
Expected Policy Gradients

Kamil Ciosek, Shimon Whiteson
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD
{kamil.ciosek,shimon.whiteson}@cs.ox.ac.uk

Abstract

We propose expected policy gradients (EPG), which unify
stochastic policy gradients (SPG) and deterministic policy gra-
dients (DPG) for reinforcement learning. Inspired by expected
sarsa, EPG integrates across the action when estimating the
gradient, instead of relying only on the action in the sampled
trajectory. We establish a new general policy gradient theorem,
of which the stochastic and deterministic policy gradient the-
orems are special cases. We also prove that EPG reduces the
variance of the gradient estimates without requiring determin-
istic policies and, for the Gaussian case, with no computational
overhead. Finally, we show that it is optimal in a certain sense
to explore with a Gaussian policy such that the covariance
is proportional to eH , where H is the scaled Hessian of the
critic with respect to the actions. We present empirical results
confirming that this new form of exploration substantially out-
performs DPG with the Ornstein-Uhlenbeck heuristic in four
challenging MuJoCo domains.

Introduction

Policy gradient methods (Sutton et al. 2000; Peters and
Schaal 2006; 2008b; Silver et al. 2014), which optimise poli-
cies by gradient ascent, have enjoyed great success in rein-
forcement learning problems with large or continuous action
spaces. The archetypal algorithm optimises an actor, i.e., a
policy, by following a policy gradient that is estimated using
a critic, i.e., a value function.

The policy can be stochastic or deterministic, yielding
stochastic policy gradients (SPG) (Sutton et al. 2000) or
deterministic policy gradients (DPG) (Silver et al. 2014).
The theory underpinning these methods is quite fragmented,
as each approach has a separate policy gradient theorem
guaranteeing the policy gradient is unbiased under certain
conditions.

Furthermore, both approaches have significant shortcom-
ings. For SPG, variance in the gradient estimates means that
many trajectories are usually needed for learning. Since gath-
ering trajectories is typically expensive, there is a great need
for more sample efficient methods.

DPG’s use of deterministic policies mitigates the prob-
lem of variance in the gradient but raises other difficul-
ties. The theoretical support for DPG is limited since it

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

assumes a critic that approximates ∇aQ when in prac-
tice it approximates Q instead. In addition, DPG learns
off-policy1, which is undesirable when we want learning
to take the cost of exploration into account. More impor-
tantly, learning off-policy necessitates designing a suitable
exploration policy, which is difficult in practice. In fact, ef-
ficient exploration in DPG is an open problem and most
applications simply use independent Gaussian noise or the
Ornstein-Uhlenbeck heuristic (Uhlenbeck and Ornstein 1930;
Lillicrap et al. 2015).

In this paper, we propose a new approach called expected
policy gradients (EPG) that unifies policy gradients in a way
that yields both theoretical and practical insights. Inspired
by expected sarsa (Sutton and Barto 1998; van Seijen et al.
2009), the main idea is to integrate across the action selected
by the stochastic policy when estimating the gradient, instead
of relying only on the action selected during the sampled
trajectory.

EPG enables two theoretical contributions. First, we estab-
lish a number of equivalences between EPG and DPG, among
which is a new general policy gradient theorem, of which
the stochastic and deterministic policy gradient theorems are
special cases. Second, we prove that EPG reduces the vari-
ance of the gradient estimates without requiring deterministic
policies and, for the Gaussian case, with no computational
overhead over SPG.

EPG also enables a practical contribution: a principled
exploration strategy for continuous problems. We show that
it is optimal in a certain sense to explore with a Gaussian
policy such that the covariance is proportional to eH , where
H is the scaled Hessian of the critic with respect to the
actions. We present empirical results confirming that this new
approach to exploration substantially outperforms DPG with
Ornstein-Uhlenbeck exploration in four challenging MuJoCo
domains.

Background

A Markov decision process is a tuple (S,A,R, p, p0, γ)
where S is a set of states, A is a set of actions (in practice
either A = R

d or A is finite), R(s, a) is a reward function,
p(s′ | a, s) is a transition kernel, p0 is an initial state distri-

1We show in this paper that, in certain settings, off-policy DPG
is equivalent to EPG, our on-policy method.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2868

bution, and γ ∈ [0, 1) is a discount factor. A policy π(a | s)
is a distribution over actions given a state. We denote trajec-
tories as τπ = (s0, a0, r0, s1, a1, r1, . . .), where s0 ∼ p0,
at ∼ π(· | st−1) and rt is a sample reward. A policy π in-
duces a Markov process with transition kernel pπ(s′ | s) =∫
a
dπ(a | s)p(s′ | a, s) where we use the symbol dπ(a | s)

to denote Lebesgue integration against the measure π(a | s)
where s is fixed. We assume the induced Markov process is
ergodic with a single invariant measure defined for the whole
state space. The value function is V π = Eτ [

∑
i γiri] where

actions are sampled from π. The Q-function is Qπ(a | s) =
ER [r | s, a] + γEp(s |s) [V π(s′) | s] and the advantage func-
tion is Aπ(a | s) = Qπ(a | s) − V π(s). An optimal policy
maximises the total return J =

∫
s
dp0(s)V

π(s). Since we
consider only on-policy learning with just one current policy,
we drop the π super/subscript where it is redundant.

