
Dynamic Pricing for Reusable Resources
in Competitive Market with Stochastic Demand

Jiang Rong,1 Tao Qin,2 Bo An3

1The Key Lab of Intelligent Information Processing, ICT, CAS
1University of Chinese Academy of Sciences, Beijing 100190, China

rongjiang13@mails.ucas.ac.cn
2Microsoft Research, Beijing 100080, China

taoqin@microsoft.com
3School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798

boan@ntu.edu.sg

Abstract

The market for selling reusable products (e.g., car rental,
cloud services and network access resources) is growing
rapidly over the last few years, where service providers max-
imize their revenues through setting optimal prices. While
there has been lots of research on pricing optimization, ex-
isting works often ignore dynamic property of demand and
the competition among providers. Thus, existing pricing so-
lutions might be far from optimal in realistic markets. This
paper provides the first study of service providers’ dynamic
pricing in consideration of market competition and makes
three key contributions along this line. First, we propose a
comprehensive model that takes into account the dynamic de-
mand and interaction among providers, and formulate the op-
timal pricing policy in the competitive market as an equilib-
rium. Second, we propose an approximate Nash equilibrium
to describe providers’ behaviors, and design an efficient algo-
rithm to compute the equilibrium which is guaranteed to con-
verge. Third, we derive many properties of the model without
any further constraints on demand functions, which can re-
duce the search space of policies in the algorithm. Finally, we
conduct extensive experiments with different parameter set-
tings, showing that the approximate equilibrium is very close
to the Nash equilibrium and our proposed pricing policy out-
performs existing strategies.

1 Introduction

In many real-world applications, the service providers’ re-
sources are reusable and the number of available products
changes over time because of the arrival and departure of
customers’ demand. Dynamic pricing policy plays an impor-
tant role in making profits from price-sensitive users, which
has shown great success in industries, e.g., the car rentals
(Geraghty and Johnson 1997), hotel reservations (Choi and
Mattila 2004; Weatherford and Kimes 2003), network ser-
vices (Paschalidis and Tsitsiklis 2000), and the cloud com-
puting (Kantere et al. 2011; Xu and Li 2012), and has at-
tracted lots of research attention (Şen 2013; Elmaghraby
and Keskinocak 2003; Levin, McGill, and Nediak 2009;
Wang et al. 2015; Xu et al. 2015). There are two impor-
tant properties for the market: 1) users’ demand is stochastic

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

over time, which leads to dynamic inventories of providers;
and 2) providers that offer similar services need to compete
against each other. However, existing works have partially
neglected or treated these characteristics in an inadequate
way and thus their pricing policies might lead to poor per-
formance in the realistic market. Against this background,
this paper investigates dynamic pricing to match demand
with inventory in order to maximize providers’ long-term
revenues in the competitive market, which gives solid theo-
retical and experimental analyses and makes three key con-
tributions.

First, we propose a comprehensive model to describe the
real-world applications with multiple providers and stochas-
tic user demand, where a product can be reused, e.g., re-
sources in a cloud platform. Existing works ignore either
the competition or the dynamic feature. Demand forecast
is studied in (Geraghty and Johnson 1997; Weatherford
and Kimes 2003) and the most widely-used model to de-
scribe users’ dynamic demand is the Poisson process (El-
maghraby and Keskinocak 2003; Gallego and Van Ryzin
1994; Paschalidis and Tsitsiklis 2000; Xu and Li 2012).
However, those works do not consider the market compe-
tition. Xu and Hopp (2006) assume that customers’ arrival
rates follow the geometric Brownian motion and the per-
fect Bayesian equilibrium is used to model providers’ be-
haviors. Levin et al. (2009) consider strategic users and pro-
pose the subgame-perfect equilibrium. However, they fo-
cus on the one-shot inventory replenishment problem with
dynamic pricing, which cannot describe the market with
reusable products. In this paper, we consider both stochas-
tic user demand and competition from providers. Following
the common practice in the literature, the demand is also
described by the Poisson process, based on which we for-
mulate the dynamic and competitive market as continuous-
time Markov chains (Gopalratnam, Kautz, and Weld 2005;
Norris 1998; Simmons and Younes 2004).

Since each provider aims to maximize his/her expected
revenue, the optimal policy is supposed to be a Nash Equi-
librium (NE)1. We show that it is difficult for providers to
reach the NE in real world because a provider does not have
the full information of others and his/her revenue cannot be

1In this paper, the NE refers to pure strategy Nash Equilibrium.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4718



explicitly represented as a function of his/her pricing pol-
icy. Our second contribution is then to propose an Approxi-
mate Equilibrium (AE) solution concept (Nisan et al. 2007;
Tsaknakis and Spirakis 2008) and to design an algorithm
based on the best-response principle to efficiently compute
the AE, which is guaranteed to converge to an AE.

Third, we derive many properties of the model. The set-
ting where the provider charges a customer a fee per call, no
matter how long the customer uses the service is analyzed
in (Paschalidis and Tsitsiklis 2000). Xu and Li (2013) study
the monotonicity of the dynamic pricing policy for the cloud
market, but their results need the demand functions to sat-
isfy particular conditions, while our results do not make any
special assumptions on the demand process. The properties
we found exhibit the monotonicity and concavity about the
expected overall revenue and the monotonicity of AE poli-
cies with respect to the capacity utilization. These results are
then used to reduce the search space in the computation of
equilibrium strategies.

We conduct extensive experiments to evaluate our algo-
rithm which shows good convergence performance. The re-
sults indicate that our pricing policy outperforms existing
strategies and the proposed AE is very close the NE.

2 Modeling Competitive Market with

Stochastic Demand

2.1 Motivation Example

Competition is one of the key features of today’s service
business, e.g., the cloud market, where different companies
provide similar resources to users over the Internet (Wang
et al. 2015; Xu et al. 2015). The most widely-used cloud
services include Amazon’s AWS and Microsoft’s Azure.
Another feature of the market is that users’ demand and
providers’ inventories are dynamic, e.g., the number of vir-
tual machines occupied by users in a cloud platform is dy-
namic. Since users are generally price-sensitive, one should
strategically set prices to influence demand so as to better
utilize unused capacity. Indeed, Amazon EC2 has introduced
the “spot pricing” to dynamically update the price for a vir-
tual instance. In this paper, we investigate providers’ optimal
dynamic pricing policies to maximize their expected rev-
enues in the competitive market. We first give our model in
the following two subsections.

