n;
1 Initialize t = 0, §(°) = 0 in regression or Y in
classification, 1y, = 0;
2 Initialize 7(*) = max; |[V50,-0(6(?);] in
regression, or 7(*) = max; V50,—_¢(5®); ,, in

classification;
3 while ny;,, <bdo
4 t=t+1;

5 ,}/(t) = V(t_l)/Q,
6 | 00 =argmin O, (6), initialized at 6~ 1);
7 F® = {i] 51@ # 0} in regression, or
8 F® = {i] argmax; (55)) # y;}in
classification;
9 Nflag = | Uy F©®)
10 end

Output: (vy1,0M), -+, (v,60);

s

Algorithm 1: DUTI

2.3 The DUTI Algorithm

We now present a unified DUTI algorithm for debugging
both regression and classification, see Algorithm 1. As part
of the input, the domain expert can specify an examination
budget b, the preferred total number of flagged bugs that
they are willing to check. Recall that the debugging formu-
lations (5) and (9) have a sparsity parameter . DUTI auto-
matically chooses a sequence of 7’s, runs the corresponding
debugging formulation, and flags potential bugs F'*) by line
7 or 8, respectively. F(1), F(2)are not necessarily nested
subsets. DUTI accumulates all previously flagged bugs by
UL F (), and only stops if its size exceeds the examination
budget b.

DUTI outputs the sequence of sparsity parameters vy and
solutions ¢, from which the F’s can be recovered. This
is helpful for the domain expert to investigate the flagged
bugs. Specifically, DUTI’s output induces a ranking over all
flagged bugs. Bugs are ranked by the earliest time they ap-
pear in the sequence F1, F5,.... When two bugs first ap-
pear at the same time, the tie is broken by comparing the
deviation of § from the initial value. Larger deviation = ear-
lier order. Furthermore, the value § suggests the fix, namely
what regression output value or class label DUTI thinks the
flagged bug should have had.

DUTI chooses the y sequence as follows. It starts with the
largest y that returns a nontrivial solution §, namely § # 0
in regression and § # Y in classification. One can show that
these are sufficient conditions for a nontrivial J solution: In
the regression setting, 7(*) = max; | [V50.,—0(0)], |, where
V5O, —o is the gradient of the debugging objective with v =
0, taken at 6 = 0. In the multiclass classification setting,
70 = max; [V5Oy=0(Y)],,,» where V50O, is similarly
the gradient of the debugging objective with v = 0, taken
at the initial value § = Y . The i, y;-th entry of the gradient
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is the probability mass assigned to the original label y;. A
positive entry will result in optimization taking a gradient
step, thus returning a nontrivial solution.

DUTT utilizes continuation method to speed up optimiza-
tion. Specifically, each iteration ¢ is initialized using the pre-
vious solution §(*~1). Moreover, DUTI uses a linear approx-
imation (=1 422 (5() —5(:=1))| .1, to initialize the com-
putation of #(5()).

3 Experiments

To the best of our knowledge, no machine learning de-
bugging repository is publicly available. That is, no data
set has provenance like “item ¢ had the wrong label y; it
should have label z” for research in debugging. Curating
such a repository will be useful for trustworthy machine
learning research. Software debugging repository in the pro-
gramming language community, such as the Siemens test
suite (Hutchins et al. 1994) and BugBench (Lu et al. 2005),
are good examples to follow. In this paper, we had to sim-
ulate — as plausible as possible — true bugs on the real data
sets.

3.1 Learner A Instantiation in DUTI

DUTI is a family of debuggers depending on the learner
A (1). For illustration, in our experiments we let A be kernel
ridge regression for regression and multiclass kernel logis-
tic regression for classification, both with RBF kernels. We
recall the relevant learner loss ¢ and regularizer {2 below;
the derivation of the corresponding debugging objective O,
and gradient V50O, is straightforward but tedious, and is left
for a longer version. Extension to other learners can be done
similarly.

Kernel Ridge Regression Let (X,Y) = {(zi,4i)}1m
be the training data, and K = [k(2;,2;)]nxn be the ker-
nel matrix. Denote by K the i-th column of K, and let
o € R" be the learning parameter. Kernel ridge regression

can be written in the form of regularized ERM (1), where
Ui, yi, ) = (y; — K;a)? and Q(a) = %aTKoc.

