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Abstract

The determinantal point process (DPP) has been receiving in-
creasing attention in machine learning as a generative model
of subsets consisting of relevant and diverse items. Recently,
there has been a significant progress in developing efficient
algorithms for learning the kernel matrix that characterizes
a DPP. Here, we propose a dynamic DPP, which is a DPP
whose kernel can change over time, and develop efficient
learning algorithms for the dynamic DPP. In the dynamic
DPP, the kernel depends on the subsets selected in the past,
but we assume a particular structure in the dependency to al-
low efficient learning. We also assume that the kernel has a
low rank and exploit a recently proposed learning algorithm
for the DPP with low-rank factorization, but also show that its
bottleneck computation can be reduced from O(M? K) time
to O(M K?) time, where M is the number of items under
consideration, and K is the rank of the kernel, which can be
set smaller than M by orders of magnitude.

Introduction

A determinantal point process (DPP) defines a probability
distribution over the subsets of items in a given ground set
in a way that the subsets consisting of relevant and diverse
items have high probabilities (Macchi 1975; Kulesza and
Taskar 2012; Soshnikov 2000; Shirai and Takahashi 2003a;
2003b). The DPP is receiving increasing attention in ma-
chine learning because of its broad applicability to recom-
mendation of products (Gillenwater et al. 2014; Gartrell,
Paquet, and Koenigstein 2017), summarization of docu-
ments or videos (Gong et al. 2014), modeling neural spiking
(Snoek, Zemel, and Adams 2013), and other areas where we
want to select a subset of relevant and diverse items.

In some of these applications, it is important to take into
account the dependency across time (Affandi, Kulesza, and
Fox 2012; Gong et al. 2014; Qiao et al. 2016; Snoek, Zemel,
and Adams 2013). For example, a customer who purchased
a particular subset of products last week might want to pur-
chase another particular subset of products that are other-
wise unneeded this week. In this paper, we study a DPP
whose distribution can change over time depending on the
subsets that have been selected.
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A key challenge in the applications of a DPP is in the
high computational complexity that is needed for learn-
ing the probability distribution from data. Because the log-
likelihood of a DPP is generally non-concave with respect
to its parameters, and maximum likelihood estimation of a
DPP is conjectured to be NP-hard (Kulesza 2012), the stan-
dard approach in the literature is to find a local maxima
via gradient-based methods. However, even one iteration of
gradient ascent can be computationally prohibitive. Specifi-
cally, a DPP can be specified by an M x M kernel matrix,
where M is the size of the ground set. An iteration of gra-
dient ascent involves basic matrix-operations such as inver-
sion, multiplication, and determinant, and a naive approach
would require O(M?) time.

Recently, Gartrell et al. (2017) have proposed an effi-
cient learning algorithm for DPPs, where they assume that
the kernel has a low rank and leverage its low-rank fac-
torization. The per iteration complexity of their gradient-
based approach is O(T k3 + K M?), where K is the rank
of the kernel, T is the number of the subsets in training
data, and & is the maximum size of those subset. This signif-
icantly improves upon learning algorithms for full-rank ker-
nels, which require O(T 3 + M3) (Mariet and Sra 2015) or
more (Gillenwater et al. 2014).

We extend the algorithm by Gartrell et al. to the DPP
whose kernel can change over time, which we refer to as
a Dynamic DPP. We design the Dynamic DPP in a way
that the dynamic kernel not only allows low-rank factor-
ization but also has a particular parametrization that en-
ables efficient learning through (stochastic) gradient-based
approaches. Specifically, our dynamic kernel can be repre-
sented by a matrix that is a linear function of the statistics of
previously selected subsets. The definition of the Dynamic
DPP is our first contribution.

