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Abstract

Abstract argumentation frameworks are a well-established
formalism to model nonmonotonic reasoning processes.
However, the standard model cannot express incomplete or
conflicting knowledge about the state of a given argumenta-
tion. Previously, argumentation frameworks were extended to
allow uncertainty regarding the set of attacks or the set of ar-
guments. We combine both models into a model of general
incompleteness, complement previous results on the com-
plexity of the verification problem in incomplete argumenta-
tion frameworks, and provide a full complexity map covering
all three models and all classical semantics. Our main result
shows that the complexity of verifying the preferred seman-
tics rises from coNP- to Σp

2-completeness when allowing un-
certainty about either attacks or arguments, or both.

1 Introduction

Within the field of artificial intelligence, abstract argumen-
tation frameworks have emerged as a useful methodology
to represent and evaluate nonmonotonic logics. They allow
to create a simple, directed graph from a defeasible knowl-
edge base that consists of only arguments (nodes) and at-
tacks (directed edges), then to identify sets of “acceptable”
arguments in that graph, and finally to interpret these argu-
ments’ conclusions as models in the knowledge base. In this
framework, when evaluating which arguments are accept-
able in the graph, the internal structure of arguments is ne-
glected, which accounts for the simplicity of the formalism.

Since Dung (1995) introduced his seminal model, many
model extensions of argumentation frameworks have been
proposed that allow to capture a wider and more fine-grained
range of applications. This paper continues a line of re-
search aimed at expressing unquantified uncertainty in an ar-
gumentation framework. Such qualitative uncertainty about
the state of an argumentation framework was introduced by
Coste-Marquis et al. (2007) and further studied by Baumeis-
ter, Neugebauer, and Rothe (2015) for the set of attacks and
by Baumeister, Rothe, and Schadrack (2015) for the set of
arguments. This paper is the first to allow uncertainty about
both arguments and attacks simultaneously. Our main ques-
tion is to examine how the complexity of verifying certain
semantics (expressing which subsets of the arguments are
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acceptable in various ways) changes when asking whether
they are satisfied possibly (in some completion of the in-
complete graph) or necessarily (in all its completions).

A large body of previous work in abstract argumentation
addresses quantitative uncertainty about the state of a given
argumentation by using probabilities. Fuzzy argumentation
frameworks (Janssen, Cock, and Vermeir 2008) replace the
attack relation with a fuzzy relation, where each individ-
ual attack has a fuzzy value in [0, 1] that represents the de-
gree to which this attack holds. In a fuzzy argumentation
framework, for two sets of arguments, the degree to which
they attack each other can be determined. In probabilistic
argumentation frameworks, Li, Oren, and Norman (2011)
assume that a probability distribution over both arguments
and attacks is given. Other approaches associate a proba-
bility with each set of arguments (Dung and Thang 2010;
Rienstra 2012) to indicate whether all and only these argu-
ments are active, or with each spanning subtree of the argu-
ment graph (Hunter 2014) to indicate that all and only the
attacks contained in that subtree are active. In all these mod-
els, an interesting question is to determine the probability
for a set of arguments to be acceptable. A different branch
of research on probabilistic argumentation uses probabilities
to represent the epistemic state of arguments, attacks, or sets
of arguments, i.e., the belief in those elements (in terms of
acceptance). Although technically similar, this approach has
a completely different purpose than ours, which is the repre-
sentation of structural uncertainty.

Another field that raises similar questions is that of dy-
namic change of argumentation frameworks. Previous work
has examined how adding or deleting a set of arguments
can alter the set of acceptable sets of arguments (Cayrol,
de Saint-Cyr, and Lagasquie-Schiex 2010; Boella, Kaci, and
van der Torre 2009), the complexity of computing the ac-
ceptability of a single argument after changing the argu-
ments or attacks (Liao, Jin, and Koons 2011), or enforce-
ment of a set of arguments (Baumann and Brewka 2010;
Wallner, Niskanen, and Järvisalo 2016; Coste-Marquis et al.
2015), where the question is how much a given argumenta-
tion framework needs to be modified to make the given set
of arguments acceptable.

In the remainder of this paper, we give the required
background in abstract argumentation (Section 2), introduce
incomplete argumentation frameworks as a generalization
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of attack- and argument-incomplete argumentation frame-
works (Section 3), followed by a full complexity analysis of
verification in all three models (Section 4), and we discuss
our results and possible tasks for future work (Section 5).

2 Preliminaries

We start by defining argumentation frameworks due to
Dung (1995), mostly following the notation by Dunne and
Wooldridge (2009).
Definition 1. An argumentation framework AF is a pair
〈A,R〉 consisting of a finite set A of arguments and a binary
attack relation R ⊆ A×A on the arguments. We say that a
attacks b if (a, b) ∈ R.