2.2 Stochastic Demand

We use K to represent the set of service providers in the
market. Following the common practice in the literature (El-
maghraby and Keskinocak 2003; Paschalidis and Tsitsiklis
2000; Xu and Li 2013; Xu and Hopp 2006), we assume that
users’ demand for the service of provider k ∈ K is deter-
mined by two independent Poisson processes, namely the
arrival process that models the coming of new demand and
the departure process that corresponds to the leaving of ex-
isting requests, which are related to the provider’s own price
pk and other providers’ prices p−k considering the market
competition. Specifically, we use λk(·) to represent the Pois-
son arrival rate (number of new demand instances per unit

time) for provider k, which satisfies the following properties
(Dockner and Jørgensen 1988):

λk(p) ≥ 0;
∂λk(p)

∂pk
< 0;

∂λk(p)

∂pk′
> 0, ∀k′ �= k, (1)

where p = (p1, p2, . . . , p|K|). The above equations are con-
sistent with the reality, where 1) the arrival rate can never be
negative; 2) decreasing provider k’s own price will attract
more new users to him/her; and 3) when others’ prices in-
crease, some users may turn to choose k’s service and hence
the arrival rate of k increases. Similarly, the Poisson depar-
ture process is modeled by μk(·), which satisfies that:

μk(p) ≥ 0;
∂μk(p)

∂pk
> 0;

∂μk(p)

∂pk′
< 0, ∀k′ �= k. (2)

We use the notation (pk, p−k) = p and use δk to represent
provider k’s discrete pricing space2. The minimal price pmin

k

and maximal price pmax
k of δk satisfy that μk(p

min
k , p−k) =

0 and λk(p
max
k , p−k) = 0, respectively, ∀p−k ∈ δ−k, where

δ−k = ×i∈C(k)δi and C(k) = K \ {k}. We assume that
both λk(pk, p−k) and μk(pk, p−k) are bounded since in the
real world providers cannot gain infinite arrival and depar-
ture rates. Let Nk be the maximal capacity (i.e., total number
of available resources) of provider k and [Nk] denote the set
{0, 1, . . . , Nk}. Since both the arrival and departure of de-
mand are random process, the number of instances used by
customers can be formulated as a continuous-time Markov
process, where provider k’s state n ∈ [Nk] is the number
of his/her used instances. The pricing policy of provider k
is represented as Pk = (pk,0, pk,1, . . . , pk,Nk

), where pk,n
is the price set for state n. We have that Pk ∈ Δk, where
Δk = ×Nk

n=0δk. We define P−k = ×i∈C(k)Pi as the pol-
icy profile of other providers except k and use the notations
Δ−k = ×i∈C(k)Δi and P = (Pk, P−k), ∀k ∈ K.

2.3 Multiple-Provider Model

We first introduce the single-provider model. Assume that
provider 1 is the only one in the market and then the
transition rate matrix (Guo and Hernández-Lerma 2009;
Norris 1998) of the Markov process for his/her state can be
written as Q1(P1) = (q1i,j(P1))i,j , i, j ∈ [N1]:

q1i,j(P1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1(p1,i), if j = i+ 1;

μ1(p1,i), if j = i− 1;

−∑
l �=i q

1
i,l(P1), if j = i;

0, otherwise,

(3)

where q1i,j(P1) represents the rate of the process transition
from state i to state j. In the long-term view, the proba-
bility of the appearance of state n in the continuous-time
Markov process, denoted by π1,n(P1), n ∈ [N1], satisfies
that

∑
n∈[N1]

π1,n(P1) = 1 and π1(P1)·Q1(P1) = 0, where
π1(P1) = (π1,0(P1), π1,1(P1), . . . , π1,N1

(P1)) is called the
stationary (or steady-state) probability.

When there are multiple providers, their pricing poli-
cies can affect each other’s demand arrival and departure

2Note that the price corresponds to the money which is discrete.

4719



as shown in Eqs.(1)-(2) and hence the stationary proba-
bility of each provider k is a function of P (not only
Pk). Let πk(P ) = (πk,0(P ), πk,1(P ), . . . , πk,Nk

(P )),
π−k(P ) = ×i∈C(k)πi(P ) and π(P ) = (πk(P ), π−k(P )).
Then the transition rate matrix for provider k is Qk(P ) =
(qki,j(P ))i,j , i, j ∈ [Nk]:

qki,j(P )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E
π−k(P )
p−k∈P−k

{λk(pk,i, p−k)}, if j= i+1;

E
π−k(P )
p−k∈P−k

{μk(pk,i, p−k)}, if j= i−1;

−∑
l �=i q

k
i,l(P ), if j = i;

0, otherwise,

(4)

where E
π−k(P )
p−k∈P−k

{f(p−k)}=
∑

p−k∈P−k
f(p−k)Pr(p−k|π−k(P ))

and Pr(p−k|π−k(P )) is the probability of pricing p−k given
π−k(P ). Similar with the single-provider model, we have∑

n∈[Nk]
πk,n(P ) = 1; πk(P ) ·Qk(P ) = 0. (5)

When n instances are being used by customers, provider k
can receive n · pk,n revenue per unit time. Thus the average
expected revenue rate for provider k is

Jk(Pk, P−k) =
∑Nk

n=0
πk,n(P ) · n · pk,n. (6)

3 Optimal Dynamic Pricing

Since each provider aims to maximize his/her revenue rate
while considering the policies of others, we need to study the
equilibrium pricing policies. We first show that it is difficult
for providers to compute their NE policies. To address this
problem, we propose an AE solution concept and design an
efficient algorithm to calculate the equilibrium strategies.

3.1 Equilibrium Policies

Definition 1 (Nash equilibrium). A Nash equilibrium is a
pricing policy profile P ∗ = ×k∈KP ∗k , such that ∀k ∈ K,

Jk(P
∗
k , P

∗
−k) ≥ Jk(Pk, P

∗
−k), ∀Pk ∈ Δk. (7)

That is, no one can gain higher revenue rate by uni-
lateral deviating from his/her equilibrium policy. However,
Jk(Pk, P−k) is not an explicit function with respect to P =
(Pk, P−k). Specifically, by solving Eq.(5), we get that

πk,n(P ) = 1/
(∑n−1

m=0

∏n−1

j=m

qkj+1,j(P )

qkj,j+1(P )
+ 1

+
∑Nk

m=n+1

∏m−1

j=n

qkj,j+1(P )

qkj+1,j(P )

)
, ∀n ∈ [Nk].