In developing a learning algorithm for the Dynamic DPP,
we make three improvements to the algorithm by Gartrell
et al. First, we use a dual representation of the kernel to
reduce the computational complexity of a bottleneck from
O(K M?) to O(K? M). Second, we replace an expres-
sion involving the inverse of a matrix that might not be
convertible with a slightly simpler expression with pseudo-
inverse. Third, we represent our algorithm in vector-matrix
operations. When our algorithm for the Dynamic DPP is
specialized for the (standard) DPP, its per step complex-



ity is O(T k*> K + K2 M). This can be further reduced to
O(T k*+ K? M) by using inverse instead of pseudo-inverse
or setting K = O(k). Our algorithm thus has smaller per
step complexity than the best known algorithms (Gartrell,
Paquet, and Koenigstein 2017; Mariet and Sra 2016), as we
discuss further in the following. The per iteration complex-
ity of our algorithm for the Dynamic DPPis O(T' (M D K +
K2 M)), where D a hyperparameter of the Dynamic DPP
and represents the number of statistics of previously selected
subsets that the dynamic kernel takes into account. However,
we also propose an algorithm whose per iteration complex-
ity is O(T (M D K + D?> K?) + K? M), where we itera-
tively use rank-one updates to recursively compute matrix
inversions. These efficient learning algorithms for the Dy-
namic DPP and the DPP constitute our second contribution.

Related Work

Our proposed learning algorithm extends and improves upon
the learning algorithm for the low-rank DPP by Gartrell
et al. (Gartrell, Paquet, and Koenigstein 2017). The low-
rank DPP has been enhanced into a Bayesian low-rank
DPP with a Hamiltonian Monte Carlo (HMC) approach in
(Gartrell, Paquet, and Koenigstein 2016). However, the per
iteration complexity of the Bayesian low-rank DPP remains
O(T k3 + K M?) time, because it relies on the form of the
gradient derived for the low-rank DPP. Our techniques can
also be used with an HMC approach.

Another approach complementary to the low-rank DPP is
a Kronecker DPP, which assumes that the kernel is a Kro-
necker product (Mariet and Sra 2016). The learning algo-
rithm for the Kronecker DPP in Mariet and Sra (2016) has
per iteration complexity of O(T x3 + M?) time. Although
low-rank DPP and Kronecker DPP assume different struc-
tures, and their learning algorithms (for finding local max-
ima) are not directly comparable, this paper shows that the
per iteration complexity of the low-rank DPP can be made
smaller than the Kronecker DPP.

The prior work has studied various forms of DPPs that
change over time (Affandi, Kulesza, and Fox 2012; Gong et
al. 2014; Qiao et al. 2016; Snoek, Zemel, and Adams 2013).
However, the prior work does not fully learn the dynamic
kernel as we discuss in the following.

Affandi et al. (2012) study a Markov DPP, where the pair
of the subsets selected at two consecutive steps forms a DPP.
They use a heuristic method (that generally does not maxi-
mize an objective function) to learn only the quality mea-
sures of the DPP kernel, assuming that the similarity metric
is fixed and known. Notice that the kernel of a DPP can be
decomposed into a quality vector of size M and a similarity
matrix of size M x M (Kulesza and Taskar 2012).

Gong et al. (2014) study a sequential DPP, which is sim-
ilar to the Markov DPP but assumes that the ground set
changes over time. The proposed learning algorithm is simi-
lar to the one for the low-rank DPP but considers a mapping
from features of items to the low-rank matrix. They learn
this static mapping, while the ground set is dynamic. On the
other hand, we assume that the ground set is static and learn
a dynamic kernel.

3869

Qiao et al. (2016) study a time-varying DPP, where the
kernel changes over time but only slightly (i.e., updated by
a low-rank matrix) at a time. They propose an efficient sam-
pling method for the time-varying DPP. However, they as-
sume that their time-varying kernel is given and do not study
any learning algorithm. Our Dynamic DPP has a low-rank
update and can benefit from their sampling algorithm.

Snoek et al. (2013) apply a DPP with time-varying kernel
to neural spiking data. They assume that the quality measure
is time-varying depending on external stimuli. They learn
the time-varying kernel with a relatively naive approach.
Due to the computational complexity, their application is
limited to M = 31 neurons.

The Dynamic DPP is auto-regressive, and its particu-
lar parametrization is motivated by the dynamic Boltzmann
machine (DyBM) (Osogami and Otsuka 2015b; 2015a;
Osogami 2017), which makes the parameters of the Boltz-
mann machine depend on historical patterns. Similar to the
DyBM and vector auto regression (Liitkepohl 2005), our dy-
namic kernel is linear in its parameters and allows effective
optimization via gradient-based approaches.