An argumentation framework AF = 〈A,R〉 can be dis-
played as a directed graph (V,E) by identifying arguments
with vertices and attacks with directed edges: V = A and
E = R.
Example 2. Consider an argumentation frame-
work AF = 〈A,R〉 with A = {a, b, c, d, e} and
R = {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c), (e, d), (e, e)}.
Its graph representation is given in Figure 1.

a

b

cd

e

Figure 1: Argumentation framework for Example 2

The main objective in abstract argumentation is to iden-
tify sets of arguments that are simultaneously acceptable.
Various semantics were defined in the literature that impose
different acceptability conditions for sets of arguments. We
cover all semantics that were defined in the seminal paper
by Dung (1995). They are formalized in Definition 3, after
introducing some necessary notions.

An argument a ∈ A is defended by S ⊆ A if, for
each b ∈ A with (b, a) ∈ R, there is a c ∈ S such that
(c, b) ∈ R. For an argumentation framework AF , the char-
acteristic function FAF : 2A → 2A maps each set S of
arguments to the set of arguments that are defended by S,
i.e., FAF (S) = {a ∈ A | a is defended by S}. The char-
acteristic function always has a least fixed point, since it is
monotonic with respect to set inclusion. Let F k

AF denote the
k-fold composition of FAF , and let F ∗

AF denote the infinite
composition, which yields the fixed points of FAF .
Definition 3. Let AF = 〈A,R〉 be an argumentation frame-
work. A set S ⊆ A is
• conflict-free if (a, b) �∈ R for all a, b ∈ S.
A conflict-free set S ⊆ A is
• admissible if S ⊆ FAF (S),
• complete if S = FAF (S),

• grounded if S = F ∗
AF (∅), i.e., S is the least fixed point of

FAF ,
• preferred if S ⊆ FAF (S) and there is no admissible set
S′ ⊃ S, and

• stable if for every b ∈ A \ S there is an a ∈ S with
(a, b) ∈ R.
Among these properties, conflict-freeness and admissibil-

ity are typically considered to be basic requirements while
the others are “real” semantics—for the sake of convenience,
however, we will not always distinguish between basic prop-
erties and semantics.

It is obvious that the grounded set is unique and com-
plete and that every complete set is admissible. The work of
Dung (1995) further provides that there always is a conflict-
free, admissible, complete, grounded, and preferred set, but
there may be no stable set. Also, every stable set is preferred,
every preferred set is complete, and every admissible set is
conflict-free.

We assume the reader to be familiar with the complexity
classes of the polynomial hierarchy, in particular, P, NP,
coNP, and Σp

2 = NPNP, as well as the concepts of hardness
and completeness. For an introduction, see, e.g., the books
by Papadimitriou (1995) and Rothe (2005).

Dunne and Wooldridge (2009) defined decision problems
regarding the existence or status of acceptable arguments.
We focus on the verification problem, which is parameter-
ized by one of the semantics (denoted s) defined above and
asks whether a given set of arguments is an extension of
the argumentation framework with respect to that seman-
tics, i.e., whether it satisfies the conditions imposed by that
semantics. As shorthands, we may use CF for conflict-free,
AD for admissible, CP for complete, GR for grounded, PR for
preferred, and ST for stable semantics.

s-VERIFICATION (s-VER)

Given: An argumentation framework 〈A,R〉 and a subset
S ⊆ A.

Question: Is S an s extension of AF?

The problem PR-VERIFICATION was shown to be
coNP-complete by Dimopoulos and Torres (1996), but
Dung (1995) established polynomial-time algorithms for
verifying the other semantics from Definition 3.

3 Incomplete Argumentation Frameworks

In our model of incomplete argumentation framework, both
the set of arguments and the set of attacks are split into a
definite and a possible set, which represent the elements that
are known to exist, respectively, which may or may not exist.
Definition 4. An incomplete argumentation framework is a
quadruple 〈A,A?,R,R?〉, where A and A? are disjoint sets
of arguments and R and R? are disjoint subsets of (A ∪
A?) × (A ∪ A?). A is the set of arguments that are known
to definitely exist, while A? contains all possible additional
arguments not (yet) known to exist. Similarly, R is the set
of attacks that are known to definitely exist (as long as both
incident arguments turn out to exist), while R? contains all
possible additional attacks not (yet) known to exist.
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(a) An attack-incomplete AF
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(b) An argument-incomplete AF
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(c) An incomplete AF

Figure 2: Some examples of incomplete argumentation frameworks

Example 5. Figure 2 displays graph representations of three
incomplete argumentation frameworks, where definite ele-
ments are displayed as usual and possible elements are dis-
played as dashed circles or arcs. Elements that are known to
not exist are not displayed.

The incomplete argumentation framework in Figure 2a
has no uncertainty regarding the arguments, while the one in
Figure 2b has no uncertainty regarding the attacks. The in-
complete argumentation framework in Figure 2c combines
the uncertainty of the other two.

