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Abstract

Conditional information is an integral part of representa-
tion and inference processes of causal relationships, tempo-
ral events, and even the deliberation about impossible scenar-
ios of cognitive agents. For formalizing these inferences, a
proper formal representation is needed. Psychological studies
indicate that classical, monotonic logic is not the approriate
model for capturing human reasoning: There are cases where
the participants systematically deviate from classically valid
answers, while in other cases they even endorse logically in-
valid ones. Many analyses covered the independent analysis
of individual inference rules applied by human reasoners. In
this paper we define inference patterns as a formalization of
the joint usage or avoidance of these rules. Considering pat-
terns instead of single inferences opens the way for categoriz-
ing inference studies with regard to their qualitative results.
We apply plausibility relations which provide basic formal
models for many theories of conditionals, nonmonotonic rea-
soning, and belief revision to asses the rationality of the pat-
terns and thus the individual inferences drawn in the study.
By this replacement of classical logic with formalisms most
suitable for conditionals, we shift the basis of judging ratio-
nality from compatibility with classical entailment to consis-
tency in a logic of conditionals. Using inductive reasoning
on the plausibility relations we reverse engineer conditional
knowledge bases as explanatory model for and formalization
of the background knowledge of the participants. In this way
the conditional knowledge bases derived from the inference
patterns provide an explanation for the outcome of the study
that generated the inference pattern.

1 Introduction
For a conditional statement “If A then B” and a respective
fact, four inference patterns can be defined (not all are logi-
cally valid though): Modus Ponens, that from the statement
and A it follows that B, and Modus Tollens, that from the
statement and ¬B it follows that ¬A, and the classically in-
valid rules Affirmation of the Consequent, stating that from
the statement and B it follows that A and, finally, Denial
of the Antecedent, stating that from the statement and ¬A it
follows that ¬B. Established and accepted studies show that
all these inferences are indeed drawn by human reasoners, if
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presented with the “right” stimulus material. In the discus-
sion of the results, these studies usually analyze the usage
of each inference rule by the majority of the participants,
separately.

In this paper, we consider the application or neglect of
the our rules as an inference pattern. These patterns con-
stitute a descriptive model that can explain the answers of
an agent in solving conditional inference problems. With
these inference patterns we propose a formal model for the
studies on the assumption that the majority of the partici-
pants in these studies answered in a rational fashion. In this,
the test cases for this formal basis are inference studies re-
garding human reasoning about a rule, rather than the par-
ticipants of the studies themselves. Our proposed model is
based upon conditional logic, that is, it is substantially dif-
ferent from classical as well as probabilistic logic, but com-
bines interesting aspects of both. We assess the rationality
of an inference pattern and by this the rationality of the in-
ferences drawn based on the plausibility semantics of Ordi-
nal Conditional Functions (OCF) (Spohn 1988). This shifts
the assessment of rationality from rigidly following logical
inference rules to satisfiability of plausibility constraints in
semi-quantitative plausibility models situated between clas-
sical logic and probabilities.

For rational inference patterns, we use the inductive ap-
proach of c-representations (Kern-Isberner 2001) to algo-
rithmically reverse engineer a conditional knowledge base
to which the OCF that satisfies the inference pattern is ad-
missible. In this way we ensure that these knowledge bases
yield ranking models that are compatible with the inference
patterns. We furthermore argue that this means that since
each inductive ranking model of the knowledge base brings
forth the inferences drawn in the study, the knowledge bases
are hypotheses for the formalization of suitable background
knowledge the participants may have activated when giving
their answers in the studies. This means that the inductively
generated knowledge bases serve as explanatory conditional
models for the results of the considered inference study.

The paper is organized as follows: In the next section we
recall relevant psychological findings regarding human con-
ditional reasoning, from which two studies are to be used as
running examples to illustrate the approach throughout the
rest of the paper. We briefly define the formal preliminar-
ies and notations necessary for the paper in Section 3. This
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is followed by a brief introduction into plausible reasoning
in general, in particular Ordinal Conditional Functions and
the inductive approach of c-representations in Section 4. In
Section 5 we propose global inference patterns and the con-
straints they impose on the plausibility relations, and in Sec-
tion 6 we apply them to explain human inferences via an
algorithmic approach. Section 7 sums up the findings and
concludes the article.

2 Human Reasoning with Conditionals
Conditional reasoning is reasoning about statements of the
form “if A then C”, where A is an antecedent and C is a con-
sequent. Psychologists have tested human inferences with
such conditionals. Some results (Wason 1968) show a de-
viation of human conditional reasoning from the classical,
bivalent truth table of the material implication. Explanations
included a trivalent evaluation of the reasoner using defec-
tive (Wason 1968) or DeFinetti truth tables (Baratgin, Over,
and Politzer 2013) which hints to an underlying conditional
logic.