If π is parameterised by θ, then stochastic policy gradients
(SPG) (Sutton et al. 2000; Peters and Schaal 2006; 2008b)
perform gradient ascent on ∇J , the gradient of J with respect
to θ (gradients without a subscript are always with respect to
θ). For stochastic policies, we have:

∇J =
∫
s
dρ(s)

∫
a
dπ(a | s)∇ log π(a | s)(Q(a, s) + b(s)),

(1)

where ρ is the discounted-ergodic occupancy measure, de-
fined in the supplement, and b(s) is a baseline, which can
be any function that depends on the state but not the action,
since

∫
a
dπ(a | s)∇ log π(a | s)b(s) = 0. Typically, (1) is

approximated from samples from a trajectory τ of length T :

∇̂J =
∑T

t=0 γ
t∇ log π(at | st)(Q̂(st, at) + b(st)). (2)

If the policy is deterministic (we denote it π(s)), we can use
deterministic policy gradients (Silver et al. 2014) instead:

∇J =
∫
s
dρ(s)∇π(s)∇aQ(a = π(s), s). (3)

This update is then approximated using samples:

∇̂J =
∑T

t=0 γ
t∇π(s)∇aQ̂(a = π(st), st). (4)

Since the policy is deterministic, the problem of exploration
is addressed using an external source of noise, typically
modeled using a zero-mean Ornstein-Uhlenbeck (OU) pro-
cess (Uhlenbeck and Ornstein 1930; Lillicrap et al. 2015)
parametrized by ψ and σ:

ni ← −ni−1ψ +N (0, σI) a ∼ π(s) + ni. (5)

In (2) and (4), Q̂ is a critic that approximates Q and can
be learned by sarsa (Rummery and Niranjan 1994; Sutton
1996):

Q̂(st, at) ←Q̂(st, at) +

α
[
rt+1 + γQ̂(st+1, at+1)− Q̂(st, at)

]
. (6)

Alternatively, we can use expected sarsa (Sutton and Barto
1998; van Seijen et al. 2009), which marginalises out at+1,
the distribution over which is specified by the known policy,
to reduce the variance in the update:

Q̂(st, at) ← Q̂(st, at) +

α
[
rt+1 + γ

∫
a
dπ(a | s)Q̂(st+1, a)− Q̂(st, at)

]
. (7)

We could also use advantage learning (Baird and others 1995)
or LSTDQ (Lagoudakis and Parr 2003). If the critic’s function
approximator is compatible, then the actor, i.e., π, converges
(Sutton et al. 2000).

Instead of learning Q̂, we can set b(s) = −V (s) so
that Q(a, s) + b(s) = A(s, a) and then use the TD error
δ(r, s′, s) = r + γV (s′) − V (s) as an estimate of A(s, a)
(Bhatnagar et al. 2008):

∇̂J =
∑T

t=0 γ
t∇ log π(at | st)(r + γV̂ (s′)− V̂ (s)), (8)

where V̂ (s) is an approximate value function learned us-
ing any policy evaluation algorithm. (8) works because
E [δ(r, s′, s) | a, s] = A(s, a), i.e., the TD error is an un-
biased estimate of the advantage function. The benefit of this
approach is that it is sometimes easier to approximate V than
Q and that the return in the TD error is unprojected, i.e., it
is not distorted by function approximation. However, the TD
error is noisy, introducing variance in the gradient.

To cope with this variance, we can reduce the learning rate
when the variance of the gradient would otherwise explode,
using, e.g., Adam (Kingma and Ba 2014), natural policy gra-
dients (Kakade 2002; Amari 1998; Peters and Schaal 2008a),
the adaptive step size method (Pirotta, Restelli, and Bascetta
2013) or Newton’s method (Furmston and Barber 2012;
Parisi, Pirotta, and Restelli 2016). However, this results in
slow learning when the variance is high. One can also use
PGPE, which replaces the stochastic policy with a distribu-
tion over deterministic policies (Sehnke et al. 2010). How-
ever, PGPE precludes updating the current policy during the
episode and makes it difficult to explore efficiently.

We can also eliminate all variance caused by the policy at
the cost of making the policy deterministic and using the DPG
update, which usually necessitates performing off-policy ex-
ploration. EPG, presented below, reduces to DPG in many
useful cases, while providing a principled way to explore and
also allowing for stochastic policies.

Yet another way to eliminate variance in the actor is not
to have an actor at all, instead selecting actions soft-greedily
with respect to Q̂ learned using sarsa. This is trivial for dis-
crete actions and can also be done with a one-step Newton’s
method for Q-functions that are quadric in the actions (Gu et
al. 2016b).

Expected Policy Gradients

In this section, we propose expected policy gradients (EPG).

Main Algorithm

First, we introduce IQπ (s) to denote the inner integral in (1):

∇J =

∫
s

dρ(s)

∫
a

dπ(a | s)∇ log π(a | s)(Q(a, s) + b(s))︸ ︷︷ ︸
IQ
π (s)

=

∫
s

dρ(s)IQπ (s). (9)

2869

This suggests a new way to write the approximate gradient:

∇̂J =
T∑

t=0

γtÎQ̂π (st)︸ ︷︷ ︸
gt

, (10)

where ÎQ̂π (s) is some approximation to IQ̂π (s) =
∫
a
dπ(a |

s)∇ log π(a | s)(Q̂(a, s) + b(s)). This approach makes ex-
plicit that one step in estimating the gradient is to evaluate
an integral to estimate IQ̂π (s). The main insight behind EPG
is that, given a state, IQ̂π (s) is expressed fully in terms of
known quantities. Hence we can manipulate it analytically to
obtain a formula or we can just compute the integral using any
numerical quadrature if an analytical solution is impossible.