An incomplete argumentation framework 〈A,A?,R,R?〉
can be seen as a representation of a finite universe of possi-
ble worlds, where each world corresponds to a single argu-
mentation framework (without uncertainty), in which each
possible argument in A? and each possible attack in R? is
either included or excluded. Such an argumentation frame-
work is called a completion of 〈A,A?,R,R?〉. When ex-
cluding a possible argument, all its incident attacks are also
automatically excluded: For a set A∗ of arguments with
A ⊆ A∗ ⊆ A ∪ A?, the restriction of a relation R to A∗ is
R|A∗ = {(a, b) ∈ R | a, b ∈ A∗}.

Definition 6. Let IAF = 〈A,A?,R,R?〉 be an incom-
plete argumentation framework. An argumentation frame-
work IAF ∗ = 〈A∗,R∗〉 with A ⊆ A∗ ⊆ A ∪ A? and
R|A∗ ⊆ R∗ ⊆ (R∪R?

) |A∗ is called a completion of
IAF .

In general, the number of possible completions is ex-
ponential in the size of the incomplete argumentation
framework—it is at most 2|R

?|+|A?|, but may be slightly
lower: Since excluding possible arguments may implicitly
also exclude possible attacks, it may be that some of the
completions coincide.

Example 7. Continuing Example 5, the incomplete argu-
mentation frameworks in Figures 2a and 2b have 23 = 8 and
22 = 4 completions, respectively. The incomplete argumen-
tation framework in Figure 2c has 24 completions: 24 = 16
that include argument d, and another 23 = 8 that exclude d,
since, in the latter case, the attack (e, d) is not available.

In an incomplete argumentation framework IAF , we say
that a property defined for standard argumentation frame-
works (e.g., a semantics) holds possibly if there exists a com-
pletion IAF ∗ of IAF for which the property holds, and a
property holds necessarily if it holds for all completions of

IAF . Thus we can define two variants of the verification
problem in the incomplete case for each given semantics s:1

s-INC-POSSIBLE-VERIFICATION (s-INCPV)

Given: An incomplete argumentation framework IAF =
〈A,A?,R,R?〉 and a set S ⊆ A ∪A?.

Question: Is there a completion IAF ∗ = 〈A∗,R∗〉 of IAF
such that S|A∗ = S ∩ A∗ is an s extension of
IAF ∗?

s-INC-NECESSARY-VERIFICATION (s-INCNV)

Given: An incomplete argumentation framework IAF =
〈A,A?,R,R?〉 and a set S ⊆ A ∪A?.

Question: For all completions IAF ∗ = 〈A∗,R∗〉 of IAF ,
is S|A∗ = S ∩ A∗ an s extension of IAF ∗?

Both problems are potentially harder than standard verifi-
cation, since they add an existential (respectively, universal)
quantifier over a potentially exponential space of solutions.

Incomplete argumentation frameworks are a general-
ization of both pure models of incomplete argumen-
tation frameworks. Fixing A? = ∅ in Definitions 4
and 6 yields exactly the class of attack-incomplete argu-
mentation frameworks as proposed by Coste-Marquis et
al. (2007) (and further studied by Baumeister, Neugebauer,
and Rothe (2015)), and fixing R? = ∅ yields exactly the
class of argument-incomplete argumentation frameworks
as proposed by Baumeister, Rothe, and Schadrack (2015).
In attack-incomplete argumentation frameworks, the set of
possible arguments can be omitted and it can be writ-
ten as 〈A,R,R?〉. Likewise, 〈A,A?,R〉 denotes a purely
argument-incomplete argumentation framework. Also, there
are distinct possible and necessary variants of the verifi-
cation problem for both pure models of incompleteness,
which were introduced by Baumeister, Neugebauer, and
Rothe (2015) and Baumeister, Rothe, and Schadrack (2015).
In the attack-incomplete model, we write s-ATTINCPV and
s-ATTINCNV for possible and necessary verification, re-
spectively, and s-ARGINCPV and s-ARGINCNV in the
argument-incomplete model.

1Maher (2016) studies resistance to corruption in strategic ar-
gumentation. While instances in his model and in our argument-
incomplete argumentation frameworks are technically similar, his
results do not carry over to our problems. One difference is that he
focuses on credulous or skeptical acceptance of specific arguments,
whereas we consider verification of entire extensions.
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4 Complexity of Verification

In this section, we provide a full complexity analysis of the
verification problem in the general model of incomplete ar-
gumentation framework and also fill the gaps in complex-
ity for both pure models. Since the combined model is a
generalization of both pure models, all upper bounds in the
general incompleteness model straightforwardly provide the
same upper bound for both pure incompleteness models.
Likewise, all lower bounds in either of the pure incomplete-
ness models immediately give the same lower bound for
the general model. We start by providing some simple up-
per bounds for the complexity in the general incompleteness
model.
Theorem 8. For s ∈ {AD, ST, CP, GR}, s-INCPV is in NP.
Moreover, PR-INCPV is in Σp

2 and PR-INCNV is in coNP.