The above equation implies that πk,n(P ) cannot be ex-
plicitly represented with P since the term qki,j(P ), in turn,
involves computing π−k(P ) (see Eq.(4)). Thus, the ex-
pected revenue rate Jk(Pk, P−k) is an implicit function
with respect to P , which makes it difficult to compute the
NE because it is equivalent to optimizing a set of non-
liner functions with non-linear constraints. Existing meth-
ods for NE calculation (including the best-response itera-
tion (Truong-Huu and Tham 2013; Goemans, Mirrokni, and

Vetta 2005) and quantal-response correspondence (Rong et
al. 2016; Turocy 2005)) always require the explicit repre-
sentation of the revenue function. Besides, computing the
NE needs full information of all providers’ demand func-
tions, which is usually unavailable in the real world. Thus,
it is hard for providers in the real-world application to
reach an NE. To address these problems, when we opti-
mize provider k’s policy, we view the steady-state proba-
bilities π−k = (π1, . . . , πk−1, πk+1, . . . , π|K|) of others as
fixed (i.e., they do not change with P ). Provider k’s sta-
tionary probability under this assumption, π̂k(P |π−k) =
(π̂k,0(P |π−k), π̂k,1(P |π−k), . . . , π̂k,Nk

(P |π−k)), can be
calculated based on the following linear equations:∑

n∈[Nk]
π̂k,n(P |π−k) = 1, π̂k(P |π−k)·Qk(P |π−k) = 0,

where Qk(P |π−k) is the same with Qk(P ) except that
π−k(P ) in the definition (Eq.(4)) is replaced with π−k. The
corresponding revenue rate with fixed π−k is

Ĵk(Pk, P−k|π−k) =
∑Nk

n=0
π̂k,n(P |π−k) · n · pk,n. (8)

The revenue function defined in Eq.(8) is an explicit function
of P . If all providers aim to maximize this revenue function,
it follows that the resulting pricing policy, denoted by P̂ ∗ =
×k∈KP̂ ∗k , satisfies that ∀k ∈ K and Pk ∈ Δk,

Ĵk(P̂
∗
k , P̂

∗
−k|π−k(P̂

∗)) ≥ Ĵk(Pk, P̂
∗
−k|π−k(P̂

∗)), (9)

The policy P̂ ∗ is not an NE according to Definition 1, which
is an AE, as defined below.
Definition 2 (Approximate equilibrium). An ε-approximate
equilibrium is a pricing policy profile P̂ ∗ with a vector ε =
(ε1, ε2, . . . , ε|K|), such that ∀k ∈ K,

Jk(P̂
∗
k , P̂

∗
−k) + εk ≥ Jk(Pk, P̂

∗
−k), ∀Pk ∈ Δk. (10)

We see that ε measures the difference between P̂ ∗ and
P ∗ (i.e., how approximate the strategy P̂ ∗ is to the NE
P ∗), and if εk = 0 for all k ∈ K, then P ∗ = P̂ ∗. Since
Ĵk(P̂

∗
k , P̂

∗
−k|π−k(P̂

∗)) = Jk(P̂
∗
k , P̂

∗
−k), we have that εk =

maxPk∈Δk
Jk(Pk, P̂

∗
−k)− Ĵk(P̂

∗
k , P̂

∗
−k|π−k(P̂

∗)). That is,
εk can be viewed as the additional revenue provider k can
gain by unilaterally deviating from P̂ ∗. Note that P̂ ∗ is the
solution of Eq.(9), but not a function of ε. That is, given other
parameters of the model, both P̂ ∗ and ε are fixed. We show
in experiments that ε is very small.

The policy P̂ ∗ is more practical than P ∗ in the real world
because provider k usually does not know others’ demand
functions (λk′(·) and μk′(·) for all k′ �= k) and thus cannot
compute the NE P ∗. However, each provider k can observe
others’ P−k and π−k and then optimize his/her policy, which
may make the policy to converge to the P̂ ∗ eventually, as
discussed in next section.

3.2 Equilibrium Computation

The equilibrium solution concept implies that each
provider’s policy is a best response to others’ policies. Mo-
tivated by this observation, the concept of Strategy Profile

4720



Graph (SPG) is introduced, which is a directed graph with
nodes representing players’ strategy profiles and edges cor-
responding to best response actions of players, and the Best
Response Dynamics (BRD) algorithm is proposed to com-
pute the NE (Chien and Sinclair 2007; Goemans, Mirrokni,
and Vetta 2005; Nisan et al. 2007), the high level idea of
which is to start from a node of the SPG and then repeatedly
transit to the next node along a best-response edge until there
is not a successive node. This algorithm is proved to con-
verge in congestion games and potential games (Chien and
Sinclair 2007), but it may fall into a cycle of the SPG and
never converge in general normal-form games (Goemans,
Mirrokni, and Vetta 2005). In our model, P̂ ∗k can be viewed
as a best response to others’ strategy profile P̂ ∗−k and their
fixed stationary probability profile π−k(P̂

∗). We formally
define provider k’s the best response to P−k and π−k as

B̂k(P−k|π−k) = argmaxP ′
k∈Δk

Ĵk(P
′
k, P−k|π−k). (11)

The details of calculating B̂k(P−k|π−k) will be given in
next section. Then we can build a SPG as follows: a node
in the graph corresponds to a pricing policy profile P ∈
Δ and the set of outgoing edges of node P is πP =

{B̂k(P−k|π−k)|k ∈ K}, where Δ = ×k∈KΔk π−k =
π−k(P ). To address the non-convergence problem of the
BRD algorithm, we design Algorithm 1 based on the SPG,
which ensures to converge to the P̂ ∗ if it exists in the game.
The high-level idea is to search the nodes of the SPG for P̂ ∗
in a depth-first manner, during which we delete the incoming
edges of a searched node to make sure each node is visited
at most once.

Algorithm 1: Equilibrium Computation
1 while True do
2 Randomly choose a starting node P ∈ Δ;
3 if P satisfies Eq.(9) then return P ;
4 ;
5 Initialize the path A as empty;
6 while True do

7 Delete P from Δ and πP ′ for all P ′ ∈ Δ;
8 if πP is not empty then

9 Randomly select an P ′ in πP ;
10 if P ′ satisfies Eq.(9) then return P ′;
11 ;
12 Append P to A;
13 P ← P ′;

14 else
15 if A is empty then Break;
16 ;
17 P ← the last element of A;
18 Delete P from A;

Theorem 1. Algorithm 1 ensures to converge to a P̂ ∗ if it
exists.

Proof. We first prove that the second loop in line 5 al-
ways stops. Beginning with a starting node P 0, Algorithm

1 searches for the P̂ ∗ in lines 5-15, which follows the rule
that 1) if a node P has a child node P ′ (lines 7), append
P to path A (line 10) and transit to P ′ (line 11), otherwise
(line 12), 2) go back to P ’s parent node (line 14), delete its
parent from path A (line 15) and then apply the rule to its
parent in next iteration. Loop 2 stops when a P̂ ∗ is found
(line 9) or A is empty (line 13), otherwise, the length of A
either increases (line 10) or decreases (line 15). Therefore,
to prove that loop 2 always stops, we just need to prove that
A’s length will stop changing at some time. Since we delete
P from the SPG (line 6) when the algorithm transits to it
(thus each node can be transited to at most once) and |Δ| is
finite, the length of A will stop increasing at some time either
because a P̂ ∗ is found (line 9) or no node can be transited
to. From that time on, A’s length can only decrease, which
stops when A is empty (line 13). Hence, loop 2 always stops.