SPG as given in (2) performs this quadrature using a simple
one-sample Monte Carlo method. However, relying on such
a method is unnecessary. In fact, the actions used to interact
with the environment need not be used at all in the evaluation
of ÎQπ (s) since a is a bound variable in the definition of IQπ (s).
The motivation is thus similar to that of expected sarsa but
applied to the actor’s gradient estimate instead of the critic’s
update rule. EPG, shown in Algorithm 1, uses (10) to form
a policy gradient algorithm that repeatedly estimates ÎQπ (s)
with an integration subroutine.

Algorithm 1 Expected Policy Gradients
1: s ← s0, t ← 0
2: initialise optimiser, initialise policy π parametrised by θ
3: while not converged do

4: gt ← γt DO-INTEGRAL(Q̂, s, πθ)
5: � gt is the estimated policy gradient as per (10)
6: θ ← θ + optimiser.UPDATE(gt)
7: a ∼ π(·, s)
8: s′, r ← simulator.PERFORM-ACTION(a)
9: Q̂.UPDATE(s, a, r, s′)

10: t ← t+ 1
11: s ← s′
12: end while

EPG has benefits even when an analytical solution is not
possible: if the action space is low dimensional, numerical
quadrature is cheap; if it is high dimensional, it is still often
worthwhile to balance the expense of simulating the system
with the cost of quadrature. Actually, even in the extreme case
of expensive quadrature but cheap simulation, the limited re-
sources available for quadrature could still be better spent
on EPG with smart quadrature than SPG with simple Monte
Carlo. One of the motivations of DPG was precisely that
the simple one-sample Monte-Carlo quadrature implicitly
used by SPG often yields high variance gradient estimates,
even with a good baseline. To see why, consider Figure 1
(left). A simple Monte Carlo method evaluates the integral
by sampling one or more times from π(a | s) (blue) and
evaluating ∇μ log π(a | s)Q(a, s) (red) as a function of a. A
baseline can decrease the variance by adding a multiple of
∇μ log π(a | s) to the red curve, but the problem remains that
the red curve has high values where the blue curve is almost
zero. Consequently, substantial variance persists, whatever

��� ��� ��� ��� ���
���	
�

�

�

��

��

�

	������

����������

���� ���� ���� ���� ����

�	
�	�
�������

�	������

Figure 1: At left, π(a | s) for a Gaussian policy with μ = θ =
0 at a given state and constant σ2 (blue) and the SPG update
∇θ log π(a | s)Q(a, s) (in red), obtained for Q = 1

2 + 1
2a.

At right, the variance of a simple single-sample Monte Carlo
estimator as a function of the baseline. In a simple multi-
sample Monte Carlo method, the variance would go down as
the number of samples.

the baseline, even with a simple linear Q-function, as shown
in Figure 1 (right). DPG addressed this problem for determin-
istic policies but EPG extends it to stochastic ones.

Relationship to Other Methods

EPG has some similarities with VINE sampling (Schulman
et al. 2015), which uses an (intrinsically noisy) Monte Carlo
quadrature with many samples.2 However, the example in
Figure 1 shows that even with a computationally expensive
many-sample Monte Carlo method, the problem of variance
remains, regardless of the baseline.

EPG is also related to variance minimisation techniques
that interpolate between two estimators, e.g., (Gu et al. 2016a,
Eq. 7) is similar to Corollary 4. However, EPG uses a quadric
(not linear) approximation to the critic, which is crucial for
exploration. Furthermore, it completely eliminates variance
in the inner integral, as opposed to just reducing it.

The idea behind EPG was also independently and concur-
rently developed as Mean Actor Critic (Asadi et al. 2017),
though only for discrete actions and without a supporting
theoretical analysis.

Gaussian Policies

EPG is particularly useful when we make the common as-
sumption of a Gaussian policy: we can then perform the in-
tegration analytically under reasonable conditions. We show
below (see Lemma 3) that the update to the policy mean com-
puted by EPG is equivalent to the DPG update. Moreover, a
simple formula for the covariance can be derived (see Lemma
2). Algorithms 2 and 3 show the resulting special case of EPG,
which we call Gaussian policy gradients (GPG).

Surprisingly, GPG is on-policy but nonetheless fully equiv-
alent to DPG, an off-policy method, with a particular form of
exploration. Hence, GPG, by specifying the policy’s covari-
ance, can be seen as a derivation of an exploration strategy
for DPG. In this way, GPG addresses an important open ques-
tion. As we show later, this leads to improved performance
in practice.

2VINE sampling also differs from EPG by performing indepen-
dent rollouts of Q, requiring a simulator with reset.