Dynamic Determinantal Point Processes

We study a determinantal point process (DPP) whose kernel
can vary over time. Let L(¢) be the kernel of the DPP at time
t. We assume that the ground set stays unchanged over time
and let M be the size of the ground set. Then, for each ¢,
L(¢t) isan M x M positive semi-definite matrix indexed by
the items in the ground set. The probability that a subset X’
is selected from a ground set at time ¢ is given by

_det(L(t)x) 0
~det(L(t) + 1)’

where L(t)x denotes the principal submatrix of L(t) in-
dexed by the items in X'.

Similar to Gartrell et al. (2017), we use a low-rank factor-
ization of Li(t):

Pi(X)

Lt) =V(H V()" )
where V() is an M x K matrix for K < M. Then, by

Sylvester’s determinant identity, we can work with the dual
representation:

 det(L(t)x)

PiX) = det(C(t) + 1)’

3)
where C(t) is a K x K matrix and can be computed from
V(t) in O(K? M) time:

Ct)=V(1)" V(). @)
We define the Dynamic DPP in a way that V(¢) can de-
pend on the subset selected by time ¢ — 1 in the following
specific manner. Let x(s) denote an indicator column-vector
of length M that represents the subset selected (sampled) at
time s. Specifically, the i-th element of x(s) is 1 iff the i-th
item is selected (is in the selected subset) at time s. For each
t, we then let

®)



where B is an M x K matrix, and w(d) is a column-vector
of length K. The Dynamic DPP thus has parameters © =
(B,w(1),...,w(D)). If no items are selected during the
period from t — D to t — 1, we have L(t) = BB, which
may be understood as the baseline kernel. When D = 0, we
have V(t) = B for any ¢, and the Dynamic DPP is reduced
to the (static) DPP.

With our parametrization, the kernel can be represented
as follows:

D
=BB' +) Bw(d)
d=1

L(t) x(t—d)’

w(d)'BT

NE

+ ) x(t—d)

d=1

D
> x(t - Tw(d)x(t—d)T"

1d'=1

NE

+ (6)

d

To shed light on this parametrization, let B,, . be the m-
th row of B (i.e., a row-vector of length K) for each m.
Observe that the (4, j)-th element of L(¢) is given by

L;;(t) = +ZB w(d) z;(t —d)
D
+ Y @it —d)w(d) (BT
d;l R
+33 wt - dyw(d) T w(d) it —d), (7)
d=1d'=1

where x;(t) denotes the i-th element of x(¢). Notice that
L; ;(t) represents the product of the relevance of item i, the
relevance of j, and the similarity between the two items. Re-
call that x() is binary, and ”1” represents that the corre-
sponding item is selected at time .

If neither ¢ nor j are selected during the perlod fromt—D
to ¢ — 1, we have L”( ) = B,.(B,.)". If j is selected
at t — d, then L; ;(t) is increased by B;., w(d) If ¢ is se-
lected at ¢ — d, then L; ;(t) is increased by w(d)" (B;.)".
If 7 is selected at ¢ — d and j is selected at ¢ — d’, then
L; j(t) is increased by w(d) "w(d'). Hence, i and j become
more or less likely to be selected individually or together,
when one or both of these items have been selected in the
last D steps. The precise impact is given by the parameters
w(l),...,w(D), and B. We will learn those parameters in
a way that it best explains a given sequence of subsets.

Learning Dynamic DPPs

We seek to learn © in a way that it maximizes the log-
likelihood of given series of subsets. The training dataset
can consist of a set of sequences of subsets. For notational
simplicity, we assume a single sequence of subsets in this
section, but extension to multiple sequences is trivial. Let
(X1, ..., Xr) be the training dataset, where A} is the subset
selected at time .
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The log-likelihood of the training dataset is

T
= log Py(X: | X<i),

t=1
®)

where P;(X; | X<;_1) denotes the conditional probability

F(©) =logP((X, ..., X

of selecting &; at time ¢ given that X<, _; = (X1,..., X;_1)
are selected by time ¢ — 1. We define

ft(©) = log Pe(X: | X<i—1), )
so that f(©) = >, ft(©) and Vf(©) = >, Vfi(©),

where the gradient is with respect to O, and the summation
isfromt=1tot=1T.

