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Abstract

Although multi-agent reinforcement learning can tackle sys-
tems of strategically interacting entities, it currently fails in
scalability and lacks rigorous convergence guarantees. Cru-
cially, learning in multi-agent systems can become intractable
due to the explosion in the size of the state-action space as
the number of agents increases. In this paper, we propose a
method for computing closed-loop optimal policies in multi-
agent systems that scales independently of the number of
agents. This allows us to show, for the first time, success-
ful convergence to optimal behaviour in systems with an un-
bounded number of interacting adaptive learners. Studying
the asymptotic regime of N−player stochastic games, we
devise a learning protocol that is guaranteed to converge to
equilibrium policies even when the number of agents is ex-
tremely large. Our method is model-free and completely de-
centralised so that each agent need only observe its local state
information and its realised rewards. We validate these theo-
retical results by showing convergence to Nash-equilibrium
policies in applications from economics and control theory
with thousands of strategically interacting agents.

Introduction

Multi-agent reinforcement learning (MARL) provides the
potential to systematically analyse environments with strate-
gically interacting agents. Despite the fundamental rele-
vance of multi-agent systems (MASs) with appreciably large
populations, learning stable, best-response policies in MASs
with more than a few agents remains a significant challenge
due to growth in complexity as the number of agents in-
creases (Shoham and Leyton-Brown 2008). Consequently,
the task of understanding agent behaviour in many systems
of interest has been left unaddressed.

This paper seeks to address the problem of learning stable,
best-response policies within non-cooperative1 MASs when
the size of the population is large, therefore expanding the
range of applications of multi-agent technology.

In a non-cooperative MAS, selfish agents compete to ob-
tain a sequence of rewards within an unknown environment.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In game theory, the term non-cooperative implies that each
agent seeks to pursue its own objectives and agreements between
agents over their actions cannot be enforced.

A stochastic (dynamic) game (SG) is a mathematical frame-
work that analyses the behaviour of strategically interacting
entities in non-cooperative settings. Stochastic games enable
stable policy outcomes in which agents respond optimally to
one another (know as equilibria), to be fully described. In
SGs, it is assumed that agents have either fixed knowledge
of their environment or can acquire knowledge of any miss-
ing data by simply observing other agents with which agents
can compute best-response actions. However, in many multi-
agent systems, agents do not have full information of the en-
vironment from the outset and direct computation of optimal
behaviour is often prohibitively complex.

Naturally, integrating stochastic game theory with rein-
forcement learning (RL) - a framework that enables agents
to learn optimal behaviour within an unknown environment
through direct interaction and exploration - suggests the po-
tential to learn stable policies in multi-agent systems.
Although this approach has led to fruitful analysis in multi-
agent systems with few interacting agents (Leibo et al.
2017), current methods of computing multi-agent equilib-
ria using RL (e.g. Nash Q-Learning (Hu and Wellman
2004), Friend-or-Foe Q-learning (Littman 2001), minimax-
Q (Littman 1994)) have computational complexity that in-
creases exponentially with the number of agents (Busoniu,
Babuska, and De Schutter 2008; Tuyls and Weiss 2012).
This renders the task of using RL to learn equilibrium poli-
cies intractable for many systems of interest.

In this paper, we introduce an approach that enables equi-
librium policies of multi-agent systems to be computed even
when the size of the population is extremely large. Unlike
current multi-agent learning procedures, our method scales
independently of the number of interacting agents. In con-
trast to approaches that compute equilibria in large pop-
ulation games (Cardaliaguet and Hadikhanloo 2017), our
method is a model-free, fully decentralised learning proce-
dure that only requires agents to observe local state informa-
tion and their realised rewards.

Our main result demonstrates that the equilibria of N−
player SGs can be computed by solving an optimal control
problem (OCP) using a model-free learning procedure un-
der very mild assumptions. To do this, we prove a series of
theoretical results: first, we establish a novel link between re-
inforcement learning in MASs and a class of games known
as discrete-time mean field games - N−player SGs in an
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asymptotic regime as N → ∞. Secondly, we demonstrate
that in the asymptotic regime, the resultant game belongs to
a class of games known as potential games. These are re-
ducible to a single objective OCP leading to a vast reduction
in the problem complexity. Our last result proves that the
equilibria of SGs in an asymptotic regime are in fact approx-
imate equilibria of the N− player SG with an approxima-
tion error that vanishes as N increases. Finally, we validate
our theoretical results by application to a series of problems
within economics and optimal control theory. Our approach
is based on a variant of the fictitious play - a belief-based
learning rule for static games introduced by Brown (Brown
1951) and generalised to adaptive play in (Leslie and Collins
2006) for games with finite action sets.