2870

Algorithm 2 Gaussian Policy Gradients
1: s ← s0, t ← 0
2: initialise optimiser
3: while not converged do

4: gt ← γt DO-INTEGRAL-GAUSS(Q̂, s, πθ)
5: θ ← θ + optimiser.UPDATE(gt)
6: � policy parameters θ are updated using gradient
7: Σ

1/2
s ← GET-COVARIANCE(Q̂, s, πθ)

8: � Σ
1/2
s computed from scratch

9: a ∼ π(· | s) � π(· | s) = N(μs,Σs)
10: s′, r ← simulator.PERFORM-ACTION(a)
11: Q̂.UPDATE(s, a, r, s′)
12: t ← t+ 1
13: s ← s′
14: end while

Algorithm 3 Gaussian Integrals

1: function DO-INTEGRAL-GAUSS(Q̂, s, πθ)
2: IQπ(s),μs

← (∇μs)∇aQ̂(a = μs, s) � Use Lemma 1

3: return IQπ(s),μs

4: end function
5:
6: function GET-COVARIANCE(Q̂, s, πθ)
7: H ← COMPUTE-HESSIAN(Q̂(μs, s))
8: return σ0e

cH � Use Lemma 2
9: end function

The computational cost of GPG is small: while it must
store a Hessian matrix H(a, s) = ∇2

aQ̂(a, s), its size is
only d × d, where A = R

d, which is typically small, e.g.,
d = 6 for HalfCheetah-v1. This Hessian is the same size
as the policy’s covariance matrix, which any policy gradient
must store anyway, and should not be confused with the
Hessian with respect to the parameters of the neural network,
as used with Newton’s or natural gradient methods (Peters
and Schaal 2008a; Furmston, Lever, and Barber 2016), which
can easily have thousands of entries. Hence, GPG obtains
EPG’s variance reduction essentially for free.

Analysis

In this section, we analyse EPG, showing that it unifies SPG
and DPG, that ÎQπ (s) can often be computed analytically, and
that EPG has lower variance than SPG.

General Policy Gradient Theorem

We begin by stating our most general result, showing that
EPG can be seen as a generalisation of both SPG and DPG. To
do this, we first state a new general policy gradient theorem.
We use the shorthand ∇ without a subscript to denote the
gradient with respect to policy parameters θ.

Theorem 1 (General Policy Gradient Theorem). If π(·, s) is

a normalised Lebesgue measure for all s, then

∇J =

∫
s

dρ(s)

[
∇V (s)−

∫
a

dπ(a, s)∇Q(a, s)

]
︸ ︷︷ ︸

IG(s)

.

Proof. We begin by expanding the following expression.∫
s
dρ(s)

∫
a
dπ(a, s)∇Q(a, s)

=
∫
s
dρ(s)

∫
a
dπ(a,s)∇(R(a,s)+γ

∫
s′ dp(s

′|s,a)V (s′))

=
∫
s
dρ(s)

∫
a
dπ(a,s)(∇R(a,s)︸ ︷︷ ︸

0

+γ
∫
s′ dp(s

′|s,a)∇V (s′))

= γ
∫
s
dρ(s)

∫
s′ dpπ(s

′ | s)∇V (s′)

=
∫
s
dρ(s)∇V (s)− ∫

s
dp0(s)∇V (s)︸ ︷︷ ︸

∇J

=
∫
s
dρ(s)∇V (s)−∇J.

The first equality follows by expanding the definition of
Q and the penultimate one follows from Lemma B (in
the supplement). Then the theorem follows by rearranging
terms.

The crucial benefit of Theorem 1 is that it works for all
policies, both stochastic and deterministic, unifying previ-
ously separate derivations for the two settings. To show this,
in the following two corollaries, we use Theorem 1 to recover
the stochastic policy gradient theorem (Sutton et al. 2000)
and the deterministic policy gradient theorem (Silver et al.
2014), in each case by introducing additional assumptions
to obtain a formula for IG(s) expressible in terms of known
quantities.
Corollary 1 (Stochastic Policy Gradient Theorem). If π(· |
s) is differentiable, then

∇J =
∫
s
dρ(s)IG(s)

=
∫
s
dρ(s)

∫
a
dπ(a | s)∇ log π(a | s)Q(a, s).

Proof. We obtain the following by expanding ∇V .

∇V = ∇ ∫
a
dπ(a, s)Q(a, s) =∫

a
da(∇π(a, s))Q(a, s) +

∫
a
dπ(a, s)(∇Q(a, s))

We obtain IG(s) =
∫
a
dπ(a | s)∇ log π(a | s)Q(a, s) =

IQπ (s) by plugging this into the definition of IG(s). We ob-
tain ∇J by invoking Theorem 1 and plugging in the above
expression for IG(s).

We now recover the DPG update introduced in (3).
Corollary 2 (Deterministic Policy Gradient Theorem). If
π(· | s) is a Dirac-delta measure (i.e., a deterministic policy)
and Q(·, s) is differentiable, then

∇J =
∫
s
dρ(s)IG(s) =

∫
s
dρ(s)∇π(s)∇aQ(a, s).

Proof. We begin by obtaining an expression for IG(s).

IG(s) = ∇V (s)− ∫
a
dπ(a, s)∇Q(a, s)

= ∇V (s)− γ
∫
s′ dpπ(s

′ | s)∇V (s′)

= ∇π(s)∇aQ(a, s).

2871

Here, the second equality follows by expanding the definition
of Q and the third follows from an established deterministic
policy gradient result (Silver et al. 2014, Supplement, Eq. 1).
We can then obtain ∇J by invoking Theorem 1 and plugging
in the above expression for IG(s).