Similar to Equation (5) of Gartrell et al. (2017), we can
represent V f;(O) as follows:

V1,(0)
= Vlogdet(L(t)x,) — Vlogdet(C(t) + I) (10)
= (L)) VL2, ) - tr((CH) + 1) VEW)),

(11)

where, for matrices Y and Z, one should understand
tr(Y VZ) as the matrix, indexed by ©, whose entry is
tr(Y %) for 0 € ©. We will also use tr(Y VsZ) to de-

note the matrix whose entry is tr(Y 69) for 6 € S for a
matrix S consisting of a subset of the parameters in O.

Unfortunately, the inverse in the first term of (11) might
not exist, which was not addressed in Gartrell et al.
(2017). Here, we derive an alternative expression using a
pseudo-inverse. For a matrix Y, the partial derivative of
log det(Y Y ") with respect to 6 can be represented as

dlogdet(YY") Z O(YT");; 0logdet(YYT)
26 BT oY),
- Z Wi )
_ I S+
2tr(WY ) (13)

where Y denotes the pseudo-inverse of Y. Because
Lt)x, = V(t)x,. (V(t)x,.) ", we can write (10) as

Vfi(©)=2tr (VV(t)Xu: (V(t)xt,:)+)
ftr((C(t) +1)7! VC(t)).

The following theorem shows specific forms of the gra-
dients of f;(©) with respect to each parameter of © =
(B,w(1),...,w(D)). The proof of the theorem is post-
poned to the appendix.

(14)

Theorem 1. Consider a determinantal point process with a
dynamic kernel L(t):

det(L(t)x,)

Pudi | Xsin) = det(C(t) + 1)’

15)



Algorithm 1 A learning algorithm for Dynamic DPPs.

1: il’lpllt: Xl,...7XT
2: Initialize B, W
3: repeat
4: fort =1to T do
5: J«T—-t+1,T—t+ D]
6: V+B+X[:,JJWT
7: R« V(VTV4+I)!
8: A — V[Xt7 Z]+
9: AB(t) + —R
10: AB(t)[X;, 1] + AB[&;, ]+ AT
11: AW(t) « AX[X, J] -RTX[:,T]
12: end for
133 B+« B+ AB()
14 W« W43l AW()
15: until a stopping condition is met
16: return: B, W
where L(t) = V() V(t)T, C(t) = V(t)T V (1),
D
V() = B—i—Zx(t—d) wi(d)" (16)

d=1

and L(t) x, denotes the principal submatrix of L(t) indexed
by the items in Xy. Then the gradient of

ft(®) = logPt(Xt | th—l) (17)
is given by
VB, fi(©) =2AT —2(V(t) A) ,, (18)
VB,;t):ft(@) ( (t )A)/’\?t (19)
Vo) [1(0) = 2Ax(t — 8)x, —2A V(1) x(t — 5) (20)

foré € [1, D], where By, . denotes the submatrix consisting
of rows of B indexed by the items in X;, V(1) x, . is defined
analogously, X; denote the items not in X},

A= (V(t);gt7:>+, and A = (C(t) +I)_ 1)

Theorem 1 leads to a gradient-based learning algorithm
shown in Algorithm 1. Here, we define W to be the K x D
matrix consisting of w(-) and X to be the M x (T'+ D — 1)
matrix consisting of x(-), except x(T'), in the reverse order:

W = (w(l),...,w(D)) (22)
X = (x(T - 1),...,x(1),0,... (23)

_ ,0).

The whole X may be prepared in the beginning, or its sub-
matrices may be constructed when they are needed. For clar-
ity, we use the notation such as B[X}, :] to denote the sub-
matrix consisting of rows of B indexed by the items in X}.