After formulating the problem as an SG, the paper is or-
ganised as follows: first, we provide a formal description of
a discrete-time mean field game and show that the game is a
potential game (Theorem 1). We show that given the poten-
tiality property, the problem is reducible to a single objec-
tive OCP. We then introduce the learning protocol and show
that under this protocol, the game has strong convergence
guarantees to equilibrium policies (Theorem 2). We lastly
show that the equilibria generated for the mean field game
are approximate equilibria of the N−player SG with an ap-
proximation error that vanishes as N increases (Theorem 3).
Taking benchmark examples from economics and the multi-
agent literature, we demonstrate our method within a num-
ber of examples with large populations of interacting agents.

Background

We now give the background for SG theory by introducing
the N−player SG formalism. In order to handle multi-agent
systems with large populations, we consider the N−player
SG formalism when the number of agents tends to infinity -
we therefore introduce the notion of mean field games - SGs
studied in the asymptotic regime in the number of agents.

Problem formulation: N−Player Stochastic Games

The canonical framework to describe multi-agent systems in
which agents behave rationally and non-cooperatively is a
stochastic (dynamic) game (SG). Let us therefore introduce
a formal description of an SG:

Let N � {1, . . . , N} denote the set of agents where N ∈
N. At each time step k ∈ 1, 2, . . . T ∈ N

2, the state of agent
i ∈ N is xi

k ∈ Si where Si ⊂ R
d is a d−dimensional

state space. The state of the system at time k ≤ T is given
by xk � (xi

k)i∈N where xk ∈ S � ×j∈NSj , which is the
Cartesian product of space of states for each agent. Let Πi be
the set of stochastic closed-loop policies3 for agent i where
πi : S → ΔA

i where A
i ⊆ R

d is a compact, non-empty
action set for each agent i ∈ N . Denote by Π the set of
policies for all agents i.e. Π � ×j∈NΠj where each Πj is a

2The formalism can be straightforwardly extended to infinite
horizon cases by appropriate adjustment of the reward function.

3Closed-loop policies are maps from states to actions and are
likely to be the only policies that produce optimal behaviour
in stochastic systems. Open-loop policies simply specify pre-
computed (state-independent) sequences of actions.

non-empty compact set. We denote by Π−i � ×j∈N\{i}Πj ,
the Cartesian product of the policy sets for all agents except
agent i ∈ N .
At each time step, each agent i ∈ N exercises its policy πi,
the agent’s state then transitions according to the following4:

xi
k+1 = f(xi

k, a
i
k, ζk), aik ∼ πi, k = 0, 1, . . . (1)

where {ζk}0≤k≤T is a collection of i.i.d. random variables
that introduce randomness in the agent’s state transition.
Each agent i has a cumulative reward function J i : S×Πi×
Π−i → R that it seeks to maximise given by the following:

J i[xt, π
i, π−i] = Eπi

[
T∑

k=t

L(xi
k, x

−i
k , aik)

∣∣∣aik ∼ πi

]
(2)

where xi
k ∈ Si and x−i

k ∈ S−i are the state for agent i and
the collection of states for agents j ∈ N\{i} at time k ≤ T
respectively and πi

k is the policy for agent i. The function
L is the instantaneous reward function which measures the
reward received by the agent at each time step. We refer to
the system of equations (1) - (2) as game (A).

We now formalise the notion of optimality within an SG,
in particular, a Markov-Nash-equilibrium for the game (A)
is the solution concept when every agent plays their best re-
sponse to the policies of other agents. Formally, we define
the notion of equilibrium for this game by the following:

Definition 1. The strategy profile π ∈ Π is said to be a
Markov-Nash equilibrium (M-NE) strategy if, for any policy
for agent i, π′i ∈ Πi and ∀y ∈ S , we have that:

J i[y, πi, π−i] ≥ J i[y, π′i, π−i], ∀i ∈ N . (3)

The M-NE condition identifies strategic configurations in
which no agent can improve their rewards by a unilateral de-
viation from their current strategy.