These corollaries show that the choice between determinis-
tic and stochastic policy gradients is fundamentally a choice
of quadrature method. Hence, the empirical success of DPG
relative to SPG (Silver et al. 2014; Lillicrap et al. 2015) can
be understood in a new light. In particular, it can be attributed,
not to a fundamental limitation of stochastic policies (indeed,
stochastic policies are sometimes preferred), but instead to
superior quadrature. DPG integrates over Dirac-delta mea-
sures, which is known to be easy, while SPG typically relies
on simple Monte Carlo integration. Thanks to EPG, a deter-
ministic approach is no longer required to obtain a method
with low variance.

Since Theorem 1 can be written as IG(s) = ∇V (s) −
γ
∫
s′ dpπ(s

′ | s)∇V (s′), which involves the derivatives of
value functions, GPG resembles stochastic value gradients
(Heess et al. 2015). However, EPG is different since the
derivatives are with respect to policy parameters. Also, in our
case, it is not clear how to learn ∇V .

Analytical Quadrature - Gaussian Policy

We now derive a lemma supporting GPG.

Lemma 1 (Gaussian Policy Gradients). If the policy is Gaus-
sian, i.e. π(·|s) ∼ N (μs,Σs) with μs and Σ

1/2
s parametrised

by θ, and the critic is of the form Q(a, s) = a�A(s)a +
a�B(s) + const, then

IQπ (s) =
[
IQπ(s),μs

∣∣∣IQ
π(s),Σ

1/2
s

]�
.

Here, the the mean and covariance components are given
respectively by by:

IQπ(s),μs
= (∇μs)B(s)

IQ
π(s),Σ

1/2
s

= (∇Σ1/2
s)Σ1/2

s A(s).

See Lemma 1 in the supplement for proof of this result.
While Lemma 1 requires the critic to be quadric in the actions,
this assumption is not very restrictive since the coefficients
B(s) and A(s) can be arbitrary continuous functions of the
state, e.g., a neural network.

Arbitrary Critics

If Q does not meet the conditions of Lemma 1, we can ap-
proximate Q with a quadric function in the neighbourhood
of the policy mean. This approximation is motivated by two
arguments. First, in MDPs that model physical systems with
reasonable reward functions, Q is fairly smooth. Second, pol-
icy gradients are a local, incremental method anyway – since
the policy mean changes slowly, the values of Q for actions
far from the policy mean are usually not relevant for the
current update.

Corollary 3 (Approximate Gaussian Policy Gradients with
an Arbitrary Critic). If the policy is Gaussian, i.e. π(·|s) ∼
N (μs,Σ

1/2
s) with μs and Σ

1/2
s parametrised by θ as in

Lemma 1 and any critic Q(a, s) doubly differentiable with
respect to actions for each state, then:

IQπ(s),μs
≈ (∇μs)∇aQ(a = μs, s),

IQ
π(s),Σ

1/2
s

≈ (∇Σ1/2
s)Σ1/2

s H(μs, s)

where H(μs, s) is the Hessian of Q with respect to a, evalu-
ated at μs for a fixed s.

Proof. We begin by approximating the critic (for a given s)
using the first two terms of the Taylor expansion of Q in μs.

Q(a, s) ≈ Q(μs, s) + (a− μs)
�∇aQ(a = μs, s)

+ 1
2 (a− μs)

�H(μs, s)(a− μs)

= 1
2a

�H(μs,s)a+a�(∇aQ(a=μs,s)−H(μs,s)μs)+const.

Because of the series truncation, the function on the righthand
side is quadric and we can then use Lemma 1:

IQ
π(s),μs

=∇μs(2
1
2H(μs,s)μs+∇aQ(a=μs,s)−H(μs,s)μs)

=∇μs∇aQ(a=μs,s)

IQ

π(s),Σ
1/2
s

=∇
Σ
1/2
s

(2 1
2H(μs,s)Σ

1/2
s)=∇

Σ
1/2
s

H(μs,s)Σ
1/2
s .

To actually obtain the Hessian, we could use automatic
differentiation to compute it analytically. Alternatively, we
can observe that, if the critic really is quadric, we can just read
off the coefficients of the quadric term directly. Therefore,
we can approximate the Hessian by generating a number of
random action-values around μs, computing the Q values,
and (locally) fitting a quadric. This process is typically more
computationally expensive than automatic differentiation but
has the advantage of working with ReLU networks (where
the true Hessian is zero but we still have a kind of global
curvature after smoothing) and leveraging more information
from the critic (since the evaluation is at more than one point).

Linear GPG

We now state a consequence of Lemma 1 for the case when
the critic Q is linear in the actions, i.e., the quadric term is
always zero.
Corollary 4 (Linear Gaussian Policy Gradients). If the
policy is Gaussian, i.e., π(·|s) ∼ N (μs,Σ

1/2
s) with μs

parametrised by θ and the critic is of the form Q(a | s) =
a�B(s) + const, then IQπ (s) = B(s)∇μs. Moreover, it is
unnecessary to parameterise Σs since the policy gradient
w.r.t. to Σs is zero (i.e., a linear Q-function does not give any
information about the exploration covariance).