If a P̂ ∗ is found when loop 2 stops, our algorithm termi-
nates, otherwise (if A is empty), it means that all the nodes
P 0 can transit to do not connect to a P̂ ∗. Thus if there are
paths from a new starting node to a P̂ ∗ in the original SPG,
the nodes that have been deleted did not cut off the paths.
Because |Δ| is finite and becomes smaller and smaller, a
starting node that connects the P̂ ∗ will eventually be sam-
pled from Δ (line 2) if the P̂ ∗ exists, i.e., the first loop in
line 1 always stops and returns the P̂ ∗.

In our experiments, Algorithm 1 always returns a P̂ ∗. We
discuss how to extend the algorithm to address the problem
when P̂ ∗ does not exist in Section 6.

3.3 Best Response Calculation

The remaining problem of Algorithm 1 is to compute
π(P ) and the best response B̂k(P−k|π−k) to P−k and
π−k = π−k(P ), the former of which can be calculated
with standard Newton-style methods. Next we focus on
B̂k(P−k|π−k). The corresponding maximal revenue rate is
defined as

Ĵ∗k (P−k|π−k) = Ĵk(B̂k(P−k|π−k), P−k|π−k). (12)

Since both λk(pk, p−k) and μk(pk, p−k) are bounded, the
continuous Markov process for each provider k can be
uniformized as a discrete-time Markov chain with transi-
tion probability matrix (Cassandras and Lafortune 2009;
Gross and Miller 1984; Stewart 2009)

Tk(P |π−k) = (tki,j(P |π−k))i,j = I +
Qk(P |π−k)

vk
, (13)

where I is the identity matrix and vk ≥ maxpk∈δk,p−k∈δ−k{λk(pk, p−k) + μk(pk, p−k)} is the uniformization pa-
rameter. Then, given P and π−k, the probabilities that
provider k’s state transits from n to n + 1, n − 1 and n
at each time point are tkn,n+1(P |π−k), tkn,n−1(P |π−k) and
tkn,n(P |π−k) = 1 − tkn,n+1(P |π−k) − tkn,n−1(P |π−k), re-
spectively, where

tkn,n+1(P |π−k) =
E
π−k

p−k∈P−k
{λk(pk,n, p−k)}
vk

,

4721



tkn,n−1(P |π−k) =
E
π−k

p−k∈P−k
{μk(pk,n, p−k)}
vk

.

Naturally, we define tkNk,Nk+1(P |π−k) = tk0,−1(P |π−k)

= 0. Let Mk,n(P−k|π−k) denote provider k’s Markov
process starting from state n with best response policy
B̂k(P−k|π−k) and Rk,n(P−k|π−k) represent the expected
total revenue over infinite time of the process. Assume that
Mk,n(P−k|π−k) remains at state n at the first m > 0 time
steps and then transits to state n + 1 at time m + 1, which
happens with probability tkn,n(B̂k(P−k|π−k), P−k|π−k)

m

·tkn,n+1(B̂k(P−k|π−k), P−k|π−k). Thereafter, we can ex-
pect that the state of Mk,n at time i is the same with
that of Mk,n+1(P−k|π−k) at time i − m since they are
using the same policy B̂k(P−k|π−k). The difference be-
tween the expected total revenue of Mk,n+1(P−k|π−k),
Rk,n+1(P−k|π−k), and that of Mk,n(P−k|π−k) under
the above assumption is equal to m(Ĵ∗k (P−k|π−k) −
nb̂k(P−k|π−k)), where b̂k,n(P−k|π−k) is the n-th compo-
nent of B̂k(P−k|π−k), corresponding to provider k’s best-
response price for state n. The similar result can be derived
if Mk,n(P−k|π−k) transits to state n−1 at time m+1. Then
we have that

Rk,n+1+Rk,n−1−Rk,n=
∞∑

m=1

(tkn,n)
m[tkn,n+1(m(Ĵ∗k−nb̂k)

+Rk,n−1) + tkn,n−1(m(Ĵ∗k − nb̂k) +Rk,n+1)], (14)

where we omit the terms (B̂k(P−k|π−k), P−k|π−k) and
(P−k|π−k) due to space limit. The above equation leads to
that, ∀k ∈ K and n ∈ [Nk],

Ĵ∗k = nb̂k,n + tkn,n+1(Rk,n+1 −Rk,n)

+tkn,n−1(Rk,n−1−Rk,n), (15)

The best response price b̂k,n can then be efficiently solved by
standard dynamic programming algorithms such as policy
iteration (Bertsekas et al. 1995), the high-level idea of which
is to first (randomly) initialize Rk,n for all n ∈ [Nk] and then
repeat the following three steps until b̂k,n for all n ∈ [Nk] do
not change: 1) compute b̂k,n for all n ∈ [Nk] by maximizing
the right side of Eq.(15); 2) calculate Ĵ∗k based on Eq.(12);
3) update Rk,n for all n ∈ [Nk].

4 Structural Properties

In this section, we study some important structural proper-
ties for the AE policy and the revenue rate. The first one is
the monotonicity of Rk,n(P−k|π−k).
Theorem 2 (Monotonicity of Rk,n(P−k|π−k)). For all k ∈
K, P−k ∈ Δ−k and π−k ∈ ×i∈C(k)[0, 1]

Ni+1, it holds that,
∀n ∈ [Nk − 1], Rk,n+1(P−k|π−k) ≥ Rk,n(P−k|π−k).

Proof. Given P−k and π−k and consider two copies of k’s
system. The first one, we refer to as System A, starts from
state n+ 1, and the second one, System B, starts from state
n. We let B follow the optimal (best-response) policy and A

use the same price as B at any time. Thus the total revenue
of B is Rk,n(P−k|π−k). Since A and B set the same price all
the time, we can assume that they observe the same arrival
and departure sequences. There are two special cases. The
first one is that A is at state Nk and B is at Nk − 1 and new
demand arrives. At next time, A stays at Nk and B transits
to Nk, and from that time on, A and B will always stay in
the same state. The analyze for the case where A is at state
1 and B is at state 0 and demand reduces is similar. Hence,
the number of used resources in A is always not less than
that in B and hence the total revenue of A is not less than
Rk,n(P−k|π−k). If we let A use the optimal (best-response)
policy B̂k(P−k|π−k), it may gain higher total revenue, i.e.,
Rk,n+1(P−k|π−k) ≥ Rk,n(P−k|π−k).

