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Abstract

We propose Clopen Knowledge Bases (CKBs) as a new for-
malism combining Answer Set Programming (ASP) with
ontology languages based on first-order logic. CKBs gen-
eralize the prominent r-hybrid and DL+LOG languages of
Rosati, and are more flexible for specification of problems
that combine open-world and closed-world reasoning. We ar-
gue that the guarded negation fragment of first-order logic
(GNFO)—a very expressive fragment that subsumes many
prominent ontology languages like Description Logics (DLs)
and the guarded fragment—is an ontology language that can
be used in CKBs while enjoying decidability for basic reason-
ing problems. We further show how CKBs can be used with
expressive DLs of the ALC family, and obtain worst-case op-
timal complexity results in this setting. For DL-based CKBs,
we define a fragment called separable CKBs (which still
strictly subsumes r-hybrid and DL+LOG knowledge bases),
and show that they can be rather efficiently translated into
standard ASP programs. This approach allows us to perform
basic inference from separable CKBs by reusing existing ef-
ficient ASP solvers. We have implemented the approach for
separable CKBs containing ontologies in the DL ALCH, and
present in this paper some promising empirical results for
real-life data. They show that our approach provides a dra-
matic improvement over a naive implementation based on a
translation of such CKBs into dl-programs.

Introduction

Answer Set Programming (ASP) and ontology languages
like Description Logics (DLs) play leading roles in Knowl-
edge Representation and Reasoning (KR&R). ASP and DLs
have largely orthogonal features because they make very
different assumptions regarding the completeness of infor-
mation, and thus reasoning techniques and algorithms that
are deployed in ASP are significantly different from the
ones used in DLs. Combining ASP, which makes the closed-
world assumption (CWA), with DLs, which make the open-
world assumption (OWA), into expressive hybrid languages
that would enjoy the positive features of both has received
significant attention in the last decade (see, e.g., (Rosati
2005; 2006; Eiter et al. 2008; Motik and Rosati 2010;
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Knorr, Alferes, and Hitzler 2011)). However, the progress on
understanding the relationship between different hybrid lan-
guages, and their relationship with more standard languages
like plain ASP, has been limited, as has the development of
efficient reasoning algorithms and implementations.

These and related problems are investigated in this pa-
per for a new hybrid language called Clopen Knowledge
Bases (CKBs), which generalizes and improves the promi-
nent r-hybrid language (Rosati 2005), and DL+LOG (Rosati
2006). Each CKB is a triple H = (P, ϕ,Σ), where P is a
disjunctive Datalog program with “not” literals in rule bod-
ies (Datalog¬,∨), ϕ is a theory (e.g., in first-order logic),
and Σ is a set of predicate symbols. Intuitively, Σ specifies
the predicates that should be interpreted under the OWA; the
remaining predicates should be interpreted under the CWA.
Our contributions can be summarized as follows:

• We introduce CKBs and define for them a stable
model semantics, inspired by the semantics given by Rosati
to r-hybrid and DL+LOG KBs. In a nutshell, the major dif-
ference between the latter formalisms and CKBs is that
CKBs allow to use CWA predicates in the theory. This al-
lows for more convenient knowledge representation, but also
causes technical challenges.

• We study automated reasoning in CKBs. To this end,
we first provide a general decidability result for checking en-
tailment of ground atoms and consistency testing in CKBs
H = (P, ϕ,Σ), where ϕ is expressed in the guarded nega-
tion fragment of FO (GNFO) (Bárány, Cate, and Segoufin
2015). This is a very expressive fragment that subsumes the
more prominent guarded fragment of FO, as well as many
expressive DLs. We give a NEXPTIME2EXPTIME upper bound
for inference from GNFO-based CKBs (we note that satisfi-
ability of GNFO formulas is 2EXPTIME-hard).

• We next study the reasoning in CKBs H = (P, ϕ,Σ)
where ϕ is expressed in the very expressive DL ALCHOI,
which extends the basic DL ALC with role hierarchies, in-
verse roles, and nominals. We show that the (combined)
complexity of reasoning in such CKBs is not higher than in
standard (non-ground) ASP. If we assume bounded predicate
arities in rules, the basic reasoning problems are EXPTIME-
complete, which coincides with the complexity of standard
problems in plain ALCHOI.

• We study the relationship between CKBs and other
existing hybrid languages. We define a restricted class of
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separable CKBs, and show that they can be transformed
in polynomial time into the so-called dl-programs (Eiter et
al. 2008). These CKBs still generalize r-hybrid KBs, thus
we establish a connection between r-hybrid KBs and dl-
programs that is interesting in its own right. The dl-programs
resulting from this transformation effectively implement a
naive algorithm for reasoning in CKBs. However, our ex-
periments with the dlvhex suite (an implementation of dl-
programs; see (Redl 2017)) show that this approach is not
suitable for a practical implementation of CKBs.

• We address the above mentioned inefficiency by de-
veloping translations from separable CKBs into standard
ASP programs, thus enabling the reuse of existing ASP
solvers. Roughly, the necessary knowledge about the ontol-
ogy is compiled into a set of disjunctive Datalog rules. To-
gether with the original rules of the CKB, they form an ASP
program whose stable models are in close correspondence
with the stable models of the input CKB. We define two
translations. The first data-independent one establishes a
connection to ASP, showing that ASP is as expressive as sep-
arable CKBs. The other data-dependent translation is geared
towards implementation, exploiting the structure of the data
in the input CKB to reduce non-deterministic choices.