We will later consider approximate solutions to the game
(A). In order to formalise the notion of an approximate so-
lution, we introduce ε−Markov-Nash equilibria (ε−M-NE)
which extends the concept of M-NE to strategy profiles in
which the incentive to deviate never exceeds some fixed
constant. The notion of an ε−M-NE can be described using
an analogous condition to (3). Formally, the strategy profile
π ∈ Π is an ε−Markov-Nash equilibrium strategy profile if
for a given ε > 0 and for any individual strategy for agent i,
π′i ∈ Πi we have that ∀y ∈ S:

J i[y, πi, π−i] ≥ J i[y, π′i, π−i]− ε, ∀i ∈ N (4)

Although in principle, methods within RL such as TD
learning can be used to compute the equilibrium policies,
learning takes place in the product space of the state space
and the set of actions across agents, so the problem com-
plexity grows exponentially with the number of agents.

4With this specification, agents do not influence each others’
transition dynamics directly - this is a natural depiction of various
systems e.g. a portfolio manager’s modification to their own market
position. This does not limit generality since prohibited state tran-
sitions (e.g. collisions) can be disallowed with a reward function
that heavily penalises such joint action behaviour.
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A second issue facing RL within MASs is the appear-
ance of non-stationarity produced by other adaptive agents.
During the learning phase, agents update their policies and
thus the way they influence the system. In a non-cooperative
MAS with even just a few agents learning independently, the
presence of other adaptive agents induces the appearance of
a non-stationary environment from the perspective of an in-
dividual agent. This in turn may severely impair the agent’s
own reinforcement learning process and lead to complex and
non-convergent dynamics (Tuyls and Weiss 2012).

With these concerns, we present an alternative approach
which involves studying the game (A) in an asymptotic
regime as N → ∞. This results in a mean field game - an
SG with an infinite population which, as we shall show is
both reducible to a single OCP and has M-NE that are ε−M-
NE for N−player SGs where ε ∼ O( 1√

N
).

In order to show the discrete-time mean field game is re-
ducible to single OCP, we demonstrate that they belong to
a class of games known as dynamic potential games (PGs).
Before considering the mean-field game case, let us formally
define a PG in the context of an N−player SG:

Definition 2. An SG is called a (dynamic) potential game
(PG) if for each agent i ∈ N and for any given strategy
profile π ∈ Π there exists a potential function Ω : Πi ×
Π−i → R that satisfies the following condition ∀π′i ∈ Πi:

J i[·, (πi, π−i)]− J i[·, (π′i, π−i)]

= Ω[·, (πi, π−i)]− Ω[·, (π′i, π−i)]. (5)

A PG has the property that any agent’s change in reward
produced by a unilateral deviation in their strategy is exactly
expressible through a single global function. In PGs - the
(Nash) equilibria can be found by solving an OCP (Mon-
derer and Shapley 1996). This is a striking result since ob-
taining the solution to an OCP is, in general, an easier task
than standard methods to obtain equilibria which rely on
fixed point arguments.

Mean Field Games

In this section, we introduce a mean field game (MFG)
which is a central framework to our approach. Mean field
game theory is a mathematical formalism that handles
large-population systems of non-cooperative rational agents.
MFGs are formulated as SGs in the form (A) analysed at the
asymptotic limit as the number of agents tends to infinity.
This formulation enables the collective behaviour of agents
to be jointly represented by a probability distribution over
the state space (Lasry and Lions 2007).

The MFG formulation results in a description of the
agents’ optimal behaviour that is compactly characterised by
a coupled system of partial differential equations. However,
obtaining closed analytic solutions (or even approximations
by tractable numerical methods) for the system of equations
is often unachievable but for specific cases.

This work offers a solution to this problem; in particular
we introduce a learning procedure by which the equilibria of
MFG can be learned by adaptive agents. Beginning with the
case in which the number of agents is finite, we introduce the

following empirical measure which describes the N agents’
joint state at time k:

mxk
� 1

N

N∑
i=1

δxi
k
, (6)

where xi
k ∈ S and δx is the Dirac-delta distribution evalu-

ated at the point x ∈ S .
We now study a game with an infinite number of agents

by considering the formalism the N−player game (A) in the
asymptotic reime as N →∞which allows us to treat the en-
semble in (6) as being continuously distributed over S . We
call this limiting behaviour the mean field limit which is an
application of the law of large numbers for first order (strate-
gic) interactions in the game (A). We observe that by taking
the limit as N →∞ and using de Finetti’s theorem5, we can
replace the empirical measure (6) with a probability distri-
bution mxk

∈ P(H) where P(H) is a space of probability
measures. The distribution mxk

describes the joint locations
of all agents in terms of a distribution.