Algorithm 1 computes the gradients given in Theorem 1
in the for-loop and applies them in Steps 13-14 to update
B and W. For simplicity, we omit the factor of 2, which
is common in (18)-(20). Hence, n in Steps 13-14 may be
understood as the learning rate multiplied by 2.
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In each repetition of the for-loop, J defines the set of
columns of X to be used in that repetition. Notice that

X[:,J] = (x(t—1),...,x(t — D)). (24)
Then V in Step 6 corresponds to V(¢), and R in Step 7
corresponds to V(t) A.

The Dynamic DPP has hyperparameters K and D that
needs to be set appropriately with validation. When the size
of a subset X’ is greater than K, the probability P;(X) must
be zero. We therefore need to set K at least as large as the
maximum size « of the subsets in the training data. We thus
assume K > k. Notice that one could also work with the
probability of the complement of the selected subset. Then
we can set X > M — R, where & is the minimum size of
the selected subset (i.e.. M — K is the maximum size of the
complement of the selected subset).

Algorithm 1 has the following computational complexity
per iteration of the repeat-loop:

Theorem 2. FEach iteration of Algorithm 1
O(T (M D K + K? M)) time.

takes

Proof. Step 6 involves a multiplication of an M x D matrix
and a D x K matrix, taking O(M D K) time. Step 7 involves
a multiplication of a K x M matrix and an M x K matrix,
an inversion of a K x K matrix, and a multiplication of an
M x K matrix and a K x K matrix, taking O(K? M) time.
Step 8 involves a pseudo-inverse of a £ x K matrix, where
K is the size of X;. Step 8 thus takes O(k? K ) time. Step 11
involves a multiplication of a K X k matrix and a Kk X D
matrix as well as a multiplication of a K x M matrix and an
M x D matrix, taking O(K M D) time. The theorem now
follows because we need to set K € [k, M]. O

One can also consider a learning algorithm based on
stochastic gradients for Dynamic DPPs. Such an algorithm
has the following computational complexity per step:

Corollary 1. A stochastic update for the Dynamic DPP
takes O(M D K + K? M) time.

When D = 0 in Algorithm 1, we have a learning algo-
rithm for the (static) DPP (see Algorithm 2). Because the
kernel is static, we can place Step 4 of Algorithm 2 out of
the for-loop, unlike the R in Step 7 of Algorithm 1 that needs
to be computed for each . As a result, Algorithm 2 has the
following computational complexity per iteration.

Theorem 3. Each iteration of Algorithm 2 takes
O(Tk?*K + K?M) time, where k is the maximum
size of Xy fort € [1,T).

Proof. Step 4 involves a multiplication of a K x M matrix
and an M x K matrix, inversion of a X x K matrix, and
a multiplication of an M x K matrix and a K x K matrix,
taking O(K?2 M) time. Step 6 involves a pseudo-inverse of
an at most k£ x K matrix, taking O(k? x K) time. O

Algorithm 2 thus has a smaller per-iteration computa-
tional complexity than the O(T k3 + K M?) time algorithm
for the low-rank DPP in Gartrell et al. (2017) as long as
K = O(r). However, notice that the O(x? K) cost stems
from pseudo-inverse. The use of inverse as in Gartrell et



Algorithm 2 A learning algorithm for DPPs.

Algorithm 3 Step 7 of Algorithm 1 with rank-one updates.

1: il’lpllt: Xl,...7XT

2: Initialize B

3: repeat

4 AB+ -TBB'B+I)!

5: fort =1to T do

6: AB[Xt, Z] <—AB[X,5, ]+(B[Xt, I]+)T
7: end for

8: B+~ B+nAB

9: until a stopping condition is met

10: return: B

al. (2017) would reduce the computational complexity to
O(T k® + K2 M). Also, observe that Algorithm 2 is fully
expressed in basic matrix operations and simpler than the
one in Gartrell et al. (2017).

Rank-one Updates for Faster Computation
When D = o(K), the bottleneck of Algorithm 1 is on the
computation of A(t) = (I+ C(t))”", which needs to be
computed for every ¢. This is in contrast to Algorithm 2 for
DPPs, where the kernel is independent of ¢, and the corre-
sponding quantity needs to be computed only once (Step 4).
Recall that computation of A (t) requires O(M K?) time for
computing C(t) and O(K?) time for inverting (I + C(2)).