• We have implemented the data-dependent translation
for separable CKBs with ALCH ontologies, and present
here some promising empirical results. In particular, our ap-
proach provides a dramatic improvement over the naive im-
plementation based on a direct encoding into dl-programs.

An extended version of this paper containing se-
lected proofs can be found here: http://www.kr.tuwien.ac.at/
research/reports/rr1704.pdf

Preliminaries

In this paper we talk about logics which are, in general, sets
of theories, and our results are for specific logics that are
fragments of standard FO. We start by introducing the no-
tions of (relational) interpretations, as usual in FO, and Her-
brand interpretations, as usual in rule languages.
Interpretations and models. Assume a countably infinite
set Sconst of constants, and a countably infinite set Spred of
predicate symbols. Each r ∈ Spred is associated with a non-
negative integer, called the arity of r. An interpretation is a
pair I =(ΔI , ·I) that consists of a non-empty set ΔI (called
domain), and a valuation function ·I that maps (i) each con-
stant c∈Sconst to an element cI ∈ ΔI , and (ii) each predi-
cate symbol r to a set rI ⊆ (ΔI)n, where n is the arity of r.

We assume a countably infinite set T of theories. Each
theory ϕ ∈ T is associated with a set mods(ϕ) of interpreta-
tions. Each I ∈ mods(ϕ) is called a model of ϕ. We assume
that � ∈ T, and we let mods(�) be the set of all interpreta-
tions. A logic is simply a set of theories L ⊆ T. As concrete
logics we will consider various fragments of FO; the notion
of a model for a theory ϕ in FO is the standard one.
Atoms and Herbrand interpretations. We assume a count-
ably infinite set Svar of variables. The elements of Sconst ∪
Svar are called terms. An atom is an expression of the form
r(t1, . . . , tn), where r ∈ Spred, n is the arity of r, and
t1, . . . , tn are terms. An atom is called ground if no vari-

ables occur in it. An Herbrand interpretation I is any set
of ground atoms. An Herbrand interpretation I can be seen
as an ordinary interpretation Ĩ = (ΔĨ , ·Ĩ), where we let
(i) ΔĨ =Sconst, and (ii) r Ĩ = {�u | r(�u)= I} for all r∈Spred.

Clopen Knowledge Bases

We now formally define our new hybrid language.
Syntax. A rule ρ is an expression of the form

p1 ∨ . . . ∨ pk ← pk+1, . . . , pl,not pl+1, . . . ,not pm (1)

where p1, . . . , pm are atoms. An expression not p, with p
an atom, is a negated atom. We let head(ρ)= {p1, ..., pk},
body+(ρ)= {pk+1, ..., pl}, and body−(ρ)= {pl+1, ..., pm}.

A program P is a set of rules. A Clopen Knowledge Base
(CKB) is a triple H = (P, ϕ,Σ), where P is a program,
ϕ ∈ T is a theory, and Σ ⊆ Spred. The predicate symbols in
Σ (resp., in Spred \ Σ) are called the open predicates (resp.,
closed predicates) w.r.t.H. The CKB H is called safe if the
following holds for every rule ρ ∈ P: each variable occur-
ring in ρ appears in some atom r(�u)∈ body+(ρ) with r 	∈Σ.
Unless stated otherwise, all considered CKBs are safe.

A rule or program is called ground (resp., positive) if no
variables (resp., negated atoms) occur in it. A ground rule
r(�u) ← is called a fact. We write r(�u) ∈ P in case the fact
r(�u) ← is present in the program P .

As usual, dom(f) and ran(f) denote the domain and
range of a function f , respectively. A substitution σ is any
partial function from Svar to Sconst. For a rule ρ and a sub-
stitution σ, we use σ(ρ) to denote the rule that is obtained
from ρ by replacing every variable X ∈ dom(σ) with σ(X).
The grounding of a program P , denoted ground(P), is the
ground program that consists of all ground rules ρ′ such that
ρ′ = σ(ρ) for some ρ ∈ P and some substitution σ. Note
that ground(P) is infinite in case P has at least one variable.
Semantics. An Herbrand interpretation I is called a model
of a ground positive program P if body+(ρ) ⊆ I implies
head(ρ) ∩ I 	= ∅ for all ρ ∈ P . Furthermore, I is a minimal
model of the program P if, in addition, there is no J � I
such that J is a model of P .

Given a program P , an Herbrand interpretation I , and
Σ ⊆ Spred, the reduct PI,Σ of P w.r.t. I and Σ is the ground
positive program obtained from ground(P) in two steps:

(1) First, delete every rule ρ that contains
(a) r(�u) ∈ body+(r) with r ∈ Σ and r(�u) 	∈ I ,
(b) r(�u) ∈ head(r) with r ∈ Σ and r(�u) ∈ I , or
(c) r(�u) ∈ body−(r) with r(�u) ∈ I .

(2) In the remaining rules, delete all negated atoms, and all
ordinary atoms r(�u) with r ∈ Σ.

An Herbrand interpretation I is a stable model of a CKB
H = (P, ϕ,Σ) if the following two conditions are satisfied:

- {r(�u) | r(�u)∈ I, r 	∈Σ} is a minimal model of PI,Σ, and

- Ĩ is model of ϕ.