Proof. The results follow directly from the quantifier rep-
resentations of the given problems: We start with an ex-
istential quantifier for possible verification, and with a
universal quantifier for necessary verification. For s ∈
{AD, ST, CP, GR}, it can be checked in polynomial time
whether the given subset is an s extension. Moreover, the
standard verification problem for the preferred semantics be-
longs to coNP; hence, it can be written as a universal quan-
tifier followed by a statement checkable in polynomial time.
Therefore, this polynomial-time predicate is preceded first
by an existential quantifier (guessing a completion) and then
a universal quantifier (verifying preferredness) in the case
of PR-INCPV, and it is preceded by two universal quan-
tifiers that can be collapsed to one such quantifier for PR-
INCNV.

Baumeister, Rothe, and Schadrack (2015) proved that
s-ARGINCPV is NP-hard for s ∈ {AD, ST, CP, GR}, and
the work by Dimopoulos and Torres (1996) yields that PR-
VERIFICATION is coNP-hard. These hardness results carry
over to the general model and coincide with the respective
upper bounds from Theorem 8.
Corollary 9. For s ∈ {AD, ST, CP, GR}, s-INCPV is NP-
complete. Moreover, PR-INCNV is coNP-complete.

4.1 Upper Bounds

In this section, we provide all remaining upper bounds on the
complexity of possible and necessary verification. We start
by proving that verifying conflict-freeness remains easy in
the general model.
Theorem 10. CF-INCPV and CF-INCNV both are in P.

Proof. Given an incomplete argumentation framework
IAF = 〈A,A?,R,R?〉 and a set S ⊆ A ∪ A? of argu-
ments, S is possibly conflict-free in IAF if and only if S|A
is conflict-free in the minimal completion 〈A,R|A〉 of IAF ,
which discards all possible arguments and attacks. Similarly,
S is necessarily conflict-free in IAF if and only if S is
conflict-free in the maximal completion 〈A ∪ A?,R ∪ R?〉
of IAF , which includes all possible arguments and attacks.
Since both the minimal and the maximal completion can
clearly be constructed in polynomial time, we have P mem-
bership for both problems.

In the remainder of Section 4.1, we will, step by step,
show that all upper bounds from the standard model with-
out incompleteness are preserved by the necessary verifica-
tion variant in all three incompleteness models and for all
considered semantics.

Theorem 11. AD-ARGINCNV and ST-ARGINCNV both
are in P.

Proof. Let I = (〈A,A?,R〉, S) be an instance of
AD-ARGINCNV. If S is not necessarily conflict-free in
〈A,A?,R〉, it is not necessarily admissible in 〈A,A?,R〉,
either. Since CF-ARGINCNV is in P (Baumeister, Rothe,
and Schadrack 2015), this can be checked in polynomial
time. In the following, we may assume that S is necessar-
ily conflict-free.

Let A0 = A ∪ (A? \ S) and C0 = 〈A0,R|A0
〉, and

for each argument a ∈ A? ∩ S, let Aa = A0 ∪ {a} and
Ca = 〈Aa,R|Aa

〉. If, for some x ∈ {0} ∪ (A? ∩ S), S|Ax

is not admissible in the completion Cx, we clearly have I �∈
AD-ARGINCNV. Since the number of these completions is
bounded by the number of arguments (plus one), this can
again be verified in polynomial time. We may now assume
that, in each completion Cx, S|Ax is admissible.

Note that each of these completions includes all possible
attacks against the respective set S|Ax

, because the comple-
tions include all possibly harmful arguments (members of
A0) and because there cannot be any attacks among mem-
bers of S. This yields that S|A0

defends all attacks against
its elements in any completion, and, for all a ∈ A? ∩ S,
S|Aa

defends all attacks against a in any completion. Fi-
nally, since in any completion C∗ = 〈A∗,R|A∗〉, it holds
that S|A∗ ⊆ ⋃

x S|Ax , we can conclude that each element
of S|A∗ is defended by S|A∗ in C∗, so S is necessarily ad-
missible in 〈A,A?,R〉 and I ∈ AD-ARGINCNV.

ST-ARGINCNV ∈ P can be proven with the same con-
struction and an analogous argumentation.

The previous result can be lifted to the general incom-
pleteness model. We sketch the proof idea.

Theorem 12. AD-INCNV and ST-INCNV both are in P.

Proof (sketch). For an instance (IAF , S) of AD-INCNV, re-
duce the problem to AD-ARGINCNV using a single critical
“pessimistic” argument-incomplete argumentation frame-
work IAF pes

S , which is obtained by including each and
only those attacks that target S. P membership then follows
from a straightforward proof of the equivalence (IAF , S) ∈
AD-INCNV ⇔ (IAF pes

S , S) ∈ AD-ARGINCNV. An analo-
gous proof can be used for the stable semantics.

Turning to the complete and grounded semantics, we can
successively prove P membership of CP-INCNV and GR-
INCNV in Theorems 13 and 17, respectively.

Theorem 13. CP-INCNV is in P.