From the perspective of commonsense reasoning we
briefly recall two core examples relevant for human reason-
ing: The first is the suppression task, demonstrating not only
the use of non-logical rules, but also the suppression of clas-
sical inference rules in their conclusions(Byrne 1989). This
paper started nonmonotonicity research in psychology and
cognitive sciences. Participants have been given the rule “If
Lisa has an essay to write, then she will study late in the li-
brary”. Given the fact “Lisa has an essay to write”, nearly
all of the participants (96%) concluded “She will study late
in the library”. But of participants who additionally received
the rule “If the library is open, Lisa will study late in the
library”, only 38% concluded “She will study late in the
library” from the fact, in accordance with Modus Ponens
(MP). The same difference (92% to 33%) could be found
for the same task in a formulation matching Modus Tol-
lens (MT), not concluding “Lisa does not have an essay
to write” from the fact “She does not study late in the li-
brary”. Also, the majority (63%) of participants concluded
“Lisa has an essay to write” from the fact “She studies late in
the library”, thus applying the rule Affirmation of the Con-
sequent (AC) and “She will not study late in the library”
from the fact “Lisa does not have an essay to write”, apply-
ing Denial of the Antecedence (DA). These findings have
been reproduced with different stimulus material and differ-
ent aspects, see, for instance (Bonnefon and Hilton 2004;
De Neys, Schaeken, and D’Ydewalle 2003; Politzer 2005)
Recent work suggests that this retraction of classically valid
inferences triggers a cautious rule approach and can be mod-
eled by some nonmonotonic reasoning approaches (Ragni,
Eichhorn, and Kern-Isberner 2016).

The second property of human reasoning that we focus
on in this paper is the skill to reason counterfactually, that
is, to reason hypothetically about facts that do not hold or
did not hold in the past. For instance, the statement “If Os-
wald had not shot Kennedy, then someone else would have”
presupposes what could have happened otherwise. This line
of reasoning allows, among others, the reasoner to avoid un-
desirable outcomes of future events. Reasoning processes of

factual and counterfactual conditionals are distinct and cog-
nitive mental processes are different (Byrne and Egan 2004;
Byrne and Tasso 1999; Egan and Byrne 2012; Egan, Garcı́a-
Madruga, and Byrne 2009; Frosch and Byrne 2012; Quelhas
and Byrne 2003; Thompson and Byrne 2002). In (Thomp-
son and Byrne 2002, Experiment 2), participants were asked
to reason from the two conditionals: “If the car was out of
gas, then it stalled.” (factual) and “If the car had been out of
gas, then it would have stalled.” (counterfactual). Given the
facts that “The car was not out of gas.” or “The car did not
stall.”, the two negative inferences, DA and MT, had a much
higher endorsement percentages in the counterfactual than
in the factual case (50% and 30% for DA; and 85% and 68%
for MT, respectively), while MP and AC did not change. An-
other study from (Byrne and Tasso 1999, Experiment 3) sup-
ports this finding with endorsement percentages for counter-
factual and factual conditionals of 66% and 42% for MT;
and 59% and 39% for DA, respectively. The results suggest
that participants considered two alternatives when they en-
countered such counterfactual arguments, the fact and the
supposed “fact” (also known as the “presupposed factual re-
ality” and the “counterfactual conjecture”). (Thompson and
Byrne 2002) argues that the construction of the alternative
mental model of the supposed “fact” (the two “not” facts:
not-(out of gas) and not-stall) in the counterfactual case fa-
cilitates the MT and DA inferences.

Note that these are just two examples for effects that can
be found in human commonsense reasoning. Other exam-
ples include, but are not limited to, reasoning in different
thematic environments (Griggs and Cox 1982), like, for in-
stance, regarding social rules, or legal reasoning (Castañeda
and Knauff 2016), where, in addition to the legal texts, emo-
tions play a role in the conclusions of the reasoners. The for-
malism presented in this paper is capable of capturing any
result of psychological studies regarding human conditional
reasoning. We selected the two examples presented in this
section to illustrate the presented formalism because of their
prominence in reasoning research, only.

3 Formal Preliminaries
Our formal modeling is based on propositional logic with
a language set up from a finite set of propositional atoms
Σ = {V1, . . . , Vm} which can be interpreted to be true (vi)
or false (vi). The propositional language L is composed
from Σ with the logical connectives and (∧), or (∨), and
not (¬), as usual. We may leave out the symbol ∧ and
write conjunction by juxtaposition to obtain shorter formu-
las where no risk of confusion exists, and abbreviate nega-
tion (¬A) by (A). The set of possible worlds over Σ will be
called Ω, we often use the 1-1 association between worlds
and complete conjunctions, that is, conjunctions of literals
v̇i ∈ {vi, vi} where every variable Vi ∈ Σ appears exactly
once. A formula A ∈ L is evaluated under a world ω ac-
cording to the classical logical rules, that is, �A�ω = true
if and only if ω |= A if and only if ω ∈ Mod(A), that is,
ω is an element of the classical models Mod(A) of A. The
set of classical consequences of a set of formulas A ⊆ L
is Cn(A) = {B|A |= B}. The deductively closed set of
formulas which has exactly a subset W ⊆ Ω as models is
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called the formal theory of W and defined as Th(W) =
{A ∈ L | ω |= A for all ω ∈ W}. The material implication
“From A it (always) follows that B” is, as usual, equivalent
to A ∨B and written as A ⇒ B.