Reasoning problems. As usual in hybrid languages (see,
e.g., (Rosati 2005)), the basic reasoning task for CKBs is
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entailment of ground atoms. That is, given a CKB H =
(P, ϕ,Σ) and a ground atom R(�u), the problem is to de-
cide whether R(�u) ∈ I holds for all stable models I of H.
This problem can be reduced to checking the non-existence
of a stable model for the CKB H′ = (P∪{← R(�u)}, ϕ,Σ).
Thus in the rest of the paper we focus on checking the sta-
ble model existence for a given CKB. Note that in general a
CKB may have infinitely many stable models.

Example 1. The CKB H = (P , ϕ,Σ) contains informa-
tion on the local transport network (provided by the city’s
transport authority and assumed to be complete) and on ho-
tels and relevant locations (extracted form the web and not
necessarily complete). We have P = P1 ∪ P2 ∪ P3, where
P1 and P2 contain facts. The network, which is depicted by
solid lines at the bottom of Figure 1, is described in P1.
Facts of the form RouteTable(�, s, s′) ← store that on the
line �, station s is followed by station s′. The constants t1
and t2 represent tram lines, while �1 represents a metro line;
we have corresponding facts MetroLine(�1), TramLine(t1),
TramLine(t2). P2 contains facts related to locations, includ-
ing the following (for convenience, CloseTo is depicted with
dotted lines).

CloseTo(c1, s1) ← Hotel(h1) ← TramConn(h1) ←
CloseTo(h2, s4) ← Hotel(h2) ←

The (self-explanatory) rules in P3 and the theory ϕ are
shown in Figure 1 (URailConn stands for urban rail con-
nection). If h is a hotel with direct connection to the point of
interest c1, then Q(h) holds for it. In this case, it holds for
both h1 and h2 (note that we do not know which station h1

is close to). We can use negation as failure to further exclude
hotels for which a tram connection is explicitly mentioned,
but no metro connection, hence we can assume that it is only
reachable by tram, like h1. For this reason, Q′ only holds
for h2. The predicates that describe the network, and those
that occur in the heads of the rules in P3 are closed. The re-
maining ones are open, i.e. Σ = {Hotel, CloseTo, Station,
TramConn, MetroConn, URailConn}.

In the spirit of r-hybrid and DL+LOG KBs, the FO theory
of a CKB can be seen as a set of integrity constraints on
the inferences made using the rules of the CKB. Since we
are not in classical logic, and in particular because double
negation elimination is not valid, “moving” a fact from the
program to its theory need not preserve the stable models.
Example 2. We let Σ= {Edge} and

ϕ= {∀xy Edge(x, y) → (Node(x) ∧ Node(y))}
P =Node(v1)←; . . .Node(vn)←;

Reach(X,X)←Node(X);

Reach(X,Z)←Reach(X,Y ),Edge(Y, Z),Node(Z); }
Then these CKBs are not equivalent:

H1=(P, ϕ ∧ Reach(v1, v2),Σ)

H2 =(P ∪{Reach(v1, v2)←}, ϕ,Σ)
Indeed, each stable model of H1 correspond to a directed

graph G over v1, . . . , vn such that (v1, v2) is included in
the reflexive transitive closure of the edge relation in G. In

contrast, a stable model of H2 consists of an arbitrary graph
over v1, . . . , vn, together with the reflexive transitive closure
of the edge relation augmented with the tuple (v1, v2).

Relationship to ASP. Assume a program P and an Herbrand
interpretation I . We call I a stable model of P if I is a stable
model of the CKB H = (P,�, ∅). It is not difficult to see
that this definition yields precisely the stable models that can
alternatively be computed using the standard definition of
stable model semantics in ASP. Indeed, the program PI,∅

boils down to the standard Gelfond-Lifschitz reduct PI of
P w.r.t. I (Gelfond and Lifschitz 1988). Observe that in a
CKB H = (P, ϕ, ∅), the theory ϕ plays the role of integrity
constraints on the stable models of the plain program P ,
i.e. I is a stable model of H iff I is a stable model of P such
that Ĩ ∈ mods(ϕ).
Relationship to r-hybrid KBs. Our CKBs are a close rela-
tive of the r-hybrid KBs of Rosati (Rosati 2005). The safety
restriction here is inspired by the safety condition in r-
hybrid KBs, and so is our definition of the semantics via
a generalization of the Gelfond-Lifschitz reduct that addi-
tionally reduces the program according to the truth value
of atoms over open predicates. Intuitively, r-hybrid KBs are
a special kind of CKBs in which the rule component can
refer to both open and closed predicates, but the theory
component can use open predicates only. More formally,
an r-hybrid KB H=(ϕ,P), where ϕ is a theory in FO
and P is a Datalog¬,∨ program, corresponds to the CKB
H′ =(P, ϕ,Σ), where Σ is the set of predicates symbols ap-
pearing in ϕ. One can verify that the stable models of H′ are
exactly the so-called NM-models of H.

In generic CKBs H = (P, ϕ,Σ), the set Σ need not
contain all the predicate symbols that appear in ϕ. That is,
closed predicates may occur in ϕ, and the extensions of these
predicates in (the relevant) models of ϕ must be justified by
program rules. This feature causes technical challenges, but
is very useful for declarative specification of problems: in
our approach, predicates under the OWA and the CWA can
be used both in the program and in the theory of a hybrid
KB (see Example 1 for an illustration).