With this structure, instead of agents responding to the ac-
tions of other agents individually, each agent now performs
its actions in response to the mass which jointly represents
the collection of states for all agents.

As is standard within the MFG framework (Lasry and Li-
ons 2007), we assume that the MFG satisfies the indistin-
guishably property - that is the game is invariant under per-
mutation of the agents’ indices.

The following concept will allow us to restrict our atten-
tion to games with a single M-NE:

Definition 3. The function v : S × · → R is said to be
strictly monotone in the L2− norm given m1,m2 ∈ P(H) if
the following condition is satisfied:∫
S
(v(m1, ·)−v(m2, ·))(m1−m2)dx ≥ 0 =⇒ m1 ≡ m2.

The strict monotonicity condition means that in any given
state, agents prefer a lower concentration of neighbouring
agents. This property is a natural feature within many prac-
tical applications in which the presence of others reduces
the available rewards for a given agent e.g. spectrum sharing
(Ahmad et al. 2010).
We make use of the following result which is proved in
(Lasry and Lions 2007):

Proposition 1 (Lasry & Lions, 2007). If the instantaneous
reward function of a MFG is strictly monotone in m ∈
P(H), then there exists a unique M-NE for the MFG.6

5Given a sequence of indexed random variables x1, x2, . . .
which are invariant under permutations of the index, De Finetti’s
theorem (de Finetti 1931) ensures the existence of the random vari-
able mxk in (6) in the limit as N →∞.

6In (Lasry and Lions 2007) the result is proven for mean field
games with continuous action and state spaces in continuous time.
The corresponding results for discrete games (discrete state space,
time and action set) is given in (Gomes, Mohr, and Souza 2010)
(see theorem 2, pg 6).
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MAS with Infinite Agents

To develop a learning procedure that scales with the number
of agents, we now consider the game (A) in the mean-field
limit. We shall demonstrate that this procedure allows us to
reduce the game (A) to a strategic interaction between an
agent and an entity that represents the collection of other
agents. This plays a key role in reducing the problem com-
plexity and collapsing it to a single OCP.

We shall firstly define the N−player stochastic game (A)
in the asymptotic regime. We note that in light of the indis-
tingushability criterion, we can drop the agent indices:
Definition 4 (Discrete-Time Mean Field Game). We call the
following system a discrete-time mean field game if its dy-
namics can be represented by the following system:

xk+1 = f(xk, ak, ζk) (7)
mxk+1

= g(mxk
, ak), (8)

where ak ∼ π for some π ∈ Π, k ∈ 0, 1, . . . , T for a given
time horizon T < ∞, mxk

∈ P(H) is the agent density
corresponding to the asymptotic distribution (6) evaluated at
xk ∈ S , πk is a policy exercised at each time step k ≤ T and
ζk is an i.i.d. variable which captures the system stochastic-
ity. We refer to the system (7) - (8) as game (B).
Given mxt

∈ P(H) and π ∈ Π as above with the agent in-
dex removed, we consider games where each agent has the
following reward function:

J [xt, π,mxt
] = E

[ T∑
k=t

L(xk,mxk
, ak)

∣∣∣ak ∼ π
]
, (9)

where xt ∈ S is some initial state.
We are now in a position to describe a MFG system at

equilibrium i.e. when each agent plays a best-response to
the actions of other agents.

Given some initial state xt ∈ S , the joint solution (π̃, m̃)
to the game (B) is described by the following triplet of equa-
tions which describes the M-NE:

π̃ ∈ argmax
π∈Π

J [xt, π, m̃xt ], (10)

x̃k+1 = f(x̃k, ãk, ζk), m̃x̃k+1
= g(m̃x̃k

, ãk), ãk ∼ π̃,
(11)

where as before, {ζk}0≤k≤T is a collection of i.i.d random
variables and, mx̃ is the agent density induced when the pol-
icy π̃ is exercised by each agent.

An important feature of the system (10) - (11) is that the
agent’s problem is reduced to a strategic interaction between
itself and a single entity m̃x. This property serves a crucial
role in overcoming the appearance of non-stationarity in an
environment with many adaptive learners since the influence
of all other agents on the system is now fully captured a sin-
gle entity m̃x which, influences the system dynamics in a
way that an adaptive agent can learn its optimal policy.