Multiclass Kernel Logistic Regression with Ridge Regu-
larization Let o € R, «; be the learning parameter, and
denote by «; the j-th column of «v. Kernel logistic regression
can be written in the form of weighted learner (8):

1 n k
0 :argglin—ﬁ Z ZéiniTaj

i=1 j=1

n k k
1 A
= K, a;j 53 o) Ka,
+ni§:1 0g jEZleXp( i o) |+ 2]_:1% @

where ((z;,j,a) = —K;' a; + log (Z?zl exp(KiTaj))

and Q(a) = 3 Z?Zl oijKozj.

In all our experiments, the learner’s hyperparameters are
set by 10-fold cross validation on the original training data,
and confidence levels on all trusted items c are set to 100.



3.2 Baseline Debugging Methods for Comparison

We compare DUTTI with three baselines: influence function
(INF) (Koh and Liang 2017), Nearest Neighbor (NN), and
Label Noise Detection (LND) (Bhadra and Hein 2015).

Influence Function (Koh and Liang 2017) describes how
perturbing a training point changes the prediction on a tested
point. The influence of training labels on the trusted items
can be written as

I 7o e -

I - ; J NVol(Zi, 7, 0)]os)
This is in fact the first term of our objective gradient V0.
(assuming ¢; = 1,V4). Therefore, one can view influence
function as a first-order approximation to a simplified ver-
sion of DUTIL. Intuitively, a positive influence implies that
decreasing the y value will reduce the loss of trusted items,
while a negative influence implies that one should increase
the corresponding y value to achieve the same result. In re-
gression, INF prioritizes training points with larger absolute
values of influence. In classification, each possible label of
a training point will have an influence. INF will flag training
points with positive influence on their original label, and pri-
oritize ones with larger influence value. In suggesting fixes
for each flagged training point, INF will suggest the label
with the largest negative influence value.

Since INF is a first-order approximation to DUTI, we ex-
pect INF to be inferior for debugging due to nonlinearity
between labels and predictions. This is confirmed by our ex-
periments.

(10)

Nearest Neighbor NN is a simple heuristic: In regression,
NN flags training points based on the Euclidean distance (af-
ter normalizing each feature dimension separately) to the
closest trusted item. In classification, NN flags each train-
ing point whose label differs from the label of the closest
trusted point, and prioritizes them by this distance. When
asked for a suggested label fix, it recommends the label of
closest trusted item.

Label Noise Detection (Oracle) (Bhadra and Hein 2015)
uses a Gaussian kernel density estimator as the consistency
metric to define a combinatorial optimization problem:

argmax 7' Qn.

ne{l,—1}"
where Q;; = v;y; Kn(xi,x;), n; = 1 represents a correct
original label, and 17; = —1 a bug. LND is only for binary
labels. The algorithm finds the best relabeling 7 that max-
imize this mutual consistency metric. In the case that there
are expert verified data, e.g. our trusted items, LND can in-
corporate them as constraints to reduce the search space.
However, LND requires the user to provide the number of
positive mislabeled items and the number of negative mis-
labeled items. In practice such information is usually un-
available, but in our experiments we provide LND with the
ground truth numbers as a best-case scenario. For this reason
we label this baseline LND (Oracle). Also note that LND ap-
plies only to binary classification problems, so we omit LND
from baselines for our regression and multiclass classifica-
tion experiments.

(11
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Figure 2: Harry Potter Toy Example, Continued

3.3 Toy Data: Harry Potter (Cont.)

We can now fully define the Harry Potter toy example. The
true boundary is the line education= 0.5. A training point
whose label disagrees with the true boundary is considered
a bug. Thus the true bugs are all the “not hired” training
points on the upper left. Figure 1b shows that DUTI is able
to flag true bugs with a budget b = 12. Figure 2(a—c) show
the top 12 training items flagged by INF, NN and LND, re-
spectively. INF and NN flagged some training points below
the true boundary, which they should not. LND, thanks to the
oracle information, is able to flag mostly true bugs but also
produced one false positive. By varying how many training
points we ask each method (other than LND) to flag, we
can produce a precision-recall (PR) curve with respect to
true bugs for that method. LND is represented by a single
point on the PR curve, because it flags only a fixed num-
ber of points due to the oracle information. Figure 2d shows
the average PR curves from 100 random runs, in which the
training data are randomly drawn with trusted items fixed.
Overall, DUTI dominates the baseline methods.