We make Corollary 4 explicit for two reasons. First, it is
useful for showing an equivalence between DPG and EPG
(see below). Second, it may actually be useful for a non-trivial
class of physical systems: if the time-sampling frequency is
high enough (which implies acting in small steps), the critic
is effectively only used to say if a small step one way is
preferable to small step the other way – a linear property.

2872

Equivalences between EPG and DPG

The update for the policy mean obtained in Corollary 3 is the
same as the DPG update, linking the two methods:

IQπ (s) = ∇aQ(a = μs, s)∇μs.

We now formalise the equivalences between EPG and DPG.
First, on-policy GPG with a linear critic (or an arbitrary critic
approximated by the first term in the Taylor expansion) is
equivalent to DPG with a Gaussian exploration policy where
the covariance stays the same. This follows from Corollary
4. Second, on-policy GPG with a quadric critic (or an arbi-
trary critic approximated by the first two terms in the Taylor
expansion) is equivalent to DPG with a Gaussian exploration
policy where the covariance is computed using the update
(where αn is a sequence of step-sizes):

Σ1/2
s ← Σ1/2

s + αnΣ
1/2
s H(s). (11)

This follows from Corollary 3. Third, and most generally,
for any critic at all (not necessarily quadric), DPG is a kind
of EPG for a particular choice of quadrature (using a Dirac
measure). This follows from Theorem 1.

Surprisingly, this means that DPG, normally considered
to be off-policy, can also be seen as on-policy when explor-
ing with Gaussian noise. Furthermore, the compatible critic
for DPG (Silver et al. 2014) is indeed linear in the actions.
Hence, this relationship holds whenever DPG uses a com-
patible critic.3 Furthermore, Lemma 1 lends new legitimacy
to the common practice of replacing the critic required by
the DPG theory, which approximates ∇aQ, with one that
approximates Q itself, as done in SPG and EPG.

Exploration using the Hessian

The second equivalence given above suggests that we can
include the covariance in the actor network and learn it along
with the mean. However, another option is to compute it from
scratch at each iteration by analytically computing the result
of applying (11) infinitely many times.
Lemma 2 (Robins-Monro Exploration Limit). The itera-
tive procedure defined by the equation Σ

1/2
s ← Σ

1/2
s +

αnΣ
1/2
s H(s) using the diminishing Robbins-Monroe learn-

ing rate αn = 1/n converges to Σ
1/2
s ∝ eH(s).

Proof. Consider the sequence (Σ
1/2
s)1 = σ0I , (Σ1/2

s)n =

(Σ
1/2
s)n−1 +

1
n (Σ

1/2
s)n−1H(s). We diagonalise the Hessian

as H(s) = UΛU� for some orthonormal matrix U and
obtain the following expression for the n-th element of the
sequence.

(Σ1/2
s)n+1 = (I +

1

n
H(s))nσ0 = U(I +

1

n
Λ)nU�σ0.

Since we have limn→∞(1− 1
nλ)

n = eλ for each eigenvalue
of the Hessian, we obtain the identity:

lim
n→∞U(I +

1

n
Λ)nU�σ0 = σ0e

H(s).

3The notion of compatibility of a critic is different for stochastic
and deterministic policy gradients.

The practical implication of Lemma 2 is that, in a policy
gradient method, it is justified to use Gaussian exploration
with covariance proportional to ecH for some reward scaling
constant c. Thus by exploring with (scaled) covariance ecH ,
we obtain a principled alternative to the Ornstein-Uhlenbeck
heuristic defined in (5). Our results below show that it also
performs much better in practice. The derivation relies cru-
cially on the use of decreasing Robins-Monro step sizes,
rather than finite step sizes, which we analyse in detail in
Section 2 of the supplement.

Lemma 2 has an intuitive interpretation. If H(s) has a
large positive eigenvalue λ, then Q̂(s, ·) has a sharp minimum
along the corresponding eigenvector, and the corresponding
eigenvalue of Σ1/2 is eλ, i.e., also large. The result is a large
exploration bonus along that direction, enabling the algorithm
to leave local minima. Conversely, if λ is negative, then
Q̂(s, ·) has a maximum and so eλ is small, since exploration
is not needed.

Variance Analysis

We now prove that for any policy, the EPG estimator of (10)
has lower variance than the SPG estimator of (2).
Lemma 3. If for all s ∈ S, the random variable ∇ log π(a |
s)Q̂(s, a) where a ∼ π(·|s) has nonzero variance, then
Vτ [

∑∞
t=0 γt∇ log π(at|st)(Q̂(st,at)+b(st))]>Vτ

[∑∞
t=0 γtIQ̂

π (st)
]
.

The proof is deferred to the supplement (see Lemma 3
there). Lemma 3’s assumption is reasonable since the only
way a random variable ∇ log π(a | s)Q̂(s, a) could have
zero variance is if it were the same for all actions in the
policy’s support (except for sets of measure zero), in which
case optimising the policy would be unnecessary. Since we
know that both the estimators of (2) and (10) are unbiased,
the estimator with lower variance has lower MSE.

Extension to Entropy Regularisation

On-policy SPG sometimes includes an entropy term in the
gradient in order to aid exploration by making the policy
more stochastic. The gradient of the differential entropy4

H(s) of the policy at state s is defined as follows.
−∇H(s)=∇ ∫

a
dπ(a|s) log π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+∫

a
dπ(a|s)∇ log π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+∫

a
dπ(a|s) 1

π(a|s)∇π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+∇ ∫

a
dπ(a|s)︸ ︷︷ ︸

1

=
∫
a
da∇π(a|s) log π(a|s)=∫

a
dπ(a|s)∇ log π(a|s) log π(a|s).