Existing methods of computing equilibria in MFGs how-
ever rely on the agents having full knowledge of the envi-
ronment to compute best responses and involve solving to
non-linear partial differential equations (Cardaliaguet and
Hadikhanloo 2017; Cardaliaguet et al. 2015) which, in a

number of cases leads to intractability of the framework.
MFGs are closely related to anonymous games - games in
which the agents’ rewards do not depend on the identity of
the agents they interact with (but do depend on the interact-
ing agents’ strategies). Multi-agent learning has been stud-
ied for anonymous games (Kash, Friedman, and Halpern
2011) however, this approach requires agents to fix their
policies over stages and to explicitly compue approximiate
best-responses. In the following sections of the paper, we
develop a technique which enables equilibrium policies of
MFGs to be computed by adaptive learners in an unknown
environment without solving partial differential equations.

Theoretical Contribution

Mean Field Games are Potential Games

We now demonstrate that the discrete-time MFG prob-
lem (B) is reducible to an objective maximisation problem.
By proving that the discrete-time mean field game is a PG,
the following theorem enables us to reduce the problem to a
single OCP:

Theorem 1. The discrete-time mean field game (B) is a PG.

We defer the proof of the theorem to the appendix. The
key insight of Theorem 1 is that the M-NE of MFGs can be
computed by considering a general form of a team game in
which each agent seeks to maximise the potential function.
Crucially, thanks to Theorem 1, the problem of computing
the equilibrium policy is reduced to solving a control prob-
lem for the potential function.

Learning in Large Population MAS

We now develop a model-free decentralised learning pro-
cedure based on a variant of fictitious play using the poten-
tiality property. This generates a sequence of polices that
converges to the M-NE of the discrete-time MFG.

Firstly, it is necessary to introduce some concepts relating
to convergence to equilibria:

Definition 5. Let {πi,k}k≥1 be a set of policies for agent
i ∈ N . We define a path by a sequence of strategy profiles
ρiπ � (πi,k)k≥1 ∈ Πi × Πi × . . . where the strategy πi,k+1

is obtained from an update of the strategy πi,k using some
given learning rule.

Definition 6. The path ρiπ ∈ Πi ×Πi × . . . is called an im-
provement path for agent i if after every update the agent’s
expected reward increases, formally an improvement path
satisfies the following condition:

J i[·, πi,k+1, π−i] ≥ J i[·, πi,k, π−i], ∀i ∈ N . (12)

Definition 7. A path converges to equilibrium if each limit
point is an equilibrium.

We now describe a ‘belief-based’ learning rule introduced
by Brown (Brown 1951) known as fictitious play of which
our method is a variant:

Let ρiπ ∈ Πi × Πi × . . . be a path, then the learning
rule is a fictitious play process (FPP) if the update in the
sequence {πi,k}k≥1 is performed in the following way
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∀x′ ∈ S, i ∈ N :

sup
π′∈Π

J [x′, π′, ρ−i
π ] = J [x′, πi,k+1, ρ−i

π ], (13)

so that πi,k+1 is a best-response policy against ρ−i
π .

If the FPP converges to equilibrium then we say that the
game has the fictitious play property.

We now apply these definitions to the case of MFGs. We
note that by the indistinguishability assumption for MFGs,
we can drop the agent indices in each of the above defini-
tions. We define the FPP for the MFG (B) by the following
learning procedure ∀x′ ∈ S:

sup
π′∈Π

J [x′, π′, m̄k
x′ ] = J [x′, πk+1, m̄k

x′ ], m̄k
x′ � 1

k

k∑
j=1

mj
x′

so that πk+1 is a best-response policy against m̄k
x′ which

summarises each agent’s belief of the joint state of all agents
after the kth update.
In order to solve game (B) we therefore seek a learning
process that produces sequence {πn,mn}n→∞ for which
{πn}n≥1 is an improvement path for the policy πn.

For the discrete-time MFG, we shall seek a pair
(πn,mn) ∈ Π × P(H) that converges to equilibrium as
n → ∞ so that the sequence {πn,mn}n∈N converges to
a cluster point (π̃n, m̃n) which is a solution to (B).

Our convergence result is constructed using results that
we now establish. Before proving the result we report an
important result in the model-based setting:
Proposition 2 (Cardaliaguet, Hadikhanloo; 2017). Mean
Field Games have the fictitious play property.