3.4 Real Data: German Loan Application

We study the UCI German Loan data set, which has been
used in recent work on algorithmic fairness (Zemel et al.
2013; Feldman et al. 2015). Prior work suggested a sys-
tematic bias of declining applicants younger than 25. We
now detail the way we simulate true bugs on German Loan.
Throughout the learning and debugging process we remove
the age attribute.

Step 1. The original data set consists of 1000 applicants
with 190 young (age< 25) and 810 old (age> 25). We parti-
tion the dataset into three subsets A,B,C. A contains 20 ran-
dom young and 20 random old applicants. B contains the re-
maining 170 young and another 170 random old applicants.
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Figure 3: Real Data Experiments

C contains the remaining 620 old applicants.

Step 2. We use group C to train a loan decision classifier
f*, and use it as the ground truth concept.

Step 3. We relabel the applicants in group A using f*, and
treat the relabeled group A as trusted items.

Step 4. Group B with the original UCI label is treated as
the buggy training set. Whenever Y disagrees with f*(X),
that training point is considered a bug. This methodology
results in 96 bugs.

Figure 3a compares the PR curves of the four debugging
methods. DUTI clearly dominates other methods.

3.5 Real Data: Adult Income

Another dataset often used in algorithmic fairness is UCI
Adult Income (Kohavi 1996; Kamishima, Akaho, and
Sakuma 2011). The task is to classify whether an individual
receives an annual income of > 50k. Prior work suggests
that the data set contains systematic biases against females.
In this experiment, we simulate true bugs based on such bi-
ases. Throughout the learning and debugging process we re-
move the gender attribute and ‘wife & husband’ values in
the family relationship attribute.

Similar to the German Loan Dataset, we randomly sub-
sample 3 disjoint subsets A,B,C. A contains 20 random male
and 20 random female applicants. B contains 500 random
males and 500 random female applicants. C contains 2000
random male applicants. We apply exactly the same steps
2,3,4 as in the German Loan data set. This process results in
218 bugs.

Figure 3b compares the PR curves of the four debugging
methods and again DUTI dominates other methods.

3.6 Real Data: Handwritten Digits

In this section, we evaluate the debugging methods on a
10-class handwritten digit recognition problem (Mathworks
2017). The digit images are generated by applying random
affine transformations to digit images created using differ-
ent fonts. In multiclass classification, flagging the true bugs
and suggesting the correct fixes are no longer equivalent, so
we present evaluations on both criteria. Unlike the previous
two experiments, we now simulate a contamination mecha-
nism to generate buggy labels, while the original labels are
considered clean.

Step 1. We randomly set aside 5000 data points, 500 per
digit, to train a deepnet consisting of an autoencoder layer
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followed by a softmax layer, achieving a cross validation
accuracy of 98%. Denote the trained neural net by f*.

Step 2. Among the rest, we randomly sample 400 data
points, 40 per digit, to be the training set X. We then blur
the images heavily with a Gaussian filter, and classify on
the blurred images with the trained deepnet. The inten-
tion is to simulate the generation of buggy labels by a hu-
man annotator with poor eyesight. These classifications will
be used as the buggy labels of the training points, that is,
Y = f*(blur(X)). Meanwhile, the original labels for X are
retained as the correct labels. A training image has a buggy
label if Y and the original label disagree. This process gives
rise to a total of 133 bugs. Note that X is always the clear
images; the blurred images are only used to generate Y.

Step 3. Finally, among the rest, we randomly sample 160
data points, 16 per digit, to form the trusted items X, and
use their original labels as trusted labels Y.

Figure 3c shows the PR curves that indicate whether each
method flags the true bugs, regardless of whether their pro-
posed fix is correct or not. For this easier task, DUTI and
INF both excel, but DUTI has a slight advantage overall.
Figure 3d plots the number of flagged bugs vs. the number
of correct fixes. This is a harder task. Nonetheless, DUTI
still dominates INF and NN, especially in the early stage.
Specifically, DUTI successfully recovers more than half of
the buggy labels (there were 133) within less than 200 at-
tempts.