Theorem 2 asserts that the maximal total expected rev-
enue (Rk,n(P−k|π−k)) increases with the utilization of the
system. The next theorem further proves the concavity of
Rk,n(P−k|π−k), i.e., Uk,n(P−k|π−k) ≥ Uk,n+1(P−k|π−k)
≥ 0, where

Uk,n(P−k|π−k) = Rk,n(P−k|π−k)−Rk,n−1(P−k|π−k).

Theorem 3 (Concavity of Rk,n(P−k|π−k)). For all k ∈ K,
P−k ∈ Δ−k and π−k ∈ ×i∈C(k)[0, 1]

Ni+1, it holds that,
∀n ∈ [Nk − 1], Uk,n(P−k|π−k) ≥ Uk,n+1(P−k|π−k).

Proof. We use mathematical induction for the proof, which
includes two main steps. The first one is to prove that

Uk,1(P−k|π−k) ≥ Uk,2(P−k|π−k).

We can reformulate Eq.(15) as

Ĵ∗k (P−k|π−k) = max
pk,n

{npk,n + tkn,n+1(P |π−k)

·Uk,n+1(P−k|π−k)− tkn,n−1(P |π−k)Uk,n(P−k|π−k)}.
Let b̂k,n represent b̂k,n(P−k|π−k) for simplicity and

define gk(pk, P−k, π−k) =
E
π−k
p−k∈P−k

{λk(p
min
k ,p−k)}

vk
−

E
π−k
p−k∈P−k

{λk(pk,p−k)}
vk

. It follows that

Ĵ∗k (P−k|π−k) = 0 · b̂k,0 +
E
π−k

p−k∈P−k
{λk (̂bk,0, p−k)}
vk

·Uk,1(P−k|π−k)=Uk,1(P−k|π−k)
(Eπ−k

p−k∈P−k
{λk(p

min
k , p−k)}

vk

−gk (̂bk,0, P−k, π−k)
)
=1·b̂k,1+

E
π−k

p−k∈P−k
{λk (̂bk,1, p−k)}
vk

·Uk,2(P−k|π−k)−
E
π−k

p−k∈P−k
{μk (̂bk,1, p−k)}
vk

Uk,1(P−k|π−k)

≥ pmin
k +Uk,2(P−k|π−k)

(E
π−k

p−k∈P−k
{λk(p

min
k , p−k)}

vk
−

gk(p
min
k ,P−k,π−k)

)−Uk,1(P−k|π−k)
E
π−k

p−k∈P−k
{μk(p

min
k , p−k)}

vk

= pmin
k +Uk,2(P−k|π−k)

E
π−k

p−k∈P−k
{λk(p

min
k , p−k)}

vk
.

4722



Combining the third and last equations in above equation
leads to:

E
π−k

p−k∈P−k
{λk(p

min
k , p−k)}

vk
(Uk,1(P−k|π−k)−Uk,2(P−k|π−k))

≥ pmin
k + Uk,1(P−k|π−k)gk (̂bk,0, P−k, π−k) ≥ 0, (16)

which implies that Uk,1(P−k|π−k)≥Uk,2(P−k|π−k).
The second step is to prove that, ∀n ∈ {1, 2, . . . , Nk −

2}, if Uk,n(P−k|π−k) ≥ Uk,n+1(P−k|π−k), then
Uk,n+1(P−k|π−k) ≥ Uk,n+2(P−k|π−k). We first assume
that Uk,n+1(P−k|π−k) < Uk,n+2(P−k|π−k) and it thus fol-
lows that, ∀n ∈ {1, 2, . . . , Nk − 2},

Ĵ∗k (P−k|π−k)=n · b̂k,n+
E
π−k

p−k∈P−k
{λk (̂bk,n, p−k)}
vk

·Uk,n+1(P−k|π−k)−
E
π−k

p−k∈P−k
{μk (̂bk,n, p−k)}
vk

Uk,n(P−k|π−k)

<(n+ 1)̂bk,n+
E
π−k

p−k∈P−k
{λk (̂bk,n, p−k)}
vk

Uk,n+2(P−k|π−k)

−
E
π−k

p−k∈P−k
{μk (̂bk,n,p−k)}
vk

Uk,n+1(P−k|π−k)≤(n+1)̂bk,n+1

+
E
π−k

p−k∈P−k
{λk (̂bk,n+1, p−k)}

vk
Uk,n+2(P−k|π−k)−

E
π−k

p−k∈P−k
{μk (̂bk,n+1, p−k)}

vk
Uk,n+1(P−k|π−k)

= Ĵ∗k (P−k|π−k),

i.e., Ĵ∗k (P−k|π−k) < Ĵ∗k (P−k|π−k), which does not hold.
Thus, if Uk,n(P−k|π−k) ≥ Uk,n+1(P−k|π−k), then
Uk,n+1(P−k|π−k) ≥ Uk,n+2(P−k|π−k).

Based on Theorems 2 and 3, we can derive the monotonic-
ity property of the best-response policy B̂k(P−k|π−k).

Theorem 4 (Monotonicity of B̂k(P−k|π−k)). For all k ∈
K, P−k ∈ Δ−k and π−k ∈ ×i∈C(k)[0, 1]

Ni+1, it holds that,
∀n ∈ [Nk − 1],

b̂k,n(P−k|π−k) ≤ b̂k,n+1(P−k|π−k).

Proof. For ease of representation, we use b̂k,n to denote
b̂k,n(P−k|π−k). We learn from Eq.(15) that

Ĵ∗(P−k|π−k) = n · b̂k,n +
E
π−k

p−k∈P−k
{λk (̂bk,n, p−k)}
vk

·Uk,n+1(P−k|π−k)−
E
π−k

p−k∈P−k
{μk (̂bk,n, p−k)}
vk

Uk,n(P−k|π−k)

≥n·b̂k,n−1 +
E
π−k

p−k∈P−k
{λk (̂bk,n−1, p−k)}

vk
Uk,n+1(P−k|π−k)

−
E
π−k

p−k∈P−k
{μk (̂bk,n−1, p−k)}

vk
Uk,n(P−k|π−k). (17)

Similarly, we have that

(n−1)·b̂k,n−1 +
E
π−k

p−k∈P−k
{λk (̂bk,n−1, p−k)}

vk
Uk,n(P−k|π−k)

−
E
π−k

p−k∈P−k
{μk (̂bk,n−1, p−k)}

vk
Uk,n−1(P−k|π−k)

≥(n−1)·b̂k,n+
E
π−k

p−k∈P−k
{λk (̂bk,n, p−k)}
vk

Uk,n(P−k|π−k)

−
E
π−k

p−k∈P−k
{μk (̂bk,n, p−k)}
vk

Uk,n−1(P−k|π−k). (18)

These two inequalities imply that

b̂k,n − b̂k,n−1 ≥ (Uk,n(P−k|π−k)− Uk,n+1(P−k|π−k))

·(
E
π−k

p−k∈P−k
{λk (̂bk,n, p−k)}
vk

−
E
π−k

p−k∈P−k
{λk (̂bk,n−1, p−k)}

vk
)

+(Uk,n−1(P−k|π−k)− Uk,n(P−k|π−k))

·(
E
π−k

p−k∈P−k
{μk (̂bk,n−1, p−k)}

vk
−

E
π−k

p−k∈P−k
{μk (̂bk,n, p−k)}
vk

).