This result was established in (Cardaliaguet and
Hadikhanloo 2017) within a continuous-time and model-
based setting. Here, given some initial belief about the dis-
tribution mn and some initial value function vn associ-
ated to each agent’s problem, the agents update the pair
(vn,mn) according to a (model-based) fictitious play proce-
dure. This produces a paired sequence {vn,mn} for which
limn→∞(vn,mn) = (ṽ, m̃) where (ṽ, m̃) is joint solution
to the continuous-time MFG.

In order to compute the best responses at each step, the
FPP discussed in (Cardaliaguet and Hadikhanloo 2017) re-
quires agents to use knowledge of their reward functions.
Moreover, the agents’ update procedure involves solving a
system of partial differential equations at each time step. Ob-
taining closed solutions to this system of equations is gener-
ally an extremely difficult task and often no method of ob-
taining closed solutions exists.

We are therefore interested in procedures for which agents
can achieve their M-NE policies by simple adaptive play
with no prior knowledge of the environment. We are now
in position to state our main result:
Theorem 2. There exists a fictitious-play improvement path
process such that the sequence (πn,mn) ∈ Π× P(H) con-
verges to an ε−M-NE of the game (A).

The following corollary demonstrates that we can con-
struct a learning procedure that leads to an improvement
path, the limit point of which is a solution of the MFG (B).

Corollary 1. Let {un,mn}n≥1 be a mean field improve-
ment path generated by an actor-critic fictitious play
method, then {un,mn} converges to a cluster point {u,m}.
Moreover, the cluster point {u,m} is a solution to (B).

Corollary 1 immediately leads to our method which com-
putes the optimal policies for the MFG (B). The method uses
an actor-critic framework with TD learning on the critic and
policy gradient on the learner. An episode is simulated using
some initial belief over the distribution m over S . The agent
then updates its policy using an actor-critic and updates the
distribution mk fictitiously.

The Approximation Error

In this section, we show that the Nash equilibria gen-
erated by the game (B) are approximate equilibria for the
N−player stochastic game (A).

Theorem 3. Let π̄ ∈ Π, π̃ ∈ Π be the NE strategy pro-
file for the game (A) and game (B) respectively and let be
a NE strategy profile for the MFG (B). Let m̃x and m̄x be
the distributions generated by the agents in the mean field
game and the N−player SG respectively; then there exists a
constant c > 0 s.th ∀x ∈ S:

|J(x, m̃x, π̃)− J(x, m̄x, π̄)| < cN− 1
2 . (14)

Theorem 3 says that the solution to the MFG (B) is in
fact an ε−M-NE to the N−agent SG (A). Moreover, the
approximation error from using a MFG to approximate the
N−player game is O(

1√
N

)
.

As a direct consequence of theorem 3, we can use the
actor-critic fictitious play method on the MFG formulation
(B) to compute near-optimal policy solutions of the stochas-
tic game (A). Moreover, the error produced by the mean field
approximation vanishes asymptotically as we consider sys-
tems with increasing numbers of agents.

Experiments

To investigate convergence of our method, we present
three experiments drawn from benchmark problems within
economics and control theory that involve large populations
of strategically interacting agents. In each case, we show that
our method converges to an M-NE policy.

We firstly demonstrate the use of our technique in a
(stochastic) congestion game, testing the convergence to a
stationary policy in a large-population system with a compli-
cated reward structure. The second problem is a supply and
demand problem that we formulate as an SG allowing us to
test convergence to optimal policies in dynamic problems re-
quiring long-term strategic planning in the presence of other
learning agents. This demonstrates that our method is able to
overcome the non-stationary interference of other adaptive
agents. Lastly, we apply our method to study a multi-agent
generalisation of a fundamental problem within optimal con-
trol theory, namely the linear quadratic control (LQC) prob-
lem. The analytic solution of the LQC problem allows us to
verify that our method converges to a known M-NE policy.
Experiment 1: Spatial Congestion Game

In the spatial congestion game the rewards are dependent
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on the agents’ use of a shared resource (a sub-region of
S ⊂ R

2) and the number agents using that resource. Games
of this type are known as congestion games and represent a
large class of interactions e.g. spectrum sharing problems.