Table 1 visualizes selected buggy training points. The first
row shows the original images, and the second row shows
the wrong label they received from the blurred deepnet. The
next three rows show the actions of DUTI, INF, and NN,
respectively: A numerical entry indicates that the debugging
method flagged this training image as a bug, and suggested
that number as the fixed label. The entry “~" indicates a false
negative: the debugging method missed the bug.

3.7 Regression Toy Examples

Finally, we demonstrate debugging for regression. We gen-
erate the clean data by uniformly sampling n = 100 points
x ~ UJ0, 2], and generating their label as

12)

We then manually convert 24 of these points into systematic
bugs by flipping the second peak from positive to negative;
see Figure 4a. The dashed curve traces out sin(27z) but is

y = sin(27z) + €1, where €; ~ N(0,0.1).



E

X

Y = f*(blur(X)) 3 7 I 8 3 4 I 3 8 8
DUTI I 2 3 7 5 6 7 8 - 0
INF - - 5 - 5 - 7 0 - 0
NN - 5 7 8 6 4 0 - 5

Table 1: Selected images with buggy training labels, and the debugging actions on them
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Figure 4: Regression toy data with systematic bugs

not used in the experiment otherwise. For trusted items we
randomly pick m = 3 new points near one side of the flipped
peak, and generate their 7 values using ¥ sin(27x).
We intentionally do not fully cover the bug region with the
trusted items.

Figure 4b,c,d plot the top 25 flagged bugs by DUTI, INF,
and NN, respectively. Interestingly, DUTI successfully flags
bugs throughout the flipped peak. In contrast, INF and NN
are only able to flag points around the trusted items, and
miss half of the bugs. We repeat the experiment for 100
times, each time with the training data randomly drawn ac-
cording to (12). Figure 4e shows the average PR curves,
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where DUTI clearly dominates INF and NN. Figure 4f
shows the suggested fixes on buggy points (i.e. y; + 9;)
generated by DUTI. Impressively, the fixes closely trace the
sine curve, even though the learner is an RBF kernel regres-
sor and knows nothing about sine function. This seems to
be a smoothing effect of the self-consistent term, which is
Predictor(X) = Y’ in the conceptual formulation (4) or

£ Ui, yi + 6i,0) in (5).

4 Related Work

Debugging has been studied extensively in the program-
ming language community (Shapiro 1983; Ball and Raja-
mani 2002). Only recently does the machine learning com-
munity start to investigate how to debug machine learning
systems, e.g. (Cadamuro, Gilad-Bachrach, and Zhu 2016;
Bhadra and Hein 2015). Our intuition is similar to that
of (Cadamuro, Gilad-Bachrach, and Zhu 2016), who provide
closed-form solutions to debugging Ordinary Least Squares.
Our work allows one to debug any ERM learners satisfying
mild conditions.

More generally, our work falls into the field of inter-
pretable and trustworthy machine learning, where the central
question is why a trained model makes certain predictions.
One line of work explains the prediction by highlighting the
responsible part of the test item. For example, (Selvaraju et
al. 2016; Smilkov et al. 2017; Sundararajan, Taly, and Yan
2016) identify regions in a test image that have the greatest
influence on the classification of that image. In other learn-
ing settings where features are less explanatory, (Koh and
Liang 2017) propose to look instead at the most influential
training items that affects the prediction on the target test
item. Though the influence function is intuitive and easy to
compute, we show in experiments that it achieves similar
performance to the naive NN baseline, while DUTI provides
better bug recommendations and has the advantage of pro-
ducing exact fixes.

Our work is also related to data cleaning studied in data
science and statistics. Earlier work (Jiang and Zhou 2004;
Zhu, Wu, and Chen 2003; Brodley and Friedl 1996) applies
an ensemble of classifiers to the training examples, and de-
tects whether the class label assigned to each example is con-
sistent with the output of these classifiers. The main prob-
lem with this approach is that the classifiers used to detect
mislabeled examples are themselves constructed from con-
taminated training items. Another approach is to design ro-
bust statistics with a high break-point against incorrect train-
ing examples (Huber 2011). None of the above-mentioned



methods can deal with systematic biases. Later, (Bhadra and
Hein 2015; Valizadegan and Tan 2007) define a consistency
metric and perturb the training labels to maximize the con-
sistency metric. This approach results naturally in a com-
binatorial optimization problem. In particular, Bhadra and
Hein’s method is able to incorporate expert verified data as
hard constraints in their optimization formulation. However,
their methods requires information on the exact number of
bugs which is often not available. DUTI does not request
such information.