If b̂k,n < b̂k,n−1, then the right side of the above equation is
not less than zero according to Theorem 3, Eqs.(1) and (2),
which leads to that

0 > b̂k,n − b̂k,n−1 ≥ 0.

This equation does not hold and hence b̂k,n ≥ b̂k,n−1.

Theorem 4 has realistic interpretations. On one hand,
when the system is heavily loaded, the provider tends to set
a higher price to obtain a higher revenue from customers,
as well as to decrease future demand to prevent overload-
ing. On the other hand, when the system has many avail-
able products, the provider will try to attract more customers
by setting lower prices. Besides, the theorem can be used
to reduce the search space of policies when we compute
the best response B̂k(P−k|π−k). Specifically, the search
space of b̂k,n(P−k|π−k) is restricted from [pmin

k , pmax
k ] to

[B̂k,n−1(P−k|π−k), p
max
k ], which makes the calculation of

B̂k(P−k|π−k) more efficient.

Corollary 5 (Monotonicity of P̂ ∗k ). Let P̂ ∗k denote
(p̂∗k,0, p̂

∗
k,1, . . . , p̂

∗
k,Nk

) and then we have that for all k ∈ K
and n ∈ [Nk − 1],

p̂∗k,n ≤ p̂∗k,n+1.

Proof. This is a straightforward corollary of Theorem 4 be-
cause P̂ ∗k = B̂k(P̂

∗
−k|π−k(P̂

∗)).

5 Experimental Evaluation

We use the following arrival and departure rate functions
in our experiments and all the evaluation methods can be
directly applied to any other demand functions satisfying
Eqs.(1)-(2). Specifically, we define

λk(p1, p2, . . . , p|K|) = lk(1− p2k)

∑
i∈C(k) p

2
i

|K| − 1
,

4723



N 10 20 30 40 50 60
Ro 2.19 6.52 8.99 11.36 14.51 17.18
Rr 1.68 4.62 5.94 7.12 9.08 10.27

Ratio (%) 23.1 29.0 34.2 37.3 39.1 40.2

Table 1: Runtime comparison (seconds)

μk(p1, p2, . . . , p|K|) = ukp
2
k

∑
i∈C(k)(1− p2i )

|K| − 1
,

where lk and uk are parameters. We let δk =
{0, 0.001, 0.002, . . . , 1}, ∀k ∈ K and set |K| = 3 in the
evaluations because in the real world, there are about 3∼4
big companies, such as Microsoft, IBM, and Amazon in the
cloud market. Note that there is some randomness in Al-
gorithm 1, including the initialization of the node in line 2
and the computation of π(P ) which uses a Newton method
with random starting points. All the results in the following
sections are averaged over 100 experiments. The algorithm
is implemented with Python 2.7.13 and tested on a 64-bit
Windows machine with 64GB RAM and four 3.4GHz pro-
cessors.

5.1 Runtime Evaluation

We compute B̂k(P−k|π−k) by solving Eq.(15) with pol-
icy iteration. We see that the search space of policies is
δk, which can be reduced using Theorem 4, as demon-
strated in Section 4. To show the benefit of this operation,
we evaluate the runtime of the calculation of best responses
(B̂k(P−k|π−k) for all k ∈ K) in Algorithm 1 with origi-
nal search space (Ro) and reduced search space (Rr), re-
spectively. The experimental results are depicted in Table 1,
where N1 = N2 = N3 = N and the competitive ratio is
calculated using |Ro −Rr|/Ro.

We see that the performance improvement increases with
the capacity, which is consistent with our expectation since
more redundant search operations are avoided for a larger N
when computing B̂k(P−k|π−k). Besides, the growth rate of
the ratio decreases with N , which is because b̂k,n(P−k|π−k)
is decreasing with Nk (similar observations can be found in
Figures 1(a) and 3(b)) and hence the reduced search space of
it diminishes with N . Overall, we can significantly enhance
the efficiency of Algorithm 1 by utilizing Theorem 4.

5.2 AEs with Different Capacities

We first study the properties of providers’s AE policies
with different capacities and let l1 = l2 = l3 = 1.4,
u1 = u2 = u3 = 1 in this subsection. Providers’ capaci-
ties are set as N1 = 10, N2 = 15 and N3 = 20, respec-
tively3. We plot the equilibrium policy P̂ ∗ in Figure 1(a)
and depict Uk,n(P̂

∗
−k|π−k(P̂

∗)) in Figure 1(b). The results
are consistent with our theorems. Specifically, Figure 1(b)
shows that Uk,n(P̂

∗
−k|π−k(P̂

∗)) ≥ 0, which validates the
monotonicity of Rk,n(P̂

∗
−k|π−k(P̂

∗)) (Theorem 2); besides,

3The observations from different parameter settings are similar.

n

0 5 10 15 20

p
ri
c
e

0

0.2

0.4

0.6

0.8

1
N

1
 = 10

N
2
 = 15

N
3
 = 20

(a) AE policy
n

0 5 10 15 20

U

20

30

40

50

(b) Property of expected total
revenue

Figure 1: AEs with different capacities

Uk,n(P̂
∗
−k|π−k(P̂

∗)) is decreasing with respect to n, which
implies that Rk,n(P̂

∗
−k|π−k(P̂

∗)) is concave (Theorem 3);
furthermore, p̂∗k,n increases with n, just as Theorem 4 de-
clares. We observe that p̂∗k,n > p̂∗k′,n if Nk > Nk′ , which is
reasonable because the provider with more unused instances
in inventory needs to set a lower price to attract more users.
The maximal revenue rates for the three providers are 7.667,
11.647 and 15.661, respectively. An interesting finding is
that

Ĵ∗k (P̂
∗
−k|π−k(P̂

∗))

Ĵ∗k′(P̂ ∗−k′ |π−k′(P̂ ∗))
≈ Nk

Nk′
,

i.e., Ĵ∗k (P̂
∗
−k|π−k(P̂

∗)) is linear with Nk when providers
have the same arrival and departure rate functions. Next, we
conduct extensive experiments to investigate how the param-
eters of the demand functions influence providers’ policies
and revenue rates.