Proof. Let (IAF , S) with IAF = 〈A,A?,R,R?〉 be an in-
stance of CP-INCNV. Since AD-INCNV ∈ P, we may as-
sume that S is necessarily admissible in IAF . We clearly
have (IAF , S) �∈ CP-INCNV if and only if there is at least
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one argument outside of S that is defended by S in some
completion of IAF . It remains to show how to check this.

If all arguments a ∈ (A ∪A?) \ S are definitely attacked
by S, i.e., (ba, a) ∈ R for each such argument a and some
corresponding ba ∈ S, then S is necessarily stable and there-
fore necessarily complete, and we are done. Now assume
this is not the case and let a ∈ (A ∪ A?) \ S be any argu-
ment outside of S that is not definitely attacked by S, i.e.,
(b, a) �∈ R for all b ∈ S ∩ A (if a were attacked by S,
it clearly could not be defended by S in any completion).
Let Att(a) = {b ∈ A ∪ A? | (b, a) ∈ R} be the set of
all arguments with a definite attack against a. Further, let
Ra = R ∪ {(b, c) ∈ R? | b ∈ S and c ∈ Att(a) \ {a}}
be the set of attacks that includes all and only those possi-
ble attacks for which the attacker is in S and the target is an
attacker of a.

Consider now the completion Ca = 〈Aa,Ra|Aa
〉 where

Aa = A ∪ {a} ∪ {b ∈ A? | (b, a) �∈ Ra}, i.e., Ca uses
the attack relation Ra and includes a and exactly those pos-
sible arguments that do not attack a (in Ra). If, for any of
these completions, a is defended by S in Ca, then S is not
complete in Ca and therefore not necessarily complete. If,
on the other hand, each argument a is not defended by S in
the respective completion Ca, then none of these arguments
are possibly defended by S, and therefore, S is necessarily
complete: Assume that a is not defended by S in Ca, i.e.,
there is some b ∈ Aa with (b, a) ∈ Ra|Aa

and S does not
attack b in Ca. By construction of Ca, we know that b is a
definite argument, i.e., b ∈ A, and (b, a) is a definite attack,
i.e., (b, a) ∈ R, so b attacks a in any completion that con-
tains a. Also, in all completions, S either does not defend
a against b, or S attacks a, since all possible arguments in
S either attack a or are already included in Ca. So, a is not
possibly defended by S.

All steps taken can clearly be performed in polynomial
time. This completes the proof.

This result immediately yields P membership for the cor-
responding problem in the argument-incomplete model.

Corollary 14. CP-ARGINCNV is in P.

Next, we introduce the notion of ungrounded completion
of an incomplete argumentation framework as a tool to prove
P membership of GR-INCNV.

Definition 15. Let IAF = 〈A,A?,R,R?〉 be an incom-
plete argumentation framework and S ⊆ A∪A? be a set of
arguments in IAF . The ungrounded completion IAF ungr

S of
IAF for S is obtained by the following algorithm.

1. Let R0 = R∪ {(a, b) ∈ R? | b ∈ S}.
2. Let G0 = ∅, A?

0 = A?, IAF 0 = 〈A,A?
0,R0〉, and i = 0.

3. Let Maxi be the maximal completion of IAF i and let
Xi ⊆ S be the set of arguments in S that are defended by
Gi in Maxi, i.e., Xi = FMaxi(Gi) ∩ S. Add the definite
arguments in Xi to Gi and exclude the possible arguments
in Xi from the framework, i.e., Gi+1 = Gi ∪ (Xi \ A?),
A?

i+1 = A?
i \Xi, and Ri+1 = Ri|A∪A?

i+1
. Set i ← i+1.

4. Repeat the previous step until Gi = Gi−1.

5. The ungrounded completion of IAF for S is IAF ungr
S =

〈Aungr
S ,R|Aungr

S
〉 with Aungr

S = A ∪A?
i .

Intuitively, the ungrounded completion removes all and
only those arguments that are in S and that are possible can-
didates for membership in the grounded extension (elements
of Xi in each iteration i)—all other arguments are included.
The purpose of that is to make it as unlikely as possible for S
to be grounded in this completion. The ungrounded comple-
tion is critical in the following sense: If a necessarily com-
plete set S is grounded even in the ungrounded completion,
then it must be grounded in all completions. This is formal-
ized in Lemma 16.

Lemma 16. Let IAF = 〈A,A?,R,R?〉 be an incomplete
argumentation framework, S ⊆ A ∪ A? be a necessarily
complete set of arguments in IAF , and let IAF ungr

S be the
ungrounded completion of IAF for S. S is the necessar-
ily grounded extension of IAF if and only if S|Aungr

S
is the

grounded extension of IAF ungr
S .

Proof. If S|Aungr
S

is not the grounded extension of IAF ungr
S ,

it immediately follows that S is not necessarily grounded
in IAF . We now prove the other direction of the equiva-
lence: Let S|Aungr

S
be the grounded extension of IAF ungr

S .
We prove that, then, S is necessarily grounded in IAF .