The DL+LOG language is obtained from r-hybrid KBs by
allowing only DLs for specifying theories, and relaxing the
safeness condition to weak safeness (Rosati 2006). In the
extended version we show that, when sufficiently rich DLs
are considered, CKBs also generalize DL+LOG.
Active domain predicate. For convenience, we assume the
availability of a unary “built-in” predicate adom that, intu-
itively, stores the constants that appear in a given program.
More precisely, for any program P and each n-ary relation
symbol r with r 	= adom that appears in P , we assume that
(i) P contains the rule adom(Xj) ← r(X1, . . . , Xn) for ev-
ery 1 ≤ j ≤ n, and (ii) adom is allowed to occur only in
bodies of the remaining rules.

Decidable CKBs

We now turn to identifying useful settings in which the exis-
tence of a stable model for a CKB H = (P, ϕ,Σ) is de-
cidable. This naturally requires ϕ to belong to a logic L
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P3 = { MetroStation(Y1) ← RouteTable(X,Y1, Y2),MetroLine(X)

TramStation(Y2) ← RouteTable(X,Y1, Y2),TramLine(X)

ReachOnLine(X,Y1, Y2) ← RouteTable(X,Y1, Y2)

ReachOnLine(X,Y1, Y3) ← ReachOnLine(X,Y1, Y2),RouteTable(X,Y2, Y3)

TramOnly(X) ← TramConn(X),not MetroConn(X)

Q(X) ←Hotel(X),CloseTo(X,Y ),ReachOnLine(Z, Y, Y ′),CloseTo(c1, Y
′)

Q′(X) ←Q(X),not TramOnly(X) }

ϕ = { ∀x.(MetroStation(x) ∨ TramStation(x) ↔ Station(x)
)
,

∀x.(TramConn(x) ↔ ∃y CloseTo(x, y) ∧ TramStation(y)
)
,

∀x.(MetroConn(x) ↔ ∃y CloseTo(x, y) ∧MetroStation(y)
)
,

∀x.(URailConn(x) ↔ ∃y CloseTo(x, y) ∧ Station(y)
) }

(�1

(t2
(t1 s1

s4

(c1

h2

Figure 1: Example CKB

in which satisfiability is decidable (i.e., the set {ϕ ∈ L |
mods(ϕ) 	= ∅} should be recursive). However, this alone is
not enough, since we will in general be interested in models
of ϕ where a selected set of predicates have a concrete ex-
tension that is given as input. We will see that this calls for
logics with a rather flexible support for equality reasoning.

Towards providing a quite general decidability result for
checking stable model existence in CKBs, we first define a
simple program that allows us to freely “guess” the exten-
sions of open predicates of a given CKB H. These exten-
sions are restricted to constants that appear in H.
Definition 1 (Program Choose(H)). Assume a CKB H =
(P, ϕ,Σ). For every n-ary relation symbol r ∈ Σ, let r be
a fresh n-ary relation symbol that does not appear in H. We
let Choose(H) be the set that contains

r(Y1, . . . , Yn)∨ r(Y1,. . . , Yn)← adom(Y1), . . . , adom(Yn)

for each n-ary relation symbol r ∈ Σ that appears in P .

A stable model I of P ∪ Choose(H) can be seen as a
(partially complete) candidate for a stable model of a CKB
H = (P, ϕ,Σ). The following proposition, whose proof re-
lies on the imposed CKB safety requirement, tells us when
such an I witnesses the existence of a stable model of H.
Proposition 1. A CKB H = (P, ϕ,Σ) has a stable model
iff P ∪Choose(H) has some stable model I for which there
exists some I ∈ mods(ϕ) with the following properties:
(C1) (cI1 , . . . , c

I
n) ∈ rI for all r(c1, . . . , cn) ∈ I ,

(C2) (cI1 , . . . , c
I
n) 	∈ rI for all r(c1, . . . , cn) ∈ I , and

(C3) if (e1, . . . , en) ∈ rI and r 	∈ Σ, then there exists
r(c1, . . . , cn) ∈ I with cI1 = e1, . . . , c

I
n = en.

From Proposition 1, we obtain decidability of stable
model existence for H = (P, ϕ,Σ) whenever we can list
the stable models of P ∪ Choose(H) and test, for each of
them, the existence of a model I of the theory ϕ satisfying
conditions (C1–C3). Moreover, if the logic L in question is
strong enough to express, for a fixed candidate I , conditions
(C1–C3) as part of a theory in L, then decidability of the un-
derlying satisfiability problem suffices. This applies, in par-
ticular, to the guarded negation fragment (GNFO), which

is among the most expressive FO fragments for which de-
cidability has been established (Bárány, Cate, and Segoufin
2015).

We use ϕ[�x] to indicate that a FO formula ϕ has �x as
free variables. The fragment GNFO contains all formulas
that can be built using the following grammar:

ϕ ::= r(v1, . . . , vn) | v=u | ∃x ϕ |ϕ∧ϕ |ϕ∨ϕ |α∧¬ϕ[�x],

where u, v, v1, . . . , vn are terms, and α is an atom or an
equality statement such that all variables of �x also occur in
α. Intuitively, in GNFO a subformula can be negated only
if its free variables are “guarded” by an atom or an equality
statement. Observe also that a subformula with a single free
variable x can always be guarded by an equality statement
x = x. GNFO is flexible and natural for domain modelling;
for instance, the theory ϕ in Example 1 is in GNFO.

Theorem 1. Checking the stable model existence in CKBs
H = (P , ϕ,Σ), where ϕ is in GNFO, is decidable. The
problem belongs to the class NEXPTIME2EXPTIME, and is
2EXPTIME-hard.