In this section, we will show that we can reduce the com-
putational cost of this bottleneck when D = o(v/M) by
exploiting the fact that V (¢ + 1) differs from V(¢) only by
a small amount. Specifically, observe from (5) that V(¢ + 1)
can be computed from V (¢) recursively:

D
V(t+1)=V(e)+ > (x(t +1-d)—x(t— d)) w(d)T.
d=1 )
Letting 6 (¢, d) = x(t +1 —d) —x(t — d), we can then write
I+ C(t + 1) recursively:
D
I+ C(t+1)=T+C(t)+ > V() 8(t,d)w(d)"
d=1

+Y w(d)d(t,d)T V()

Mo

d=1

D D
+3 0N wd)a(td)" a(t.d)w(d)T.
d=1d'=1

(26)
Namely, once we have the value of A(t), the value of
A(t+ 1) can be obtained in O(D? K?) time, avoiding com-
putation from scratch, by combining A () with rank-one up-
dates suggested by the following Sherman-Morrison lemma:

Lemma 1 (Sherman-Morrison). Let Y be an invertible K x
K matrix. Let u and v be column vectors of dimension K.
Then,

Y- luv'y!

™l -1
(Y+uv) =Y vy o

3872

1: if ¢t = 1 then

2 At)« (VTV 41!

3: else

4: Compute A (¢ + 1) from A(¢) by applying the rank-
one update for D? 4 2 D times

5: end if

6: R+ VA(t)

This lemma implies that Y + uv ' can be inverted in
O(K?) time if Y~ is known.

Step 7 of Algorithm 1 can thus be modified into Algo-
rithm 3, which leads to the following computational com-
plexity:

Theorem 4. FEach iteration of Algorithm 1 takes
O(T(MDK + K?D?) + K?M) time when Step 7
is replaced with Algorithm 3.

A particularly attractive case from computational perspec-
tives is when D = 1. Then we only need three rank-one
updates to compute A(t + 1) from A(t). There are, how-
ever, other cases where one can enjoy this reduced computa-
tional cost. For example, when w = w(1) = w(2)
w(D), we can write

V(t+1)=V(t)+ (x(t) —x(t —D))w'. (27)
In this case, V (t) depends on x(s) for s < t only through

ZdDzl x(t — d), which represents the number of selection
during the last D steps for each item. Another example is
when w(d) = Aw(d — 1) for each d for some 0 < A\ < 1.
With w = w(1), we then have

V(t+1)=V(t)+yw', (28)
where
D—1
y=x(t)— (1 =X Y \NIx(t—d)— AP~ x(t — D).
d=
' (29)

In this case, the effect of the selection in previous steps di-
minishes by a factor of A at every time step.

After we learn the parameters of a Dynamic DPP, we
would want to compute a sequence of the probabilities given
by (3) for a given sequence of subsets. This would involve
computing a sequence of the determinants. In particular, the
denominator of (3) is the determinant of C(¢), which needs
to be computed from the M x K matrix V (t):

det (I + C(t)) — det (I V)T V(t)). (30)
Thus, the computational time for each step of ¢ is O(K? M).

The following matrix determinant lemma, however,
shows that this determinant can be updated in O(D? K?)
time, similar to the computation of A (¢ + 1) from A(t).

Lemma 2 (Matrix determinant). LetY be an invertible K x
K matrix. Let u and v be column vectors of dimension K.
Then we have

det (Y+uv')=(1+v Y 'u)det(Y). (@31



Numerical Experiments

Here, we apply the proposed learning algorithms to four
music datasets (JSB Chorales, Nottingham, Piano-midi,
and MuseData), which have been used in Boulanger-
Lewandowski et al. (2012). Each dataset consists of a set of
sequences of chords. A chord is a subset of notes (items) that
are selected from the ground set of M = 88 notes', corre-
sponding to the keys of the piano. A sequence of the chords
forms a tune from a particular category of music associated
with each dataset. The dataset is divided into training, vali-
dation, and test data.