We introduce the binary operator | to obtain the set (L|L)
of conditionals written as (B|A). Conditionals are three-
valued logical entities with the evaluation (DeFinetti 1974)

�(B|A)�ω =

⎧⎨
⎩
true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (neutrality).

For a conditional (B|A), (B|A) is the (strict) negation of
the conditional, and (A|B) is its inverse (form).

A (conditional) knowledge base is a finite set of con-
ditionals Δ = {(B1|A1), . . . , (Bn|An)} ⊆ (L | L). To give
appropriate semantics to conditionals and knowledge bases,
we need richer structures like epistemic states in the sense of
(Halpern 2005), most commonly being represented as prob-
ability distributions, possibility distributions (Dubois and
Prade 2015) or Ordinal Conditional Functions (Spohn 1988;
2012). A knowledge base is consistent if and only if there
is (a representation of) an epistemic state that accepts (all
conditionals in) the knowledge base.

4 Plausible reasoning
In this section we recall inference based on plausibility re-
lations as model for conditionals and framework of con-
ditional logic. We furthermore recall how to generate an
admissible plausibility relation to a conditional knowledge
base by instantiating preferential models (Makinson 1994)
with Ordinal Conditional Functions (OCF, (Spohn 1988;
2012)) which we inductively generate for the conditional
knowledge base.

4.1 Preferential Inference
For nonmonotonic inference and the modeling of epistemic
states, total preorders � on possible worlds expressing plau-
sibility are of crucial importance. If ω1 � ω2, ω1 is deemed
as at least as plausible as ω2. Such a preorder can be lifted
to the level of formulas by stating that A � B if for each
model of B, there is a model of A that is at least as plau-
sible. As usual, the relations ≺ and ≈ are derived from �
by A ≺ B if and only if A � B and not B � A, and
A ≈ B if and only if both A � B and B � A. Non-
monotonic inference can then be easily realized as a form
of preferential entailment of high logical quality (Makinson
1994): A|∼≺B if and only if AB ≺ AB, i.e., from A, B
can be plausibly inferred if in the context of A, B is more
plausible than B. Hence total preorders provide convenient
epistemic structures for plausible reasoning, and epistemic
states Ψ can be represented by such a total preorder �Ψ.
The belief set, i.e., the most plausible beliefs that an agent
with epistemic state Ψ holds, is defined to be the set of all
formulas which are satisfied by all most plausible worlds:
Bel(Ψ) = Th(min(�Ψ)), where min(�Ψ) is the set of all
minimal worlds according to �. Conditionals can then be
integrated smoothly into this reasoning framework by defin-
ing Ψ |= (B|A) if and only if A|∼≺B, i.e., conditionals can

encode nonmonotonic inferences on the object level. We il-
lustrate this with the following example, for more details, we
refer to, e.g., (Kern-Isberner and Eichhorn 2014).

Example 1 We illustrate this inference using the car exam-
ple from (Thompson and Byrne 2002), so let G indicate that
a car is out of gas (g), or not (g), and S indicate that the
car has stalled (s), or not (s). Here the possible worlds are
{gs, gs, gs, g s}. We define the epistemic state Ψ to be rep-
resented by the preorder

gs ≈Ψ g s ≺Ψ gs ≈Ψ gs.

Applying preferential inference we obtain that, for instance,
g|∼≺s because gs ≺ gs, thus Ψ |= (s|g). Here, min(�Ψ) =
{gs, g s}, thus Bel(Ψ) = Th({gs, g s}) = Cn(g ⇔ s).

4.2 Ordinal Conditional Functions
Ordinal conditional functions (Spohn 2012) are specific im-
plementations of such epistemic states that assign to each
level of plausibility a degree of (im)plausibility. More for-
mally, an Ordinal Conditional Function (OCF, (Spohn 1988;
2012)), also called a ranking function, is a function κ :
Ω → N0 ∪ {∞} that assigns to each world ω an implau-
sibility rank κ(ω) such that the higher κ(ω), the less plausi-
ble ω is, and with the normalization constraint that there are
worlds that are maximally plausible, that is, the pre-image
κ−1(0) cannot be empty. The rank of a formula A ∈ L is
the minimal rank of all worlds that satisfy A, and the rank
of a conditional is the rank of the verification of the con-
ditional normalized by the rank of the premise, so we have
κ(A) = min{κ(ω)|ω |= A} and κ(B|A) = κ(AB)−κ(A).

A ranking function accepts a conditional (written
κ |= (B|A)) if and only if its verification is more plausi-
ble than its falsification, and a formula B is κ-inferred from
a formula A (written A|∼κB) if and only if κ accepts the
conditional (B|A), if and only if κ |= (B|A), if and only if
κ(AB) < κ(AB), in accordance with preferential inference
as defined above. An OCF is admissible with respect to a
knowledge base (written κ |= Δ) if and only if it accepts all
conditionals in Δ.