Proof. Assume a CKB H = (P, ϕ,Σ) with ϕ in GNFO.
Let Σc be the set of predicates that occur in P but not in Σ.
For every n-ary predicate symbol r ∈ Σc, assume a tuple
�xr = (x1

r, . . . , x
n
r ) of variables. Assume a stable model I

of P ∪ Choose(H). For such I , let ψ(I) be the following
formula:

ψ(I) =
∧

r(�c)∈I

r(�c) ∧
∧

r(�c)∈I

¬r(�c) ∧
∧

r∈Σc

∀x1
r . . . ∀xn

r

(

r(x1
r, . . . , x

n
r ) →

∨
r(c1,...,cn)∈I

( ∧
1≤i≤n

(xi
r = ci)

))

One can check that the formula ϕ ∧ ψ(I) is in GNFO.
Note that the three conjuncts mimic the conditions (C1)–
(C3); the third one relies on the availability of equality,
and is essentially the same formula used in (Benedikt et
al. 2016) for reasoning about visible and invisible tables in
databases. The following holds: ψ(I) is satisfiable iff there
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exists I ∈ mods(ϕ) that satisfies the conditions (C1-C3)
of Proposition 1. Overall, this means that H has a stable
model iff P∪Choose(H) has some stable model I such that
ϕ ∧ ψ(I) is satisfiable. Keeping in mind that satisfiability in
GNFO is 2EXPTIME-complete, this equivalence yields the
NEXPTIME2EXPTIME upper bound. Indeed, we can decide the
existence of a stable model for H by non-deterministically
guessing a candidate stable model I of P ∪ Choose(H),
whose size is at most exponential in the size of H, and then
checking that (i) I is a minimal model of PI,∅, and (ii) that
the formula ψ(I) is satisfiable. The lower bound is carried
over trivially from GNFO.

CKBs and Description Logics

GNFO is very expressive and thus also computationally very
expensive. In this section, we study DL-based CKBs, and
show that such CKBs are (to a large extent) computationally
not more expensive than plain ASP. We first recall the syntax
and semantics of the expressive DL ALCHOI.

We assume a countably infinite set Scn ⊆ Spred of unary
relation symbols, called concept names, and a countably in-
finite set Srn ⊆ Spred of binary relation symbols, called role
names. If R ∈ Srn, then R and R− are roles. (Complex) con-
cepts are defined as follows: (a) the symbols �,⊥, and every
concept name A ∈ Scn is a concept, (b) if a ∈ Sconst, then
{a} is a concept (called nominal), and (c) if C,D are con-
cepts and R is a role, then C �D, C �D, ¬C, ∀R.C, ∃R.C
are also concepts. Assume an interpretation I = (ΔI , ·I),
and observe that AI ⊆ ΔI for all concept names A, and
RI ⊆ ΔI ×ΔI for all role names R. The semantics to all
complex concepts and roles beyond concept and role names
is given by extending the valuation function ·I in the usual
way (see (Baader et al. 2003); for convenience, we provide it
in the extended version). A TBox (or ontology) T is a finite
set of axioms of the forms C � D (called concept inclu-
sions), where C and D are concepts, and R� S (called role
inclusions), where R and S are roles. Given a TBox T , we
define �∗

T as the reflexive transitive closure of the relation
�T that contains R�T S and R− �T S− for all role inclu-
sions R � S in T . An interpretation I is a model of a TBox
T if CI ⊆ DI for each concept inclusion C �D ∈ T , and
RI ⊆ SI for each role inclusion R � S ∈ T . A TBox is
satisfiable if it has some model. We note that satisfiability
of ALCHOI TBoxes is EXPTIME-complete (Baader et al.
2003).
Example 3. The theory ϕ in Example 1 can be written in the
syntax of ALCHOI as follows (we use the axiom C ≡ D
as a shortcut for the two inclusions C �D, D � C);

T = { MetroStation � TramStation ≡ Station,
TramConn ≡ ∃CloseTo.TramStation,
MetroConn ≡ ∃CloseTo.MetroStation,
URailConn ≡ ∃CloseTo.Station }

The following theorem can be proven using (well) known
complexity results from DLs and ASP, in combination with
an encoding of condition (C3) of Proposition 1 by means of
nominals, similarly to the encoding of DBoxes in (Franconi,
Ibáñez-Garcı́a, and Seylan 2011) (see the extended version).

Theorem 2. Deciding stable model existence in CKBs H =
(P, T ,Σ), where T is an ALCHOI TBox, is NEXPTIMENP-
complete. If P is not disjunctive, the problem is NEXPTIME-
complete. The problem is EXPTIME-complete, if (i) P is
both non-disjunctive and positive, or (ii) the arity of pred-
icate symbols in P is assumed to be bounded by a constant.