In the spatial congestion (SC) game there are N agents,
given some initial position x0 ∈ S , each agent chooses an
action in order to move to a desired location xT ∈ S which
is a terminal state. Certain areas of S are more desirable to
occupy than others, however the agents are averse to occupy-
ing crowded areas - they receive the largest rewards for oc-
cupying parts of S that are both desirable and have relatively
low concentrations of agents. The agents simultaneously se-
lect a movement vector u ∈ R

2×1 resulting in movement
to a terminal state xT . Each agent then receives its reward
L which depends on the desirability of the location and the
concentration of agents mxT

at xT .
Formally, we model the desirability of a region xt ∈ S at

time t as7:

L(xt,mxt
) =

1

2π
√|Σ|

e−(xt−μ)TΣ−1(xt−μ)

(1 +mxt)
α

,

where mxt ∈ P(H) is the density of agents at the point xt

and μ ∈ R
2,Σ ∝ 12×2 are given parameters representing

the mean and spread of the distribution of the rewards over
S . The map L : S × P(H)→ R measures the instantaneous
reward for an agent at xt with a local agent density mxt

. The
parameter α > 0 is a measure of each agent’s averseness to
occupying the same region as other agents with higher val-
ues representing greater averseness.
Given some initial position x0 ∈ S and u ∈ R

2×1, the tran-
sition dynamics are given by the following expression:

xT = f1(x0, u, ε) � A1x0 +B1u+ σ1ε, (15)

where ε ∼ N (0, σε);σ1, A1, B1 ∝ 1(2×2) and c, σε ∈ R
+.

The reward function for an agent is then given by the fol-
lowing expression:

J [x0, π,mx0
] = ExT∼f1

[
L(xT ,mxT

)− 1

2
uTRu

∣∣u ∼ π
]
,

where R = η1(2×2) is a control weight matrix and η ∈ R

is the marginal control cost (cost of movement). Using the
indistingishability condition, we have omitted agent indices.
At equilibrium each agent optimally trades-off state-
dependent rewards with its proximity to nearby agents.

The problem generalises the beach domain problem stud-
ied in (Devlin et al. 2014) since we now consider a reward
function with state dependency. In particular, the desirability
over S is described by a Gaussian function over S . Moreover
the problem we now consider consists of a system with 1000
interacting agents. The problem is also closely related to the
spectrum sharing problem, see (Ahmad et al. 2010).

In accordance with the theory, our method converges to
a stable policy - after 2,000 episodes of training we find
that the agent’s policy and rewards stabilise Figure 1.a). Fig-
ure 1.b) shows the terminal distribution of agents over S for

7We note that the function L is continuously differentiable in
S so that assumption 2 is a fortiori satisfied, moreover, it can be
easily verified that assumption 3 holds.

rewards =1 =2 

rewards =2 

=3 

a)

b)

c)

Figure 1: a) Rewards over 2000 episodes of training for a
Gaussian distribution of desirability. b) agent distributions
for different averseness parameter α. c) agent distribution
for bimodal Gaussian function reward function.

α ∈ {1.0, 2.0, 3.0}. We observe that the agents learn to opti-
mally trade-off state-dependent rewards with distance from
neighbouring agents resulting in a fixed terminal distribution
of agents. As expected, the agents disperse themselves fur-
ther as the value of α is increased - in all cases converging
to a stable distribution over S .

Figure 1.c) shows the distribution of agents for a more
complicated reward structure specified by a mixture of two
Gaussians over S with peaks at (−1, 0) and (0, 0)). We ini-
tialise the agents at the point (1, 0). In this case, an individ-
ual agent’s reward is given by the following expression:

J [x0, π,mx0 ] = ExT∼f1

[ 2∑
n=1

Ln(xT ,mxT
)− 1

4
uT
nRun

]

where Ln(xt,mxt) � [16π2|Σn|]− 1
2 e−(xt−μn)

TΣ−1
n (xt−μn)

· (1+mxt)
−α and un ∼ π. Since learning is internal to each

agent, a possible (suboptimal) outcome is for the agents to
cluster at the nearest peak of rewards. However, using our
method, the agents learn to spread themselves across the
state space and distribute themselves across both peaks.
Experiment 2: Supply with Uncertain Demand
Optimally distributing goods and services according to
demand is a fundamental problem within logistics and
industrial organisation. In order to maximise their revenue,
firms must strategically locate their supplies given some
uncertain future demand whilst considering the actions of
rival firms which may reduce the firm’s own prospects.