Example 2 We continue Example 1 to illustrate OCF. A
ranking function that induces �Ψ is the OCF κ(gs) =
κ(g s) = 0, κ(gs) = κ(gs) = 1. With κ we have κ(gs) <
κ(gs), and thus κ |= (s|g) and also g|∼κs.

4.3 C-Representations
With admissible ranking functions we have a way to define
an inference relation that is based on the knowledge rep-
resented in the knowledge base. We now go one step fur-
ther and with the approach of c-representations recall an ap-
proach that for each consistent knowledge base Δ provides
a schema for inductively setting up epistemic states in form
of OCFs that are admissible with respect to Δ.

For this approach, we assign an integer impact κ−
i to each

conditional (Bi|Ai) ∈ Δ = {(B1|A1), . . . , (Bn|An)}, in-
dicating how implausible it is to violate the conditional rule.
A c-representation (Kern-Isberner 2001) is an OCF κc

Δ such
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that the rank of each world is the sum of all impacts of con-
ditionals in Δ which are falsified by this world, formally,

κc
Δ(ω) =

∑
ω|=AiBi

κ−
i , (1)

where the impacts are chosen such that κc
Δ |= Δ, that is,

κc
Δ(AiBi) < κc

Δ(AiBi). With the ranks of formulas and (1)
for all 1 ≤ i ≤ n this constraint expands to

min
ω|=AiBi

{ n∑
ω|=AjBj

i=1

κ−
j

︸ ︷︷ ︸
(2.a)

}
≤ min

ω|=AiBi

{ n∑
ω|=AjBj

i=1

κ−
j

︸ ︷︷ ︸
(2.b)

}
. (2)

The left minimum ranges over the models of AiBi, so the
conditional (Bi|Ai) is not falsified by any considered world
and thus κ−

i is no element of any sum (2.a). As opposed
to this, the right minimum ranges over the models of AiBi,
so the conditional (Bi|Ai) is falsified by every considered
world and thus κ−

i is an element of every sum (2.b). With
these deliberations, we can rewrite the inequalities to

min
ω|=AiBi

{ ∑
ω|=AjBj

i �=j

κ−
j

}
≤ κ−

i + min
ω|=AiBi

{ ∑
ω|=AjBj

j �=i

κ−
j

}
, (3)

and therefore

κ−
i ≥ min

ω|=AiBi

{ ∑
ω|=AjBj

i �=j

κ−
j

}
− min
ω|=AiBi

{ ∑
ω|=AjBj

i �=j

κ−
j

}
(4)

for all 1 ≤ i ≤ n. Via (1) every solution of this system of in-
equalities constitutes a ranking model of the knowledge base
Δ. This means that Δ has ranking models and thus is consis-
tent if and only if we can solve the system of inequalities (4)
(confer (Kern-Isberner 2001)).

Example 3 We further extend Example 1 and formalize the
conditional statements of (Thompson and Byrne 2002, Ex-
periment 2) as “If the car had been out of gas, then it (usu-
ally) would have stalled.” (δ1) and “If the car had not been
out of gas, then it (usually) would not have stalled.” (δ2) as
the knowledge base Δ = {δ1 : (s|g), δ2 : (s|g)}. Table 1
shows the verification / falsification behavior for this exam-
ple. For Δ, the system of inequalities (4) yields

κ−
1 > min{0} −min{0} → κ−

1 > 0 (5)

κ−
2 > min{0} −min{0} → κ−

2 > 0. (6)

The OCF κ1 originating from a minimal solution κ−
1 = 1,

κ−
2 = 1 by means of (1) is given in Table 1. Here, gs is

always more plausible as gs because the prior falsifies no
conditionals and thus is assigned to a rank of 0, whilst the
latter falsifies δ1 which by (5) bestows the strictly positive
impact κ−

1 . Therefore, all c-representations of this knowl-
edge base license for the inference g|∼Δ

κc
Δ
c, since we have

κc
Δ(gs) = 0 and κc

Δ(g s) = κ−
1 > 0. We also have s|∼Δ

κc
Δ
g

because κc
Δ(g s) = 0 and κc

Δ(g s) > 0.

Table 1: Verification / falsification behavior and a c-repre-
sentation for Example 3.

Worlds ω g s g s g s g s

verifies δ1 — — δ2
falsifies — δ1 δ2 —

κ1(ω) 0 1 1 0

5 Inference patterns
Previous research discussed whether each of the inference
rules MP, MT (both classically valid), and AC, DA (both
classically invalid) is respectively applied by investigating
if participants or any (cognitive) system draw a specific in-
ference. Table 2 recalls the inference rules and their respec-
tive inferences. In this section, we go beyond that in two re-
spects: first, we formalize what it means that it is plausible to
draw conclusions according to these rules, and secondly, we
focus on the combination of these inference rules in a spe-
cific experiment which reflects the global inference behavior
typical for the respective experiment:
Definition 4 (Inference Pattern) An inference pattern � is
a 4-tuple of inference rules that for each inference rule MP,
MT, AC, and DA indicates whether the rule is used (positive
rule, e.g., MP) or not used (negated rule, e.g., ¬MP) in an
inference scenario. The set of all 16 inference patterns is
called R.