Translations and Implementation
We focus here on DL-based CKBs as described in the pre-
vious section, and provide translations from such CKBs to
other formalisms, in particular to dl-programs and to plain
ASP. The translations are given for a large fragment of
CKBs, which we call separable CKBs, and which in fact
generalizes r-hybrid KBs. To define the fragment we need
the notion of a positive occurrence and a negative occur-
rence of a concept or role name α in a concept C. These
notions are defined inductively as follows. (A) Every con-
cept name A occurs positively in A. (B) Every role name S
with R�∗

T S occurs positively in ∃R.C, for any concept C.
(C) Every role name S with R �∗

T S occurs negatively in
∀R.C, for any concept C. (D) If a concept name A occurs
positively (resp., negatively) in C, then A occurs positively
(resp., negatively) in C � D, C � D, ∀R.C and ∃R.C, for
any concept D and role R. (E) If a concept or role name
α occurs positively (resp., negatively) in C, then α occurs
negatively (resp., positively) in ¬C.
Definition 2 (Separability). A CKB H = (P, T ,Σ) is sep-
arable if the concept

�
C�D∈T (¬C � D) does not have a

positive occurrence of concept or role name α with α 	∈ Σ.
Example 4. Take the CKB H = (P, T ,Σ) with P =
{Q(X,Y, Z) ← T (X,Y ), P (Y, Z)}, T = {∃R.(∃P.A) �
B}, and Σ = {R,A,B}. Then H is separable because P
occurs only negatively in ¬(∃R.(∃P.A)) �B.

Intuitively, in a separable CKB H = (P, T ,Σ) the in-
clusions in T can be used to infer the extensions of open
predicates from the extensions of closed predicates and other
predicates, but these axioms simply cannot assert member-
ship of a domain element (resp., pair of elements) in a
closed concept name (resp., role name). More concretely,
for separable CKBs one can show a version of Proposi-
tion 1 where the condition (C3) is omitted (the rest of the
proposition remains the same). The omission of condition
(C3) is a major change: recall that we relied heavily on the
equality predicate in GNFO, and on nominals supported in
ALCHOI in order to cope with (C3). We note that sep-
arable CKBs capture r-hybrid KBs H = (T ,P) with T
an ALCHOI TBox. Such KBs, as mentioned, correspond
to CKBs H = (P, T ,Σ), where Σ is the set of predicates
symbols that appear in T , and which trivially satisfy the
separability condition. We remark that the pair (T ,P) with
T ,P from Example 4 is not a safe r-hybrid KB (neither is it
weakly safe in the spirit of DL+LOG), because the variable
Z does not appear in a rule atom with a predicate symbol
that does not occur in T .

Translation into DL-programs

We can now show how a separable CKB H can be translated
into a dl-program ΠH while preserving the existence of a
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stable model. Please see (Eiter et al. 2008) for the definition
of dl-programs; for convenience, in the extended version we
provide the definition of a core fragment of dl-programs
that is sufficient for the encoding. From a separable CKB
H = (P, T ,Σ) we build a dl-program ΠH = (T ′,P ′) as
follows. For every concept name A (resp., role name r) that
appears in T , let A′ be a fresh concept name (resp., let r′
be a fresh role name). Then the TBox T ′ is obtained from
T simply by replacing every concept and role name S by
S′. For the construction of P ′, let S1, . . . , Sn be an arbitrary
enumeration of the concept and role names that appear both
in P and Σ. Then the set P ′ of dl-rules is defined as follows:

P ′ = P ∪ Choose(H) ∪ {← DL[λ;⊥](X)},

where λ = S′
1�S1, . . . , S

′
n�Sn, S

′
1
−∪S1, . . . , S

′
n
−∪Sn.

Intuitively, given a stable model I of P ∪ Choose(H),
the expression λ above allows us to check the conditions
(C1) and (C2) of Proposition 1 (see the construction of
TBox(H, I) as used in the proof of Theorem 2 in the ex-
tended version). The constraint ← DL[λ;⊥](X) is then
used to discard I in case the built TBox is inconsistent. Thus
from this encoding we get the following result.
Theorem 3. A separable CKB H has a stable model iff the
dl-program ΠH has an answer set.

Translation into Plain ASP

We describe here our translations from separable CKBs
H = (P, T ,Σ) into standard ASP. Intuitively, instead of us-
ing a richer language than plain ASP to perform the search
for I ∈ mods(ϕ) with properties (C1) and (C2) described
in Proposition 1 (as we did above with dl-programs), we
perform reasoning about the TBox of an input KB during
the translation so that afterwards the TBox can effectively
be forgotten. Unlike our translation into dl-programs, this
translation is not polynomial and may take single exponen-
tial time in the size of the input. However, our experiments
show that in practice the latter performs much better than the
former. The below translations are inspired by existing trans-
lation from expressive DLs into disjunctive Datalog (Hus-
tadt, Motik, and Sattler 2007; Eiter, Ortiz, and Šimkus 2012;
Bienvenu et al. 2014). In fact, we provide a pair of transla-
tions: a generic modular translation that is independent from
the concrete facts in the input KB, and a restricted transla-
tion that does take into account the data (the latter was im-
plemented). We limit this approach to ALCH (i.e., we do
not support inverses and nominals).

We assume here TBoxes in normal form, that is, each ax-
iom is of one of the following forms:

A1 � . . .�An �B A�B1 � . . .�Bm A�∃R.B (I)
∃R.A�B A� ∀R.B R� S (II)

where A,B,Ai, Bi are concept names, � or ⊥, and R,S
are role names. It is well known that any TBox T can be
normalized into a TBox T ′ in polynomial time so that T
and T ′ have the same models up to the original signature of
T (see, e.g., (Simančı́k, Kazakov, and Horrocks 2011)).
Definition 3 (Communication rules Comm(H)). For a sep-
arable CKB H = (P, T ,Σ), let Comm(H) denote the set

of the following rules:

S(X,Y ) ← R(X,Y ) for each R� S ∈T
B(X) ← r(X,Y ), A(Y ) for each ∃R.A�B ∈T
B(Y ) ← A(X), r(X,Y ) for each A� ∀R.B ∈T

The program Comm(H) simply contains the direct trans-
lation of inclusions listed in (II). To deal with the remaining
inclusions (i.e. the ones listed in (I)), we employ types.