First, we observe that whenever S|Aungr
S

is the grounded
extension of IAF ungr

S (which we know by assumption), then
S|Aungr

S
= Gi′ for the set Gi′ in the last iteration i′ of the

algorithm: Gi′ ⊆ S|Aungr
S

holds because, by construction,
Gi′ consists only of definite arguments, and S|Aungr

S
⊆ Gi′

holds because S|Aungr
S

is grounded in IAF ungr
S and no ar-

gument outside of Gi′ could be acceptable with respect to
Gi′ in the ungrounded completion. Since Gi′ consists only
of definite arguments, we know that S|Aungr

S
consists only of

definite arguments under the given assumptions.
Now, let IAF ∗ = 〈A∗,R|A∗〉 be any completion of

〈A,A?,R,R?〉 (different from the ungrounded completion)
and let G∗ be its grounded extension. Since we know by
assumption that S|A∗ is complete in IAF ∗, with the fact
(proven by Dung (1995)) that the grounded extension is con-
tained in all complete extensions of the same argumentation
framework, we can conclude that G∗ ⊆ S|A∗ .

However, we also have S|A∗ ⊆ G∗: Since S|Aungr
S

con-
tains only definite arguments, these must be in G∗, too. Now
assume that S|A∗ �⊆ G∗. Then there is a possible (non-
definite) argument a ∈ (S|A∗ \ G∗). We know that a is not
included in the ungrounded completion. We also know that
a is not acceptable with respect to G∗ in IAF ∗, because oth-
erwise it would need to be included in the grounded set G∗.
Also, since S|Aungr

S
⊆ G∗, a is not acceptable with respect

to S|Aungr
S

either (remember that S is necessarily complete
and, in particular, necessarily conflict-free in IAF , so any at-
tackers must be outside of S). So, there must be an attacker
b �∈ S of a which is not attacked by G∗ (and, therefore, not
attacked by S|Aungr

S
) in IAF ∗. Since the ungrounded com-

pletion includes all arguments that are not in S, b is also in-
cluded in Aungr

S . Further, since the ungrounded completion
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includes all and only those possible attacks that target S, the
attack (b, a) is included and any possible defending attacks
are not included in the ungrounded completion. However,
this means that the attack (b, a) is not defended by S|Aungr

S

in the ungrounded completion, which, by its construction,
would mean that a would be included in Aungr

S (a could only
be excluded in Step 3 if it is acceptable with respect to a sub-
set of S|Aungr

S
, which a is not, due to the attack by b). This

contradicts the fact that a is not included in the ungrounded
completion. Therefore, such an argument a cannot exist and
we can conclude S|A∗ ⊆ G∗ and, in total, S|A∗ = G∗.
So, S|A∗ is grounded in IAF ∗ and, since IAF ∗ was kept
generic, S is necessarily grounded in IAF .

Theorem 17. GR-INCNV is in P.

Proof. Let (〈A,A?,R,R?〉, S) be an instance of GR-
INCNV. If S is not necessarily complete in 〈A,A?,R,R?〉,
it is not necessarily grounded in 〈A,A?,R,R?〉, either. By
Theorem 13, the former can be checked in polynomial time.
Therefore, we may assume that S is necessarily complete.
Given a completion, GR-VERIFICATION can be solved in
polynomial time, and Lemma 16 yields that the answer to
GR-INCNV is the same as that to GR-VERIFICATION for
the ungrounded completion. Since the ungrounded comple-
tion can clearly be constructed in polynomial time, this com-
pletes the proof.

Again, the P upper bound immediately transfers to the
argument-incomplete model.

Corollary 18. GR-ARGINCNV is in P.

We have completed our proofs for P membership of nec-
essary verification in all three incompleteness models for the
admissible, stable, complete, and grounded semantics.

4.2 Lower Bounds

Our final results show that the complexity of possible ver-
ification for the preferred semantics raises from coNP-
hardness to Σp

2-completeness in all three models.

Theorem 19. PR-ATTINCPV is Σp
2-hard.

Proof. First, we quickly recall some notation from proposi-
tional logic. A boolean variable x has two literals, x and ¬x.
A boolean formula is in conjunctive normal form (CNF) if
it is a conjunction of disjunctions of literals (clauses), and
in disjunctive normal form (DNF) if it is a disjunction of
conjunctive clauses of literals. 3-CNF (respectively, 3-DNF)
denotes CNF (respectively, DNF) with at most three liter-
als per clause. A truth assignment τ on a set X of variables
is a function τ : X → {true, false}. For a formula ϕ and
truth assignments τ1, τ2, . . . , τk on disjoint sets of variables,
ϕ[τ1, τ2, . . . , τk] denotes the formula obtained by replacing
variables in ϕ with their truth values in τ1, τ2, . . . , τk.

To prove Σp
2-hardness, we reduce from the quantified

satisfiability problem Σ2SAT, which is well-known to be
complete for Σp

2 (Stockmeyer 1976): Given a 3-DNF for-
mula ϕ on two disjoint sets of variables, X and Y , does
∃τX ∀τY : ϕ[τX , τY ] evaluate to true (where τX and τY are
truth assignments on X and Y , respectively)?