We illustrate these inference patterns and how they are
associated with a set of inference rules used (and not used)
by the participants with two experiments from the literature.
Example 5 (Suppression) In the Suppression Task (Byrne
1989, Experiment 1 about additional arguments) the partic-
ipants had to draw inferences with respect to the arguments
“If Lisa has an essay to write, she will study late in the
library.” and “If the library stays open, she will study late in
the library.” Here, the majority of the participants, students
without tuition in logic, did not apply MP (38%) or MT
(33%), but did apply AC (63%) and DA (54%), which gives
us the inference pattern �B89 = (¬MP,¬MT,AC,DA).

Example 6 (Counterfactual) In (Thompson and Byrne
2002, Experiment 2, reasoning about nonnecessary/causal)
the participants had to reason about counterfactual state-
ments like “If the car had been out of gas, then it would have
stalled”. Here, the majority of the participants, who were
introductory students of psychology, applied MP (78%) and
MT (85%), and did not apply AC (41%). They also tended
to apply DA (50%), thus we determine this study can be
covered by the pattern �TB02 = (MP,MT,¬AC,DA). Note
that, as the participants are on the fence with DA, an-
other option is to formalize this as the pattern �TB02′ =
(MP,MT,¬AC,¬DA).

To draw plausible inferences with respect to an inference
rule, a plausibility preorder � has to be defined on the set of
worlds see Section 4. For instance, we have MP if any only if
for a statement “If A then B” the inference A|∼B is drawn.
This is the case if and only if the worlds are ordered such
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Table 2: Overview of the inferences drawn or not drawn
from “From A it (usually) follows that B” with respect to
appliance of the inference rules.

Rule Inference Rule Inference

MP A |∼B ¬MP A |�B
MT B |∼A ¬MT B |�A
AC B |∼A ¬AC B |�A
DA A |∼B ¬DA A |�B

Table 3: Constraints on the plausibility relation on worlds in
order to satisfy inference rules.

Rule Plausibility Rule Plausibility
constraint constraint

MP AB≺AB ¬MP AB�AB
MT AB≺AB ¬MT AB�AB
AC AB≺AB ¬AC AB�AB
DA AB≺AB ¬DA AB�AB

that for each world violating the statement (each ω′ |= AB)
there is a world that verifies the statement (ω |= AB) which
is more plausible than ω′ (ω ≺ ω′), that is, if and only if
AB ≺ AB . Table 3 gives all of the plausibility constraints
which are equivalent to using the inference rules.

To satisfy an inference pattern, the plausibility relation
has to satisfy each of the constraints given in Table 3. So
each reasoning pattern � ∈ R imposes a set of constraints
on the plausibility relation, which in the following is called
C(�); C(�) is satisfiable if and only if there is a plausibility
relation ≺ and hence an epistemic state that satisfies all con-
straints in C(�). For instance, to satisfy the pattern �TB02

from Example 6, the worlds have to be ordered such that all
four constraints given in Table 4 are satisfied. If for a given
pattern �, there is a plausibility relation � that satisfies C(�),
that is, there is a preorder on the worlds which is in accor-
dance with plausible reasoning, � can be deemed to be ratio-
nal. Therefore we define a plausibility and constraint-based
notion of rationality for inference patterns as follows:

• An inference pattern � ∈ R is rational if and only if there
is a plausibility relation ≺⊆ Ω× Ω that satisfies C(�).

• Otherwise, the inference pattern is irrational.

Inspecting all � ∈ R we obtain that only two patterns,
namely (MP,¬MT,¬AC,DA) and (¬MP,MT,AC,¬DA),
are irrational: For the first pattern, the constraints impose the
unrealizable ordering AB ≺ AB � AB ≺ AB � AB, for
the second, the constraints impose the unrealizable ordering
AB ≺ AB � AB ≺ AB � AB.

6 Explaining Human Inferences
The previous section showed that, apart from the two
irrational inference patterns (MP,¬MT,¬AC,DA) and
(¬MP,MT,AC,¬DA), there are plausibility relations on the
possible worlds for all other inference patterns in R and

Table 4: Constraints for the inference pattern �TB02 =
(MP,MT,¬AC,DA) (written C(�TB02)).{

AB ≺ AB ,AB ≺ AB ,AB � AB ,AB ≺ AB
}

≡ AB ≺ AB � AB ≺ AB

hence these inference pattern can be deemed rational accord-
ing to the standards of plausible reasoning. In this section we
show how these plausibility relations induced by the con-
straints imposed by inference patterns can be used to algo-
rithmically set up conditional knowledge bases as formal ex-
planations for the inferences and thus to generate hypotheses
about the background knowledge used by the participants.
Moreover, from the plausibility relations, we can also ex-
tract the most plausible beliefs which might reveal implicit
assumptions used by the participants. First, we have to ex-
tend our framework of conditionals and c-representations a
bit.