Definition 4 (Types). A type is any set τ ⊆ Scn ∪ {¬A |
A ∈ Scn}. A type τ is consistent w.r.t. a TBox T if there
exists a model I of T and an element e ∈ ΔI such that
e ∈ (

�
C∈τ C)I . We use types(T ) to denote the set of types

τ such that (i) τ is consistent w.r.t. T , and (ii) A ∈ τ or
¬A ∈ τ for each concept name A in T .

Data-independent translation. Assume a separable CKB
H=(P, T ,Σ). For each τ ∈ types(T ), let Typeτ be a fresh
unary predicate symbol. We let ASP(H) be the extension of
P ∪ Choose(H) ∪ Comm(H) with the following rules:

(i) the rule
∨

τ∈types(T ) Typeτ (X) ← adom(X)

(ii) for each type τ ∈ types(T ), the following constraints

A(X) ←Typeτ (X) for each A ∈ τ ∩ Scn

←Typeτ (X), A(X) for each ¬A ∈ τ

The program ASP(H) above built from a CKB H yields a
tool to decide consistency of H. In fact, the rules additional
to the original program P depend only on T and Σ, and
thus the translation is data-independent. Note that the set
types(T ) can be computed in single exponential time in the
size of T , and for this a standard DL reasoner can be used.
Indeed, a type τ is consistent w.r.t. T iff T ∪ {A(c) | A ∈
τ} ∪ {¬A(c) | ¬A ∈ τ} has a model, for a fresh constant c.

Theorem 4. The CKB H = (P, T ,Σ) has a stable model iff
ASP(H) has a stable model. In fact, for any set F of facts,
H = (P ∪ F, T ,Σ) has a stable model iff ASP(H) ∪ F has
a stable model.

Data-dependent translation. Since |types(T )| is often ex-
ponential in the size of T , the program ASP(H) can be pro-
hibitively large to be used in practice. We next present an
optimized way to obtain a desired ASP program, by sacrific-
ing data independence.

Assume a separable CKB H=(P, T ,Σ). For every con-
stant c that appears in H, let t(c,H) be the set of types
returned by the non-failing runs of the following non-
deterministic procedure:

(1) Let τ = {A | P has the fact A(c) ←}.

(2) Close τ under the following inference rules:

(a) If A1 � · · · �An �B ∈ T and {A1, . . . , An} ⊆ τ ,
then add B to τ .

(b) If ∃S.� � B ∈ T , R �∗
T S, and P has the fact

R(c, d) ← for some d, then add B to τ .
(c) If � � ∀S.B ∈ T , R �∗

T S, and P has the fact
R(d, c) ← for some d, then add B to τ .

If τ is inconsistent w.r.t. T , then return failure.
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(3) Pick a concept name B such that {B,¬B}∩ τ = ∅, and
B appears in one of the following:
(a) in a non-fact rule of P ,
(b) in some ∃R.A � B ∈ T or A � ∀R.B ∈ T such

that R appears in a non-fact rule of P ,
(c) in some ∃S.A � B ∈ T such that P has the fact
R(c, d) ← for some d, and R�∗

T S, or
(d) in some A � ∀R.B ∈ T such that P has the fact
R(d, c) ← for some d, and R�∗

T S.
If the above B does not exist, then return τ . Otherwise,
non-deterministically add to τ either B or ¬B, and go
to step (2).

Take a fresh unary predicate symbol Typeτ for each τ ∈
t(c,H) such that c occurs in H. We let ASPdd(H) be the
extension of P ∪ Comm(H) with the following rules:
(i) for all roles R ∈ Σ that appear in a non-fact rule in P , the
rule R(X,Y )∨R(X,Y ) ← adom(X), adom(Y ), where R
is a fresh relation symbol
(ii) for each constant c of H, the rule

∨
τ∈t(c,H) Typeτ (c) ←

(iii) for each constant c of H and type τ ∈ t(c,H), the fol-
lowing constraints

A(c) ←Typeτ (c) for each A ∈ τ ∩ Scn

←Typeτ (c), A(c) for each ¬A ∈ τ

The translation allows us to decide stable model existence:
Theorem 5. The CKB H = (P, T ,Σ) has a stable model
iff ASPdd(H) has a stable model.

Implementation and Experiments

We present here some experiments that demonstrate the ad-
vantages of translating a separable CKB H into a plain pro-
gram ASPdd(H). We have implemented our approach in a
prototype reasoner. In particular, to build the function t de-
scribed previously, instead of relying on an external DL rea-
soner, we have implemented our own algorithm for testing
consistency of types w.r.t. a TBox. It is designed in such a
way that the consistency of several types can be tested si-
multaneously, using caching to avoid recomputation. Con-
sistent types are stored in a database and can be reused for
other hybrid knowledge bases over the same ontology.

Our implementation is written in Java and PostgreSQL
9.5.5 database, and uses OWLAPI (Horridge and Bechhofer
2011) to manage ontologies. The ASP program resulting
from the translation is evaluated with Clingo 4.2.1 (Gebser
et al. 2011). The experiments were run on a PC with Intel
Core i7 CPU and 16GB RAM running 64bit Linux-Mint 17.
We compared the performance of our implementation with
the direct encoding to dl-programs, as presented on page 5.
The latter is implemented in dlvhex, which also uses Clingo.