Typically, we combine this with the policy gradient update:
IEG (s) = IG(s) + α∇H(s)

=
∫
a
dπ(a|s)∇ log π(a|s)(Q(a, s)− α log π(a|s)).

This equation makes clear that performing entropy regulari-
sation is equivalent to using a different critic with Q-values
shifted by α log π(a|s); this holds for both SPG and EPG.

4For discrete action spaces, the same derivation with integrals
replaced by sums holds for the entropy.

2873

Domain σ̂DPG σ̂EPG
HalfCheetah-v1 1336.39

[1107.85, 1614.51]
1056.15
[875.54, 1275.94]

InvertedPendulum-v1 291.26
[241.45, 351.88]

0.00
n/a

Reacher2d-v1 1.22
[0.63, 2.31]

0.13
[0.07, 0.26]

Walker2d-1 543.54
[450.58, 656.65]

762.35
[631.98, 921.00]

Table 1: Estimated standard deviation (mean and 90% inter-
val) across runs after learning.

Experiments

While EPG has many potential uses, we focus on empiri-
cally evaluating one particular application: exploration driven
by the Hessian exponential (as introduced in Algorithm 2
and Lemma 2), replacing the standard Ornstein-Uhlenbeck
(OU) exploration in continuous action domains. To this end,
we applied EPG to four domains modelled with the Mu-
JoCo physics simulator (Todorov, Erez, and Tassa 2012):
HalfCheetah-v1, InvertedPendulum-v1, Reacher2d-v1 and
Walker2d-v1 and compared its performance to DPG and SPG.

In practice, EPG differed from deep DPG (Lillicrap et
al. 2015; Silver et al. 2014) only in the exploration strat-
egy, though their theoretical underpinnings are different. The
hyperparameters for DPG and those of EPG that are not re-
lated to exploration were taken from an existing benchmark
(Islam et al. 2017; Brockman et al. 2016). The exploration
hyperparameters for EPG were σ0 = 0.2 and c = 1.0 where
the exploration covariance is σ0e

cH . These values were ob-
tained using a grid search from the set {0.2, 0.5, 1} for σ0 and
{0.5, 1.0, 2.0} for c over the HalfCheetah-v1 domain. Since
c is just a constant scaling the rewards, it is reasonable to set
it to 1.0 whenever reward scaling is already used. Hence, our
exploration strategy has just one hyperparameter σ0 as op-
posed specifying a pair of parameters (standard deviation and
mean reversion constant) for OU. We used the same learning
parameters for the other domains. For SPG5, we used OU
exploration and a constant diagonal covariance of 0.2 in the
actor update (this approximately corresponds to the average
variance of the OU process over time). The other parameters
for SPG are the same as for the rest of the algorithm. For
the learning curves, we obtained 90% confidence intervals
around the learning curves. The learning curves show results
of independent evaluation runs which used actions generated
by the policy mean without any exploration noise.

The results (Figure 2) show that EPG’s exploration strat-
egy yields much better performance than DPG with OU.
Furthermore, SPG does poorly, solving only the easiest do-
main (InvertedPendulum-v1) reasonably quickly, achieving
slow progress on HalfCheetah-v1, and failing entirely on the
other domains. This is not surprising DPG was introduced
precisely to solve the problem of high variance SPG estimates
on this type of problem. In InvertedPendulum-v1, SPG ini-

5We tried learning the covariance for SPG but the covariance
estimate was unstable; no regularisation hyperparameters we tested
matched SPG’s performance with OU even on the simplest domain.

40 120 200 280

0
5

0
0

0 EPG (40 runs)
DPG (40 runs)
SPG (40 runs)

20 40 60 80

0
1

0
0

0 EPG (5 runs)
DPG (40 runs)
SPG (40 runs)

50 150 250 350 450

-1
5

-5

EPG (5 runs)
DPG (5 runs)
SPG (10 runs)

200 400 600 800 1000 1200

0
2

0
0

0 EPG (40 runs)
DPG (40 runs)
SPG (10 runs)

Figure 2: Learning curves (mean and 90% interval) for
HalfCheetah-v1 (top left), InvertedPendulum-v1 (top right),
Reacher2d-v1 (bottom left, clipped at -14) and Walker2d-v1
(bottom right). The number of independent training runs is in
parentheses. Horizontal axis is scaled in thousands of steps.

tially learns quickly, outperforming the other methods. This
is because noisy gradient updates provide a crude, indirect
form of exploration that happens to suit this problem. Clearly,
this is inadequate for more complex domains: even for this
simple domain it leads to subpar performance late in learning.

�� �� �� �� ��

�
��
�� ���

�� �� �� �� ��

�
��
�� ���

�� �� �� �� ��

�
��
�� ���

Figure 3: Three runs for EPG (left), DPG (middle) and SPG
(right) for the InvertedPendulum-v1 domain, demonstrating
that EPG shows much less unlearning.