We defined an inference pattern to consist of inferences
and non-inferences, the latter being equivalent to the non-
acceptance of a conditional by a ranking functions, or a non-
strict constraint on the plausibility preorder. For instance,
¬MT implies the constraint AB � AB and thus the non-
acceptance κ �|= (A|B). This is not equivalent to the accep-
tance of the negation of the conditional (κ |= (A|B)), but
weaker, because it also allows for indifference between both
cases AB and AB. As a consequence neither the conditional
nor its negation may be accepted. We capture this effect with
so-called weak conditionals:
Definition 7 (Weak conditional) Let A,B ∈ L be formu-
las. We define �B|A� to be a weak conditional with the same
three-valued evaluation as given in Section 3, but with the
semantics that a ranking function (or a plausibility preorder)
accepts �B|A� if and only if it does not accept its negation;
more precisely, for a ranking function κ,

κ |=�B|A� iff κ �|=(B|A) iff κ(AB) ≤ κ(AB). (7)

The language of all weak conditionals is denoted by �L|L�.
In the following, conditionals (B|A) ∈ (L|L) are referred
to as strong conditionals, if necessary. Our knowledge bases
will consist of both strong and weak conditionals in the rest
of this paper.

Let Δ be a knowledge base containing the weak condi-
tional �Bo|Ao�. To apply c-representations to Δ, the im-
pact κ−

o has to be chosen such that κc
Δ satisfies (7), that is,

κc
Δ(AoBo) ≤ κc

Δ(AoBo). Applying the definition of ranks
of formulas and the definition of κc

Δin (1), this expands to

min
ω|=AoBo

{ n∑
ω|=AiBi

i=1

κ−
i

}
≤ min

ω|=AoBo

{ n∑
ω|=AiBi

i=1

κ−
i

}
. (8)

With the same steps that lead from (2) to (4) we obtain

κ−
o ≥ min

ω|=AoBo

{ ∑
ω|=AiBi

i �=o

κ−
i

}
− min
ω|=AoBo

{ ∑
ω|=AiBi

i �=o

κ−
i

}
(9)
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Table 5: Strong and weak conditionals for the inference
rules.

Rule Conditional Rule Conditional

MP (B|A) ¬MP �B|A�
MT (A|B) ¬MT �A|B�
AC (A|B) ¬AC �A|B�
DA (B|A) ¬DA �B|A�

which equals (4) save for the strictness of the inequality. So
to apply c-representations to a conditional knowledge base
containing weak and strong conditionals, we define a sys-
tem of inequalities (4’) according to the schema (4) where
the inequality for the impact κ−

i is strict if δi is a strong con-
ditional and not strict, otherwise.

With weak conditionals and (4’) we can now propose an
algorithm to generate a most concise formal explanation for
the plausibility relation imposed by the constraints of an in-
ference pattern. This algorithm takes initially a knowledge
base with one conditional for each rule in the inference pat-
tern. Then the constraint system (4’) is set up from this
knowledge base and analyzed with respect to redundancies.
(Weak) Conditionals the appertaining inequality of which
is implied by the other inequations are removed from the
knowledge base. This way, the only conditionals remaining
in the knowledge base are those whose effects on the epis-
temic state represented by a corresponding c-representation
are most relevant.
Algorithm: Explanation Generator
Input: Inference pattern � ∈ R
Output: Knowledge base Δ ⊆ (L|L) ∪ �L|L�

1. Set up Δ∗ with a conditional for each rule in pattern �
according to Table 5.

2. Set up the system of inequalities (4’) for Δ∗ and simplify:
For each inequality that is implied by the other inequali-
ties, remove the line from the system of inequalities and
the respective conditional from Δ∗ to obtain the (wrt. set
inclusion) minimal explaining knowledge base Δ.

3. Return the knowledge base Δ.
We illustrate this algorithm by finding formal explanations
and thus hypotheses for background knowledge:

Example 8 The inferences in the Suppression Task (Exam-
ple 5) can be captured by the inference pattern �B89 =
(¬MP,¬MT,AC,DA). Our modeling revolves around the
relationship between the antecedent and consequent of the
query, not the background information. Thus the algo-
rithm deliberately works with conditionals concerning re-
lationships between literals of L (“Lisa (not) being in the
library”) and E (“Lisa (not) having an essay to write”)
and not O (“the library (not) being open”), even if infor-
mation about this was present in the cover story. For the
pattern �B89, the algorithm sets up the knowledge base
Δ∗

B89 = {δ1 : �l|e�, δ2 : �e|l�, δ3 : (e|l), δ4 : (l|e)} from the
conditionals �l|e� because ¬MP ∈ �B89, �e|l� because
¬MT ∈ �B89, and (e|l) and (l|e) because AC and DA are in

Table 6: Verification / falsification behavior and one c-
representation for the knowledge base Δ∗

B89 of the Suppres-
sion Task.