For benchmarking, we used real-world OpenStreetMap1

data, transformed into Datalog facts following (Eiter et al.
2015). The data, describing the city of Vienna, is avail-
able as database dumps at BBBike2. The extracted data

1https://www.openstreetmap.org
2http://download.bbbike.org/osm/bbbike/Wien/

next50 next100 next150 next200 next250
Fact count 145014 263075 479283 743935 1053335

P1 19.6 30.1 44.6 60.2 87.6
P2 19.6 31.8 52.7 64.0 95.4
P3 19.6 32.8 56.1 64.7 98.2
P4 23.8 32.9 49.8 65.9 87.3

Table 1: Number of facts for different next relations, and
running times in seconds for P1–P4

contains facts about 19517 geographical points in the map
treated as constants. Concept assertions were extracted
from tags in the mapping data, for points of interest like
Hotel,Restaurant, Shop,Hospital,MetroStation etc. There
are also facts about relations between these points and other
constants representing objects of interest such as metro lines,
types of cuisine, dishes etc. Among plain Datalog relations,
we extracted next, relating pairs of points whose distance
is below a certain threshold set in meters. By considering
different thresholds, ranging from 50 to 250 meters, we ob-
tained sets of facts of different sizes. Other Datalog rela-
tions extracted to describe the Vienna metro network are
locatedAlong and nextStation. The former relates a metro
station to the corresponding metro line, and the latter relates
pairs of consecutive stations on the same line. The extracted
relations that also occur in T include roles like hasCuisine
and serves, which relate a Restaurant to a Cuisine or a Dish,
respectively. As TBox for our CKBs, we used the DL-LiteR
ontology from the MyITS Project (Eiter, Krennwallner, and
Schneider 2013), enriched with ALCH axioms.

We considered 4 separable CKBs with the same TBox
T , but different programs P . The programs are given
in the extended version. Each program captures the po-
tential information need of a tourist searching for a ho-
tel. Programs P1–P4 ask for a reachable Hotel from the
main station “Hauptbahnhof ”. Additionally P1–P3 ask for
Hotels that are next to some LocRestaurant (a concept in-
ferred from the ontology). P4 asks for Hotels that are in
a quiet neighbourhood, by negating the computed relation
LoudNeighbourhood. Note that P1 requires that the station
close to the Hotel should be reachable without line changes,
while P2 allows for at most one line change, whereas P3–
P4 allow for any number of changes as long as a station is
reachable (achieved via recursion).

For each of the mentioned programs, we included the
datasets of different sizes shown in Table 1, which have up
to roughly a million facts. Our approach behaved well, as
can be seen from the running times shown in Table 1. The
dl-program encoding for dlvhex did not scale for any of the
example programs provided, and failed to return answers be-
cause of memory exhaustion even for the smallest dataset
shown in Table 1. We tried to test it against a smaller yet
useful set of facts with approx 13000 Datalog facts, and it
still reached the time out of 600s that was set.

Discussion

We have presented CKBs, a powerful generalization of r-
hybrid and DL+LOG KBs due to Rosati. In addition to de-
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cidability and complexity results for CKBs, we have pro-
vided an implementation for a rich fragment of CKBs. The
implementation is based on a reduction to reasoning in plain
ASP. Our experiments show that this is a promising ap-
proach that provides a dramatic improvement over a naive
implementation based on a translation into dl-programs.

As shown in Example 1, the ability to use CWA predicates
in the theory of a CKB adds significant power. This power is
not readily available even in hybrid MKNF, a very rich for-
malism that captures r-hybrid and DL+LOG KBs (Motik and
Rosati 2010). Roughly speaking, to capture CKBs we would
need to extend hybrid MKNF to support modal operator K
inside FO theories. Another way to see a difference is using
data complexity. Due to results on DLs with DBoxes (see
(Franconi, Ibáñez-Garcı́a, and Seylan 2011)), satisfiability is
already NP-hard in data complexity for CKBs based on basic
DL-Lite TBoxes in combination with non-disjunctive posi-
tive rules. The same setting in hybrid MKNF is tractable.
Related Work. There are few other works on implement-
ing reasoning over combinations of DL ontologies and rules.
For expressive (non-Horn) DLs that go beyond the DL-Lite
and EL families, dl-programs is the richest formalism that
has been implemented, in particular in the dlvhex suite. The
HermiT system supports reasoning in expressive DLs en-
riched with positive rules under DL-safety (Glimm et al.
2014). The work in (Hustadt, Motik, and Sattler 2007) en-
ables query answering services over expressive DLs using
a data-independent translation into disjunctive Datalog. For
Horn DLs, Heymans et al. showed how dl-programs with
external queries over Datalog-rewritable DLs can be trans-
lated into Datalog with stable negation (Heymans, Eiter,
and Xiao 2010). Redl recently presented a generalization
of this rewriting approach to external atoms in general
HEX-programs (Redl 2017), still its applicability for reason-
ing with DL ontologies was demonstrated only using the
lightweight logic DL-Lite. An implementation of reason-
ing in hybrid MKNF KBs (with lightweight ontologies) un-
der the Well-Founded Semantics is also available (Alferes,
Knorr, and Swift 2013; Ivanov, Knorr, and Leite 2013). The
work in (Swift 2004) shows how reasoning about DL con-
cepts, but not general TBoxes, can be implemented in ASP.
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