We now apply our method to a supply and demand
problem in which individual firms seek to maximise their
revenue by strategically placing their goods when the de-
mand process has future uncertainty. The demand process,
which quantifies the level of demand associated with each
point in space, is a priori unknown and is affected by
the actions of thousands of rival firms. Each firm directs
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a)

b)

Figure 2: a) Paths of agents with different initial points (co-
ordinates indicated) for cost of movement η = 2. Shown in
black is the path of the rewards (demand) and in purple is
the path of agents with η = 0. b) The intra-episode rewards
for the paths show in a). Note incursion of negative rewards.

supply of its goods to regions in time and space however,
the firms face transport costs so that each firm seeks to
optimally trade-off transportation costs and tracking the
demand. As firms begin to concentrate on a particular area
of demand, the sale opportunities diminish, reducing the
rewards associated to that region of demand.

We model this problem as an episodic problem with a
distribution of rewards traversing a path through the state
space S ∈ R

2 (illustrated in Figure 2.a)). Agents seek to
locate themselves in areas of high concentrations of rewards
for a fixed number (30) time steps. The agents are penalised
for both movement and occupying areas with a high density
of other agents. The experiment tests the ability of the
method to avoid convergence to suboptimal outcomes. In
particular, movement costs are highly convex so traversing
the path of rewards leads to low overall rewards.

Figure 2.a) illustrates the path of the agents after training
for several different initial positions. An interesting outcome
is that with non-zero movement costs, the agents learn to
move horizontally to intersect the path of the rewards at
a later time. This behaviour conforms with intuition - to
maximise long-term rewards the agents must choose a
path that initially incurs higher costs, forgoing immediate
rewards whilst they traverse the regions with sparse rewards.
Figure 2.b) shows that the agents are able to learn to initially
incur negative rewards to maximise their cumulative pay-
offs. Without long-term planning each agent would attempt
to trace the same path as the rewards. Such a strategy would
lead to reduced overall rewards since attempting to match
the locations of the rewards is prohibitively costly. Setting
η = 0 we see that the agents trace the path of the rewards
(represented by the dashed purple line in Figure 2.a)).
Experiment 3: Mean-Field Linear Quadratic Regulator

The linear quadratic control (LQC) problem is a funda-
mental problem within optimal stochastic control theory
(OSCT). It concerns a system whose transition dynamics
evolves according to a stochastic process that is linearly
controlled subject to quadratic costs. The LQC problem es-
sentially captures the local problem of a large class of prob-
lems in OSCT and can be solved analytically, the solution
being given by the linear-quadratic regulator (Bardi 2012;
Xu 2007). LQC models have been extended to mean field
interactions in which a large population of agents affect
the dynamics of a system using linear controls subject to
quadratic control costs and a cost term which depends on
the actions of other agents.

The reward function for the LQC problem is given by:

J [x0, u,mx0 ] = ExT∼f2

[ Tn∑
t=0

{C(xt, m̄xt)−
1

2
uT
t Rut}

]
,

where C(xt,mxt
) � −(xt − α)TQt(xt − α).

At time k ≤ Tn, given some position xk ∈ S , each agent
then chooses an vector control parameter ut ∈ R

2×1. The
transition are given by the following expression:

xk+1 = f2(xk, uk, εk) � A1xk +B1uk + σ1εk, (16)

where εk ∼ N (0, σεk) ∀k < Tn, A1, B1 ∝ 1(2×2), σ1 =

c1(2×2) where c ∈ R
+ is some constant that measures the

magnitude of the stochasticity in each agent’s transition.
In (Bardi 2012) the distribution mx is reported after con-

vergence to the stationary M-NE. We compare our results
(E3) with this stationary policy (B1) in the following table:

B1 E3
μ (0.50000, -0.50000) (0.50717, -0.50537)
σ2 0.14060 0.16100

Clearly, our results converge to values that closely replicate
the analytic solution.

Conclusion

We develop an approach to MARL with large numbers of
agents. This is the first paper to prove convergence results
to best-response policies in multi-agent systems with an un-
bounded number of agents. This allows RL to be applied
across a broader range of applications with large agent pop-
ulations, in contrast to current methods (Hu and Wellman
2004; Littman 2001; 1994). Our approach advances existing
work in MFGs as in (Cardaliaguet and Hadikhanloo 2017)
that require both full knowledge of the environment and to
perform involved analytic computation. In contrast, by de-
veloping a connection between RL in MASs and MFGs, we
demonstrate a procedure that is model-free, enabling agents
to learn best-response policies solely through adaptive play
which overcomes the problem of non-stationarity. In our ex-
periments we provide a novel approach of analysing prob-
lems in control theory and economics.
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