Let (ϕ,X, Y ) be an instance of Σ2SAT, where X =
{x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} are two disjoint sets
of propositional variables and ϕ is a 3-DNF formula over
X ∪ Y . For ϕ̄ = ¬ϕ, the question in Σ2SAT is equiva-
lent to asking whether ∃τX∀τY : ϕ̄[τX , τY ] = false, where
ϕ̄ = c1 ∧ · · · ∧ cm is a formula in 3-CNF with clauses c1
through cm. From now on, we will mostly use this CNF for-
mulation of the problem.

We create an instance (〈A,R,R?〉, S) of PR-ATTINCPV
from (ϕ,X, Y ) as follows (see Figure 3a for an example):

A =

⎧⎪⎨
⎪⎩

yi, ȳi, for yi ∈ Y
xi, x̄i, for xi ∈ X
ci, for ci in ϕ̄
s

⎫⎪⎬
⎪⎭

,

R? = { (s, x̄i), for xi ∈ X } ,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ȳi, yi), (yi, ȳi), for yi ∈ Y
(x̄i, xi), for xi ∈ X
(ci, ci), for ci in ϕ̄
(ci, yj), (ci, ȳj), for ci in ϕ̄, yj ∈ Y
(ci, xk), (ci, x̄k), for ci in ϕ̄, xk ∈ X
(yj , ci), if yj in ci
(ȳj , ci), if ¬yj in ci
(xk, ci), if xk in ci
(x̄k, ci), if ¬xk in ci

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Finally, let S = {s}. We call all arguments xi, x̄i, yi,
and ȳi literal arguments and arguments ci clause arguments.
Note that S is necessarily admissible in 〈A,R,R?〉, so the
verification of possible preferredness boils down to check-
ing whether all supersets of S are nonadmissible in some
completion of 〈A,R,R?〉.

We prove that (ϕ,X, Y ) ∈ Σ2SAT ⇔ (〈A,R,R?〉, S) ∈
PR-ATTINCPV. Assume that (ϕ,X, Y ) ∈ Σ2SAT, i.e.,
∃τX∀τY : ϕ̄[τX , τY ] = false. Let τX be an assignment
of truth values to the variables in X that satisfies ∀τY :
ϕ̄[τX , τY ] = false. Let 〈A,RτX 〉 be the completion of
〈A,R,R?〉 obtained by letting RτX = R∪ {(s, x̄i) ∈ R? |
τX(xi) = true}. In 〈A,RτX 〉, the assignment τX to the
variables in X is translated to a commitment on literal argu-
ments: If, for xi ∈ X , τX(xi) = true, then the attack by
s against argument x̄i is included and x̄i can no longer be a
member of admissible supersets of S, while argument xi is
defended by s and potentially can be such a member. On the
other hand, if τX(xi) = false, the attack is excluded and the
roles are switched: Argument xi cannot be defended against
argument x̄i by S (or any conflict-free superset of S), so xi

cannot be contained in admissible supersets of S, whereas
x̄i can.

Now let τY be any truth assignment for Y . We know
that ϕ̄[τX , τY ] = false. Transform τX and τY to a set
S(τX ,τY ) ⊃ S of arguments by letting S(τX ,τY ) = S ∪ {xi |
τX(xi) = true} ∪ {x̄i | τX(xi) = false} ∪ {yi | τY (yi) =
true} ∪ {ȳi | τY (yi) = false}. It is easy to see that
S(τX ,τY ) is conflict-free in 〈A,RτX 〉. However, S(τX ,τY )

cannot defend itself against all clause arguments c1, . . . , cm
in 〈A,RτX 〉, and therefore is not admissible: Since ϕ̄ is in
CNF and ϕ̄[τX , τY ] = false, at least one clause in ϕ̄ is un-
fulfilled. Let cj be any such clause. Since the clauses of ϕ̄
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y1 ȳ1 y2 ȳ2 x1 x̄1 x2 x̄2

c1

c2 s

(a) Graph representation of 〈A,R,R?〉

y1 ȳ1 y2 ȳ2 x1 x̄1 x2 x̄2

c1

c2

(b) Graph representation of 〈A,A?,R〉

Figure 3: Graph representations created from clauses c1 = (¬x1 ∨ x2 ∨ ¬y1) and c2 = (x1 ∨ y1 ∨ ¬y2), where dashed attacks
or arguments indicate uncertainty as usual, and attacks by clause arguments are displayed as dotted arcs to facilitate readability.

are disjunctions of literals, all literals in cj are unfulfilled.
The only arguments in A that attack the clause argument cj
are the literal arguments whose corresponding literals appear
in clause cj . However, by construction, none of these argu-
ments are in S(τX ,τY ), since all these literals are false in τX
and τY . Therefore, no argument in S(τX ,τY ) attacks argu-
ment cj . On the other hand, cj attacks all literal arguments
and therefore it attacks S(τX ,τY ), which proves that S(τX ,τY )

is not admissible in 〈A,RτX 〉. All other supersets of S are
either a subset of S(τX ,τY ) or not conflict-free, and thus can’t
be admissible, either. Since τY was kept generic, this covers
all possible supersets of S and proves that S is preferred in
〈A,RτX 〉, and we have (〈A,R,R?〉, S) ∈ PR-ATTINCPV.