Along the line of incorporating outside information in
training set debugging, (Ghosh et al. 2016) requires the
learned model to satisfy certain Probabilistic Computation
Tree Logic (PCTL). That is, the bugs are revealed by the
learned model violating logical constraints rather than by
the trusted items. This approach complements DUTT and the
two can potentially be combined in the future. We note that
in complex machine learning applications it can be more dif-
ficult for experts to encode domain knowledge in rigorous
logical statements, whereas providing verified trusted items
is often easier.

Our work is partly inspired by the need to identify his-
torical unfairness in a training set. DUTI thus joins re-
cent work (Hardt et al. 2016; Corbett-Davies et al. 2017,
Zemel et al. 2013; Feldman et al. 2015) on algorithmic fair-
ness. In our experiments, we demonstrated how DUTTI can
be used to identify historical discrimination, with the hope
that such identification will improve fairness of machine
learning systems.

5 Limitations of DUTI and Future Work

This paper contributed to trustworthy machine learning by
proposing a novel training set debugging algorithm DUTL
As the experiments demonstrated, DUTI was able to detect
and fix many bugs in diverse data sets. Like any method,
DUTT has its limitations. We discuss three major ones.

Applicability: While a violated trusted item often indi-
cates training set label bugs, it is not always the case. A
domain expert needs to bear in mind other reasons that vi-
olate a trusted item while nothing is wrong with the train-
ing labels. Figure 5(a,c,e) presents three common cases. In
all cases, the dashed line is the true decision boundary. The
blue points represent the training set, which obey (stochas-
tically in the third case) the true boundary. Therefore, there
is no bug in the training labels per se. The red points are the
trusted items, which also obey the true boundary. However,
the solid curve is the boundary learned from the training set.
In all three cases, some trusted items are indeed violated by
the learned boundary: In (a), the true boundary is nonlinear
but the hypothesis space is linear, resulting in underfitting
and thus violating both trusted items. In (c), the trusted items
are in a region of the feature space poorly covered by train-
ing data, thus unreliable extrapolation. This happens in co-
variate shift, for example. In (e), the underlying conditional
distribution P(Y | X) has high Bayes error (e.g. close to
0.5 near the true boundary), and the hypothesis space is too
rich and ill-regularized, resulting in overfitting.

In all three cases, it is inappropriate to apply DUTI in the
first place. In fact, blindly running DUTI will result in the
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Figure 5: Trusted item violations not caused by label bugs

“flagged bugs” in (b, d, f), respectively, and none are true
bugs. Conversely, after the domain expert verifies that none
of DUTI flagged items are bugs, she should suspect some of
the above reasons in the machine learning pipeline.

Theoretical Guarantee: The trusted items need to be in-
formative for DUTI to work. For example, in Figure 1(a) if
the two trusted items were “hired” at (1,1) and “not hired”
at (1,0), they would still be correct but would not have re-
vealed the systematic bias in the data. In our real data ex-
periments trusted items are i.i.d samples, but DUTI does not
require this. Future work should study theoretical guarantees
of (potentially non-iid) trusted items on debugging.

Scalability: The current implementation of DUTI has
limited speed and scalability. At each step of optimiza-
tion (5) or (9), it has to compute () which is equivalent
to training the learner. Even with smart initialization, this
repeated learning subroutine still takes the majority of time.
For large data sets, one iteration can take minutes. DUTI cur-
rently can handle training set size n in the thousands. Future
work is needed to yield a faster algorithm and implementa-
tion.

To conclude, in this work we designed DUTI, an effi-
cient algorithm that helps the users to identify and correct
training set bugs on any ERM learner, with the help of veri-
fied trusted items. Empirical experiments demonstrated that



DUTT is able to tackle different types of realistic systematic
bugs and outperforms other related methods. Future work
will be dedicated to building a general theory of debugging
and improving scalability through smart optimization.
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