5.3 AEs with Different Demand Functions

The demand functions for different providers are probably
not the same because the qualities of their services are usu-
ally different. The difference is reflected by parameters lk
and uk in our experiments. In this subsection, we investigate
how providers’ pricing policies and revenue rates change
with respect to these parameters.

We can verify based on Eq.(15) that b̂k,0(P−k|π−k) =
pmin
k . It thus follows that p̂∗k,0 = pmin

k , ∀k ∈ K. The exper-
iments in this part contain two scenarios as shown in Table
2, where p̂∗k,0 = 0 and p̂∗k,6 = 1 are omitted and we let
N1 = N2 = N3 = 6 for ease of representation. In the first
one, we assume providers have the same departure rate func-
tions and different arrival rate functions. We see that a larger
lk implies higher prices and Ĵ∗k (P̂

∗
−k|π−k(P̂

∗)), and if we
let two providers have the same parameters, we find them
to follow the same policy and obtain the same revenue rate.
A larger lk means that the corresponding provider is more
attractive to users than others when they set the same price,
i.e., the provider has competitive advantages in the market
and hence can use a relative higher pricing to gain more
profits. The result for the second scenario where providers
have different departure functions is similar.

4724



k lk uk p̂∗k,1 p̂∗k,2 p̂∗k,3 p̂∗k,4 p̂∗k,5 ̂J∗
k

1 2 1 .081 .171 .270 .392 .577 4.639
2 1.6 1 .073 .168 .265 .385 .565 4.519
3 1.2 1 .067 .164 .259 .375 .550 4.350

1 1.6 0.8 .079 .172 .271 .394 .581 4.675
2 1.6 1 .074 .169 .267 .387 .569 4.560
3 1.6 1.2 .068 .167 .263 .381 .560 4.458

Table 2: AEs with different parameters

Provider 1 Provider 2 Provider 3
3

3.5

4

4.5

5

M
a
x
im

a
l 
R

e
v
e
n
u
e
 R

a
te

 

 

Approximate equilibrium

Noncompetitive

(a) First scenario

Provider 1 Provider 2 Provider 3
3

3.5

4

4.5

5
M

a
x
im

a
l 
R

v
e
n
u
e
 R

a
te

 

 

Approximate equilibrium

Noncompetitive

(b) Second scenario

Figure 2: Strategy Comparison

5.4 Revenue Drop of Ignoring Market
Competition

To evaluate the benefits of the proposed P̂ ∗, we compare it
with the existing optimal dynamic pricing (Elmaghraby and
Keskinocak 2003; Paschalidis and Tsitsiklis 2000; Xu and
Li 2012), which maximizes

∑Nk

n=0 πk(Pk)npk,n for each
provider k without consideration of others’ strategy pro-
file P−k. We use the same parameter settings in Table 2
which contains two scenarios. We compute each provider
k’s revenue rate when he/she uses the noncompetitive strat-
egy that maximizes the revenue rate with arrival function
λk(pk) = lk(1 − pk)

2 and departure function μk = ukp
2
k,

while others use Algorithm 1 to calculate their strategies.
The comparison is shown in Figure 2, where the two bars as-
sociated with provider k represent the maximal revenue rate
k can get when 1) all providers follow the P̂ ∗ and 2) k resorts
to the noncompetitive strategy, respectively. We see that in
both scenarios, providers get higher revenue rates when they
use the P̂ ∗. The noncompetitive strategy will lead to about
10% drop of revenue as compared with P̂ ∗. The results indi-
cate that our proposed strategy outperforms existing pricing
policies in the real competitive market.

5.5 Revenue Improvement

In this subsection, we evaluate the providers’ revenue rate
under the AE with experiments, the basic setting of which
is the same as the first scenario in Table 2. We will check
how a provider’s revenue rate change with his/her arrival
rate parameter and capacity. We take provider 3 as an ex-
ample and use Algorithm 1 to compute each provider’s AE
policies with different l3 and N3. Figure 3(a) shows the rev-
enue rates of the three providers, all of which are increas-
ing with respect to l3. This observation is reasonable since a
larger l3 implies that provider 3 becomes more attractive and
hence can set a relative higher price for each state, which in

l
3

1 1.2 1.4 1.6 1.8 2

re
v
e

n
u

e
 r

a
te

4.2

4.4

4.6

4.8

Provider 1

Provider 2

Provider 3

(a) Different l3
n

0 2 4 6 8 10

p
ri
c
e
 &

 s
ta

te
 p

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1
N

3
 = 6, price

N
3
 = 6, π

3
(·)

N
3
 = 8, price

N
3
 = 8, π

3
(·)

N
3
 = 10, price

N
3
 = 10, π

3
(·)

(b) Different N3

Figure 3: Revenue rate improvement

k lk uk Nk
̂J∗
k (·) εk εk/ ̂J

∗
k (·)

1 2 1 6 4.6390 .0620 1.33%
2 1.6 1 6 4.5194 .0553 1.22%
3 1.2 1 6 4.3506 .0463 1.06%

1 1.6 0.8 6 4.6753 .0626 1.34%
2 1.6 1 6 4.5603 .0572 1.25%
3 1.6 1.2 6 4.4589 .0396 0.89%

1 1.4 1 10 7.6678 .1140 1.49%
2 1.4 1 15 11.647 .1869 1.60%
3 1.4 1 20 15.661 .2599 1.66%

Table 3: Tightness of ε

return increases (decreases) the arrival (departure) rates of
other providers accordingly based on the properties of the
demand function. We find from the figure that the revenue
rate is a concave function of l3 and providers get the same
revenue rate when they have the same parameters. In Figure
3(b), we plot provider 3’s AE polices and steady-state prob-
abilities with different capacities (N3 = 6, 8, 10). The figure
indicates that when the capacity is increased, the provider
always prefers to decrease his/her prices in order to improve
the utilization of his/her resources.

5.6 Evaluate the Tightness of ε

For each parameter setting, we compute εk for all k ∈ K us-
ing the “fmincon” function with the interior-point algorithm
of Matlab 2015a. In fact, εk can be viewed as the maximal
additional revenue rate provider k can get by unilaterally de-
viating from the AE policy P̂ ∗k . The results are depicted in
Table 3. We observe that in all situations, εk is small com-
pared with Ĵ∗k (P̂

∗
−k|π−k(P̂

∗)). The ratios indicate that the
highest revenue improvement is only 1.66%, which implies
that the benefit of deviating from P̂ ∗k is very limited. Thus,
it is reasonable to assume providers to use P̂ ∗k – a more re-
alistic equilibrium strategy that can be computed under both
full and partial information assumptions.