ω e l e l e l e l

verifies δ3 δ1,δ2 — δ4
falsifies δ1 — δ3,δ4 δ2

κ2(ω) 0 0 1 0

�B89. The verification / falsification behavior of worlds with
respect to Δ∗

B89 is shown in Table 6. As a next step, we set
up and simplify the system of inequalities (4’) for Δ∗

B89:

κ−
1 ≥ 0, κ−

2 ≥ 0, κ−
3 > κ−

1 − κ−
4 , κ−

4 > κ−
2 − κ−

3

Here the inequalities for κ−
1 and κ−

2 do not yield addi-
tional information to the definition of κ−

i being an element
of N0, thus these two lines (and the respective condition-
als) can be removed, which leaves us with the inequality
κ−
3 + κ−

4 > max{κ−
1 , κ

−
2 }. For or a minimal (i.e., most

conservative) solution of this inequality, it is sufficient if one
of the conditionals has a positive impact. So the background
knowledge that can formally explain this pattern is one of
the knowledge bases ΔB89 = {(e|l)} and Δ′

B89 = {(l|e)}.
These two conditionals are falsified by the same world, so
the c-representations for both knowledge bases are equiva-
lent with respect to the induced ranking functions and plau-
sibility relations; Table 6 gives a minimal instantiation κ2.
Nonetheless both ΔB89 and Δ′

B89 are formal explanations
for the inference pattern �B89. This gives us the hypothesis
that the background knowledge used by the majority of the
participants in this task was either the conditional

δ3 “If Lisa is in the library, then she (usually) has an essay
to write”,

or the conditional

δ4 “If Lisa has no essay to write, then she (usually) is not in
the library”.

Regarding the explanations ΔB89 and Δ′
B89, the infer-

ence pattern found in Example 5 appears to be rational: The
participants might have understood the given conditional in-
formation in its inverse form, and hence applied AC and
DA which in fact, amount to MP and MT for the inverse
conditional. Also the most plausible beliefs Bel(κc

ΔB89
) =

Cn(e ∨ l) = Cn(l ⇒ e) reveal the implicit assumption that
l should imply e (or e should imply l).

Example 9 In Example 6, the participants reasoned ac-
cording to the pattern �TB02 = (MP,MT,¬AC,DA)
which yields the constraints in Table 4. For this pat-
tern the algorithm sets up the knowledge base Δ∗

TB02 =
{δ1 : (s|g), δ2 : (g|s), δ3 : �g|s�, δ4 : (s|g)}, which, accord-
ing to (4’), yields the following system of inequalities

κ−
1 > κ−

3 − κ−
2 κ−

2 > 0− κ−
1

κ−
3 ≥ κ−

4 − 0 κ−
4 > 0− 0.
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Table 7: Verification / falsification behavior for the algorithm
Explanation Generator in Example 9 (alternative modelling)
and resulting OCF κ3.

ω g s g s g s g s

verifies δ1 — δ3,δ4 δ2
falsifies δ3 δ1,δ2 — δ4

κ3(ω) 0 1 0 0

Here the impact of δ2 is covered by the other conditionals,
so the system can be simplified to κ−

1 > κ−
3 , κ−

3 ≥ κ−
4 , and

κ−
4 > 0, which gives us the minimal explaining knowledge

base ΔTB02 = {δ1 : (s|g), δ3 : �g|s�, δ4 : (s|g)}. Using the
techniques defined in Section 4 and demonstrated in Exam-
ple 3 it can be seen that every c-representation for ΔTB02

satisfies the constraints of C(�TB02). From ΔTB02 we read
the hypothesis for the background knowledge to be:

δ1 “If the car had been out of gas, then (usually) it would
have stalled.”

δ3 “If the car had stalled, then it possibly would not have
been out of gas”1

δ4 “If the car had not been out of gas, then (usually) it
would not have stalled.”

We also apply this method to the alternative modeling
of the study in Example 6, that is, the inference pattern
�TB02′ = (MP,MT,¬AC,¬DA). Using the algorithm Ex-
planation Generator gives us the initial knowledge base
Δ∗

TB02′ = {δ1 : (s|g), δ2 : (g|s), δ3 : �g|s�, δ4 : �s|g�}. Ta-
ble 7 (upper rows) shows the verification / falsification be-
havior for the worlds in this example. Here (4’) is instanti-
ated to

κ−
1 > κ−

3 − κ−
2 , κ−

2 > κ−
4 − κ−

1 , κ−
3 ≥ 0, κ−

4 ≥ 0

which the algorithm simplifies to κ−
1 + κ−

2 > 0. Only one
of these impacts has to be positive to satisfy the inequality,
which means that the others (together with the respective
conditionals) can be removed. This results in the hypothe-
ses ΔTB02′ = {(s|g)} and Δ′

TB02′ = {(g|s)} as expla-
nations for the inferences, and a minimal c-representation
κ3 given in Table 7 (bottom row). Here the belief set is
Bel(ΔTB02′) = Cn(gs, gs, g s) = Cn(g ⇒ s). This result
shows that the pattern indicating the usage of only classi-
cally valid inference rules suitably characterizes the clas-
sical logic reasoner that takes a conditional as a material
implication.