In the experiment, we first apply Algorithm 2 to learn the
B of a DPP, which will be used as the baseline. We then ap-
ply Algorithm 1 to learn the B and W of a Dynamic DPP,
where we use the B trained for the DPP as the initial values
of B. In Algorithm 1 and Algorithm 2, we choose the step
size 7 via a relatively simple approach of backtracking line
search, loosely following Armijo (1966)>. We stop the iter-
ation when no step size significantly increases the objective
function or when parameters are updated 100 times. Because
the training data consists of multiple sequences, the for-loop
in each of the algorithms is now over all of the steps in all of
the sequences in the training data.

Figure 1 shows the log-likelihood given by the trained
models on test data. The horizontal axis represents the lag D
in Equation (5), and D = 0 corresponds to the DPP (base-
line). Each curve in the figure shows the results with a par-
ticular value of rank K as indicated in the legend, where
K is the maximum number of notes that constitute a chord
(i.e., maximum size of selected subsets) in training or vali-
dation data for each dataset. For JSB Chorales, the choice of
K = Ky = 4 results in low log-likelihood of below —10.0
for any D under consideration and is not shown in the figure
(K = 4 Ky is shown instead). Note that JSB Chorales has
a particularly small value of Ky = 4, compared to the other
datasets.

We can observe that the Dynamic DPP (D > 0) consis-
tently outperforms the baseline for any K and D, which
suggests the soundness of our learning algorithm for the
Dynamic DPP. Particularly significant improvement is ob-
served when we increase D = 0 to D = 1. Increasing K
from K = K| does not significantly increase log-likelihood.
This means that the low-rank assumption can speed up learn-
ing without significantly sacrificing the quality of learning.
In fact, we find that estimated kernels tend to have Ky dom-
inating singular values.

We implemented our learning algorithms with Python
and measured the computational time on a machine running

"We ignore the notes that appear neither in training data nor in
validation data. The effective size of the ground set is thus reduced
from M = 88 to M = 51 for JSB Chorales, M = 57 for Not-
tingham, and M = 78 for MuseData (Piano-midi uses all M = 88
notes). This preprocess reduces the computational complexity, but
we find qualitatively similar results without the preprocess.

2Specifically, we search the largest step size 7 that increases
the objective value from the candidate step sizes that can be repre-
sented as 7 = 10~ " for a nonnegative integer n € [nmin, 9], where
nmin = 3. When the largest step size is used to update parameters,
we decrease nmin by one to allow larger step sizes.
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Ubuntu 16.04 with 4.0 GHz Intel Core i7-6700K CPU and
48 GB Memory. For example, for the JSB Chorales dataset,
the average time per iteration for learning B and W of a
Dynamic DPP with D = 3 (from Line 4 to Line 14 of Al-
gorithm 1) varies from 2.3 seconds for K = Ky = 4t0 2.8
seconds for K = 3 Ky = 12. The corresponding average
time per iteration for learning B of a DPP (from Line 4 to
Line 8 of Algorithm 2) varies from 1.3 seconds for K = K
to 1.6 seconds for K = 3 K.

Conclusion

We have proposed the Dynamic DPP, where the kernel of a
DPP can change over time in an auto-regressive manner. The
particular structure of the Dynamic DPP allows learning via
(stochastic) gradient-based methods. A potential bottleneck
of such a learning algorithm is in inverting the dynamic ker-
nel at every step. We have shown, however, that the use of
dual representation and rank-one updates can substantially
reduce the computational complexity.

In this paper, we have primarily provided theoretical sup-
port on the proposed approach. Although we have also
demonstrated soundness and validity of the proposed algo-
rithms through numerical experiments, we have not yet in-
vestigated their full capabilities. Important future work is in
advancing practical aspects of the proposed approach and in
customizing it for particular applications.

Appendix: Proof of Theorem 1

We prove the theorem by establishing the following two
lemmas, which respectively derive computationally conve-
nient form of the two terms of (14). These two lemmas im-
mediately imply Theorem 1.