6 Conclusion and Discussion

We studied the dynamic pricing optimization problem for
the service providers selling reusable products and made
three main contributions. First, we proposed a comprehen-
sive model that captures the dynamic and competitive fea-
tures of the market. Second, we formulated providers’ opti-
mal pricing policies as an AE and developed an algorithm

4725



to solve it. Third, we derived many useful properties for the
model without any further constraints on demand functions.
Our experimental results showed that the policy we com-
puted outperforms existing methods in the literature.

Our algorithm can be extended to handle the situation
where P̂ ∗ does not exist. Specifically, we can extend the set
of best-response edges of node P to ξ-best responses, which
are defined as

{Pk|Pk ≥ B̂k(P−k|π−k(P ))− ξ, k ∈ K}.
Accordingly, we change the terminal condition from Eq.(9)
to that, ∀k ∈ K and Pk ∈ Δk,

Ĵk(P̂
∗
k , P̂

∗
−k|π−k(P̂

∗)) + ξ ≥ Ĵk(Pk, P̂
∗
−k|π−k(P̂

∗)).

Then Algorithm 1 always converges if a proper ξ is set and
the resulting policy is an ε+ ξ NE.

References
Bertsekas, D. P.; Bertsekas, D. P.; Bertsekas, D. P.; and Bert-
sekas, D. P. 1995. Dynamic programming and optimal control,
volume 1. Athena Scientific Belmont, MA.
Cassandras, C. G., and Lafortune, S. 2009. Introduction to
discrete event systems. Springer Science & Business Media.
Chien, S., and Sinclair, A. 2007. Convergence to approximate
nash equilibria in congestion games. In Proceedings of the eigh-
teenth annual ACM-SIAM symposium on Discrete algorithms,
169–178. Society for Industrial and Applied Mathematics.
Choi, S., and Mattila, A. S. 2004. Hotel revenue management
and its impact on customers’ perceptions of fairness. Journal
of Revenue and Pricing Management 2(4):303–314.
Dockner, E., and Jørgensen, S. 1988. Optimal pricing strategies
for new products in dynamic oligopolies. Marketing Science
7(4):315–334.
Elmaghraby, W., and Keskinocak, P. 2003. Dynamic pricing in
the presence of inventory considerations: Research overview,
current practices, and future directions. Management Science
49(10):1287–1309.
Gallego, G., and Van Ryzin, G. 1994. Optimal dynamic pric-
ing of inventories with stochastic demand over finite horizons.
Management Science 40(8):999–1020.
Geraghty, M. K., and Johnson, E. 1997. Revenue management
saves national car rental. Interfaces 27(1):107–127.
Goemans, M.; Mirrokni, V.; and Vetta, A. 2005. Sink equilibria
and convergence. In Foundations of Computer Science, 2005.
FOCS 2005. 46th Annual IEEE Symposium on, 142–151.
Gopalratnam, K.; Kautz, H.; and Weld, D. S. 2005. Extend-
ing continuous time Bayesian networks. In Proceedings of the
National Conference on Artificial Intelligence, volume 20, 981.
Gross, D., and Miller, D. R. 1984. The randomization technique
as a modeling tool and solution procedure for transient Markov
processes. Operations Research 32(2):343–361.
Guo, X., and Hernández-Lerma, O. 2009. Continuous-time
Markov decision processes. In Continuous-Time Markov Deci-
sion Processes. Springer. 9–18.
Kantere, V.; Dash, D.; Francois, G.; Kyriakopoulou, S.; and
Ailamaki, A. 2011. Optimal service pricing for a cloud
cache. IEEE Transactions on Knowledge and Data Engineering
23(9):1345–1358.

Levin, Y.; McGill, J.; and Nediak, M. 2009. Dynamic pricing
in the presence of strategic consumers and oligopolistic compe-
tition. Management Science 55(1):32–46.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.
2007. Algorithmic game theory, volume 1. Cambridge Uni-
versity Press.
Norris, J. R. 1998. Markov chains. Cambridge University
Press.
Paschalidis, I. C., and Tsitsiklis, J. N. 2000. Congestion-
dependent pricing of network services. IEEE/ACM Transac-
tions on Networking 8(2):171–184.
Rong, J.; Qin, T.; An, B.; and Liu, T.-Y. 2016. Modeling
bounded rationality for sponsored search auctions. In Proceed-
ings of the 22nd European Conference on Artificial Intelligence,
515–523.
Şen, A. 2013. A comparison of fixed and dynamic pricing
policies in revenue management. Omega 41(3):586–597.
Simmons, R. G., and Younes, H. L. 2004. Solving generalized
semi-Markov decision processes using continuous phase-type
distributions. In Proceedings of the Nineteenth National Con-
ference of Artificial Intelligence, 742–747.
Stewart, W. J. 2009. Probability, Markov chains, queues, and
simulation: The mathematical basis of performance modeling.
Princeton University Press.
Truong-Huu, T., and Tham, C.-K. 2013. A game-theoretic
model for dynamic pricing and competition among cloud
providers. In Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing, 235–238.
Tsaknakis, H., and Spirakis, P. G. 2008. An optimization ap-
proach for approximate Nash equilibria. Internet Mathematics
5(4):365–382.
Turocy, T. L. 2005. A dynamic homotopy interpretation of the
logistic quantal response equilibrium correspondence. Games
and Economic Behavior 51(2):243–263.
Wang, C.; Ma, W.; Qin, T.; Chen, X.; Hu, X.; and Liu, T.-Y.
2015. Selling reserved instances in cloud computing. In Pro-
ceedings of the 24th International Conference on Artificial In-
telligence, 224–230.
Weatherford, L. R., and Kimes, S. E. 2003. A comparison of
forecasting methods for hotel revenue management. Interna-
tional Journal of Forecasting 19(3):401–415.
Xu, X., and Hopp, W. J. 2006. A monopolistic and oligopolis-
tic stochastic flow revenue management model. Operations Re-
search 54(6):1098–1109.
Xu, H., and Li, B. 2012. Maximizing revenue with dynamic
cloud pricing: The infinite horizon case. In 2012 IEEE Interna-
tional Conference on Communications, 2929–2933.
Xu, H., and Li, B. 2013. Dynamic cloud pricing for rev-
enue maximization. IEEE Transactions on Cloud Computing
1(2):158–171.
Xu, B.; Qin, T.; Qiu, G.; and Liu, T.-Y. 2015. Optimal pricing
for the competitive and evolutionary cloud market. In Proceed-
ings of the 24th International Conference on Artificial Intelli-
gence, 139–145.

4726