The inferences drawn with respect to the pattern �TB02 in
Example 9 can be considered rational in the light of the ex-
planation ΔTB02: The participants might have understood
the counterfactual “If the car had been out of gas, then it
would have stalled.” as the two conditionals δ1 and δ4, ap-
plying MP, MT and DA, and additionally assumed there
might be additional reasons for a car to stall which are not

1Alternatively: “It is not true that if the car had stalled, it would
(usually) have been out of gas.”

mentioned in the task, thus preventing them from applying
AC; this assumption is encoded as the weak conditional δ3.
The most plausible beliefs Bel(ΔTB02) = Cn(g s) reveal
the implicit assumption that neither did the car stall, nor has
it been out of gas in accordance of this being a task of coun-
terfactual reasoning, that is, reasoning about things that are
(or were) not true.

Note that the weak conditional δ3 is necessary to explain
this inference pattern: In Example 3, we set up a c-represen-
tation from {(s|g), (s|g)}, that is, ΔTB02 without δ3, which
results in the inference pattern (MP,MT,AC,DA).

7 Summary and Conclusion
When dealing with conditional statements “If A then B”,
human reasoners can apply some of the four inference rules
MP, MT, AC, and DA, each of these rules representing
a non-monotonic inference (e.g., A|∼B for MP). We pro-
posed an approach to join the four rules into tuples called
inference patterns which allows for classifying psychologi-
cal findings, for instance, (MP,MT,¬AC,DA) for (Thomp-
son and Byrne 2002, Experiment 2), or the inference type
of the individual participant. Non-monotonic inferences can
be implemented by plausibility relations on possible worlds,
yielding a notion of preferential entailment of a good logical
quality. In this paper, Ordinal Conditional Functions (OCF,
(Spohn 2012)) were used for defining such a plausibility on
the worlds, and c-representations as an inductive approach
to generate OCFs from conditional knowledge bases.

To draw inferences with respect to a pattern and plausible
reasoning, the plausibility relation has to be in such a way
that each of the represented non-monotonic inferences can
be drawn. Thus, an inference pattern imposes constraints on
the plausibility relation over the possible worlds. We have
shown that for some patterns these constraints are not satisfi-
able, and, hence, can be considered as irrational with respect
to plausibility reasoning. Examining the plausibility rela-
tions, we were able to identify implicit assumptions as the
most plausible beliefs: In the counterfactual case of (Thomp-
son and Byrne 2002), the induced belief set is Cn(AB); for
the classically valid pattern (MP,MT,¬AC,¬DA), on the
other hand, the most plausible worlds are the models of the
material implication, that is, the belief set is Cn(A ⇒ B),
which supports the interpretation that the reasoner indeed
has understood the conditional as an implication.

By introducing weak conditionals, we captured each ra-
tional pattern as a conditional knowledge base. Using c-re-
presentations we reduced these knowledge bases to minimal
knowledge bases, thus generating a compact formal explana-
tion for the inferences in the pattern. From such knowledge
bases we derived hypotheses about the background knowl-
edge of the participants in the experiments. This whole pro-
cess is captured in an algorithm which systematically con-
stitutes such hypotheses for conditional inference tasks in
cognitive science.

Summing up the paper, we applied a logic based on condi-
tionals and plausible reasoning to evaluate inferences found
in experiments according to logical standards. We empha-
sized that it is necessary to consider all (non-)applied in-
ference rules as a pattern which then can be represented
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and solved as constraints on plausibility relations. Patterns
for which these constraints are jointly solvable, that is, a
plausibility-based representation of an epistemic state that
incorporates all inference rules exists, are deemed to be
rational in our approach. In this, we laid a cognitive and
formal foundation for assessing “rationality of a reasoning
system” beyond mere philosophical reflection into the do-
main of (mathematical / algorithmic) constraint solving and
explained why humans deviating in the applied inference
schemata (for instance MP and AC) from classical logic
(allowing only MP and MT as correct) are not necessarily
wrong, as long as the reasoning schema is inherently con-
sistent. This way, our approach offers new insights into the
phenomenon of rationality and novel techniques to evaluate
what may be called rational, and what might rather be called
irrational. It provides the ground for a possible paradigm
shift, namely that cognitive science researcher start to evalu-
ate complete inference systems with respect to their internal
consistency according to conditional logic rather than infer-
ences alone. Finally, the formal approach on psychological
studies and their results provides a common ground for com-
paring rationality of both AI and human reasoning on rele-
vant paradigmatic reasoning examples.

Overall the method provides a new approach that evalu-
ates for each system whether the application of reasoning
schemata contradict each other. The approach can be ap-
plied to single reasoners and their internal consistency by
the same method. This paper also provides methods to sys-
tematically reveal conditional knowledge bases representing
background knowledge, and implicit assumptions on which
the observed inference patterns can be based on and thus
explained. As part of our current research we plan to exper-
imentally evaluate the approach, in that we determine the
inference pattern of the individual participants and then ask
whether they accept the hypothesis calculated by the Expla-
nation Generator as (part of) their background knowledge.
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