For the other direction, assume that (ϕ,X, Y ) �∈ Σ2SAT,
i.e., ∀τX∃τY : ϕ̄[τX , τY ] = true. Let τX be any assign-
ment on X and let τY be an assignment on Y that satisfies
ϕ̄[τX , τY ] = true. Create the completion 〈A,RτX 〉 and the
set S(τX ,τY ) as before. Since ϕ̄[τX , τY ] = true, all clauses
in ϕ̄ are fulfilled, which means that in each clause at least
one literal must be fulfilled. Each such literal corresponds to
a literal argument in S(τX ,τY ), which attacks the correspond-
ing clause argument. So, S(τX ,τY ) is admissible, which
shows that S is not preferred in 〈A,RτX 〉, and since τX was
generic, S is not preferred in any completion of 〈A,R,R?〉,
which proves (〈A,R,R?〉, S) �∈ PR-ATTINCPV.

The same hardness can be proven for the argument-
incomplete model. We omit the proof due to space limita-
tions. Figure 3b and Example 21 may give a rough idea,
though.
Theorem 20. PR-ARGINCPV is Σp

2-hard.
Example 21. Consider a Σ2SAT instance (ϕ,X, Y ) with
X = {x1, x2}, Y = {y1, y2} and ϕ = (x1 ∧ ¬x2 ∧ y1) ∨
(¬x1 ∧ ¬y1 ∧ y2). We have ϕ̄ = ¬ϕ = c1 ∧ c2 with c1 =
(¬x1 ∨ x2 ∨ ¬y1) and c2 = (x1 ∨ y1 ∨ ¬y2). We have
(ϕ,X, Y ) �∈ Σ2SAT, because for all assignments τX on X
and the assignment τY with τY (y1) = false, τY (y2) = false
we have ϕ[τX , τY ] = false; equivalently, ϕ̄[τX , τY ] = true.

Figures 3a and 3b show, respectively, the graph repre-
sentations of the incomplete argumentation frameworks in
the instances (〈A,R,R?〉, {s}) and (〈A,A?,R〉, ∅) that are

created from (ϕ,X, Y ) according to the constructions in
the proofs of Theorems 19 and 20. Attacks by clause ar-
guments are displayed as dotted arcs to facilitate readability.
Both instances are NO-instances for PR-ATTINCPV and PR-
ARGINCPV, respectively. The set {s, ȳ1, ȳ2} (correspond-
ing to τY from above) is an admissible superset of {s} in
all completions of 〈A,R,R?〉, while the set {ȳ1, ȳ2} is an
admissible superset of ∅ in all completions of 〈A,A?,R〉.

Both previous results also provide Σp
2-hardness for the

problem PR-INCPV in the general model, which completes
our complexity analysis.

Corollary 22. PR-INCPV is Σp
2-hard.

5 Conclusion

The complexity results show a pattern in how introducing
incomplete information affects the complexity of the veri-
fication problem in abstract argumentation frameworks. We
observe that there are only two triggers for an increase of
complexity: the preferred semantics for possible verification
in all three models, and the admissible semantics (along with
all other semantics that entail admissibility) for possible ver-
ification in the argument-incomplete model (and, therefore,
also in the general incomplete model). In all other cases—
in particular, for all variants of necessary verification—
introducing incomplete information does not make the ver-
ification problem computationally harder. Table 1 gives an
overview. Note that each of our hardness results for verifica-
tion problems carries over to any generalized model; so our
approach is potentially useful also in other frameworks.

A task for future work is to analyze the parameterized
complexity of the problems studied here, the complexity of
possible and necessary variants of other decision problems
than verification, and to look at further semantics.
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Table 1: Summary of the complexity results, where “C-c.” denotes completeness for a complexity class C. All previously known
results are attributed to the respective source, and all other results are novel.

s VER ATTINCPV ATTINCNV ARGINCPV ARGINCNV INCPV INCNV

CF in P♠ in P� in P� in P� in P� in P in P
AD in P♠ in P� in P� NP-c.� in P NP-c. in P
ST in P♠ in P� in P� NP-c.� in P NP-c. in P
CP in P♠ in P� in P� NP-c.� in P NP-c. in P
GR in P♠ in P� in P� NP-c.� in P NP-c. in P
PR coNP-c.♣ Σp

2-c. coNP-c.� Σp
2-c. coNP-c.� Σp

2-c. coNP-c.
♠ (Dung 1995), ♣ (Dimopoulos and Torres 1996), � (Coste-Marquis et al. 2007),

� (Baumeister, Neugebauer, and Rothe 2015), � (Baumeister, Rothe, and Schadrack 2015)
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