Lemma 3. Let

D
V()x,: =Bu,. + Y x(t—dx,w(d)', (32
d=1
and let X; denote the items not in X;. Then we have
(Ve VOx: (VD)) = (VOx) )T 63
tr(Vag, VO (VO)x,) ") =0 (34)

(Vi) VIOx (VD)) = (V) (= ),
35)
foré e [1,D].
Lemmad. Let C(t) = V() V(t), where
D
)=B+ ) x(t- (36)
d=1
and let A = (C(t) + I)_ , where 1 is the K x K identity

matrix. Then we have

tr((C(t) +1)7! VBC(t)) =2V(t)A 37)
tr((C(t) +1)7! VW(5)C(t)) —2AV(H) x(t—0) (39

foré e [1,D].
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Figure 1: Log-likelihood given by trained Dynamic DPPs on test data for the four music datasets. The rank K is varied across
panels. The hyper-parameter D is varied along the horizontal axis, and D = 0 corresponds to the DPPs (baseline). The rank
K is set as indicated in the legend, where K is the maximum number of notes that constitute a chord in training or validation

data for each dataset.

Proof of Lemma 3

Let B denote the |X;| x K submatrix of B, where each row
of B corresponds to the row of B indexed by an item in X;.
Let X(s) denote the subvector of x(s), where each element
of X(s) corresponds to the element of x(s) indexed by an
item in X;. Namely,

B=By,. (39)
x(s) = x(s)x,- (40)
Then we have
V(t)x,: =B+ %t —d)w(d). (41)
d
It is easy to see that
VﬁiﬁjV(t)Xt); =e;; (42)

where e; ; is matrix of order | X;| x K" whose entries are zero
except the (i, 7)-th entry, which is one. Therefore, letting

A= (V(t)x,.)", we have
tr (Vﬁi,jv(t)%,: A) = tr(em A)

Aji= (AT,
(43)

Hence we have

tr(VgV(Hx, A) =AT. (44)

Likewise, we can obtain the gradient with respect to w(J)

by observing that
V), V(t)a,: =X(t—0d)e/, (45)

where e; is the indicator column vector of length K with
only j-th entry being one. Hence, we have

tr(VW((;)jV(t)Xt A) - tr(i( ) eJTA) (46)
= tr (ejA %(t — 5)) 47)
= (A %(t — 5)) | (48)
J
Therefore, we establish
tr (Vw(a)V(t)Xt,: ~) = Ax(t—9) (49)
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Proof of Lemma 4
To prove lemma 4, we will use the following lemma:

Lemma 5. LetY be a K x K symmetric matrix, and let Z
be a M x K matrix. Then

tr(YV(Z'Z)) = 2tr((ZY) ' VZ). (50)
Proof.

tr(YV(Z'2)) =tr(Y(VZ)'Z+YZ'VZ) (51
=tr(VZ)'ZY +(ZY")'VZ) (52)
=tr((ZY)'VZ+(ZY")'VZ) (53)
=2tr((Z2Y)'VZ). (54)
O

First observe that
VBMV@) =€, (55)

where e; ; is matrix of order M x K whose entries are zero
except the (i, j)-th entry, which is one. Because A is sym-
metric, we can use Lemma 5 to show

(A Ve, , (V) TV(©)) = 26:(V(t) A) Vg, V(1))

(56)
=2tr(V(t) A) Tei)  (57)
=2((V(t)A) )i (58)
=2(V(t)A),,, (59)

where the last equality holds because A is symmetric.
Therefore, we have

tr(AVe(V(t) V) =2V(t) A (60)
Likewise, we have
V), V() =x(t = d)e], (61)



where e; is the indicator column vector of length K" whose

only ;' entry is 1. Again, because A is symmetric, we can
use Lemma 5 to show

tr(A V), (VI V) = 2tr((V(t) w(s); V() (62)

ATV
)T

=2tr((V(t) A)Tx(t — 6)e) ) (63)
2((V() A)Tx(t - 9)); (64)
=2(A V() x(t —9));, (65)

where the last equality holds because A is symmetric.
Therefore, we establish

tr(A V) (V(t) V) =2A V() 'x(t —5).  (66)
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