In addition, EPG typically learns more consistently than
DPG with OU. In two tasks, the empirical standard deviation
across runs of EPG (σ̂EPG) was substantially lower than that
of DPG (σ̂DPG) at the end of learning, as shown in Table 1.
For the other two domains, the confidence intervals around
the empirical standard deviations for DPG and EPG were too
wide to draw conclusions.

Surprisingly, for InvertedPendulum-v1, DPG’s learning
curve declines late in learning. The reason can be seen in the
individual runs shown in Figure 3: both DPG and SPG suffer
from severe unlearning. This unlearning cannot be explained
by exploration noise since the evaluation runs just use the
mean action, without exploring. Instead, OU exploration in
DPG may be too coarse, causing the optimiser to exit good
optima, while SPG unlearns due to noise in the gradients. The
noise also helps speed initial learning, as described above, but
this does not transfer to other domains. EPG avoids this prob-
lem by automatically reducing the noise when it finds a good

2874

optimum, i.e., a Hessian with large negative eigenvalues.

Conclusions

This paper proposed a new policy gradient method called
expected policy gradients (EPG), that integrates across the
action selected by the stochastic policy. We used EPG to
prove a new general policy gradient theorem subsuming
the stochastic and deterministic policy gradient theorems.
We also showed that, under certain realistic conditions, the
quadrature required by EPG can be performed analytically,
allowing DPG with principled exploration. We presented
empirical results confirming that this application of EPG
outperforms DPG and SPG on four domains.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
number 637713).

References

Amari, S.-I. 1998. Natural gradient works efficiently in learn-
ing. Neural computation 10(2):251–276.
Asadi, K.; Allen, C.; Roderick, M.; Mohamed, A.-r.; Konidaris,
G.; and Littman, M. 2017. Mean Actor Critic. ArXiv e-prints.
Baird, L., et al. 1995. Residual algorithms: Reinforcement
learning with function approximation. In Proceedings of the
twelfth international conference on machine learning, 30–37.
Bhatnagar, S.; Ghavamzadeh, M.; Lee, M.; and Sutton, R. S.
2008. Incremental natural actor-critic algorithms. In Advances
in neural information processing systems, 105–112.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schul-
man, J.; Tang, J.; and Zaremba, W. 2016. Openai gym. arXiv
preprint arXiv:1606.01540.
Furmston, T., and Barber, D. 2012. A unifying perspective
of parametric policy search methods for markov decision pro-
cesses. In Advances in neural information processing systems,
2717–2725.
Furmston, T.; Lever, G.; and Barber, D. 2016. Approximate
newton methods for policy search in markov decision pro-
cesses. Journal of Machine Learning Research 17(227):1–51.
Gu, S.; Lillicrap, T.; Ghahramani, Z.; Turner, R. E.; and Levine,
S. 2016a. Q-prop: Sample-efficient policy gradient with an off-
policy critic. arXiv preprint arXiv:1611.02247.
Gu, S.; Lillicrap, T.; Sutskever, I.; and Levine, S. 2016b. Con-
tinuous deep q-learning with model-based acceleration. In In-
ternational Conference on Machine Learning, 2829–2838.
Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Information
Processing Systems, 2944–2952.
Islam, R.; Henderson, P.; Gomrokchi, M.; and Precup, D. 2017.
Reproducibility of benchmarked deep reinforcement learning
tasks for continuous control. arXiv preprint arXiv:1708.04133.
Kakade, S. M. 2002. A natural policy gradient. In Advances
in neural information processing systems, 1531–1538.

Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of machine learning research 4(Dec):1107–
1149.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Parisi, S.; Pirotta, M.; and Restelli, M. 2016. Multi-objective
reinforcement learning through continuous pareto manifold
approximation. Journal of Artificial Intelligence Research
57:187–227.
Peters, J., and Schaal, S. 2006. Policy gradient methods for
robotics. In Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference on, 2219–2225. IEEE.
Peters, J., and Schaal, S. 2008a. Natural actor-critic. Neuro-
computing 71(7):1180–1190.
Peters, J., and Schaal, S. 2008b. Reinforcement learning of
motor skills with policy gradients. Neural networks 21(4):682–
697.
Pirotta, M.; Restelli, M.; and Bascetta, L. 2013. Adaptive
step-size for policy gradient methods. In Advances in Neural
Information Processing Systems, 1394–1402.
Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning
using connectionist systems. University of Cambridge, Depart-
ment of Engineering.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz, P.
2015. Trust region policy optimization. In Proceedings of the
32nd International Conference on Machine Learning (ICML-
15), 1889–1897.
Sehnke, F.; Osendorfer, C.; Rückstieß, T.; Graves, A.; Peters,
J.; and Schmidhuber, J. 2010. Parameter-exploring policy gra-
dients. Neural Networks 23(4):551–559.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic policy gradient algorithms.
In ICML.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning with
function approximation. In Advances in neural information
processing systems, 1057–1063.
Sutton, R. S. 1996. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. Advances in
neural information processing systems 1038–1044.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on,
5026–5033. IEEE.
Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory of
the brownian motion. Physical review 36(5):823.
van Seijen, H.; van Hasselt, H.; Whiteson, S.; and Wiering, M.
2009. A theoretical and empirical analysis of expected sarsa. In
ADPRL 2009: Proceedings of the IEEE Symposium on Adap-
tive Dynamic Programming and Reinforcement Learning, 177–
184.

2875

