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Abstract

We investigate the relationship between conditional indepen-
dence (CI) x ⊥ y|Z and the independence of two residu-
als x − E(x|Z) ⊥ y − E(y|Z), where x and y are two
random variables, and Z is a set of random variables. We
show that if x, y and Z are generated by following lin-
ear structural equation model and all external influences fol-
low Gaussian distributions, then x ⊥ y|Z if and only if
x − E(x|Z) ⊥ y − E(y|Z). That is, the test of x ⊥ y|Z
can be relaxed to a simpler unconditional independence test
of x − E(x|Z) ⊥ y − E(y|Z). Furthermore, if all these
external influences follow non-Gaussian distributions and the
model satisfies structural faithfulness condition, then we have
x ⊥ y|Z ⇔ x− E(x|Z) ⊥ y − E(y|Z).
We apply the results above to the causal discovery prob-
lem, where the causal directions are generally determined
by a set of V -structures and their consistent propagations,
so CI test-based methods can return a set of Markov equiv-
alence classes. We show that in linear non-Gaussian con-
text, x − E(x|Z) ⊥ y − E(y|Z) ⇒ x − E(x|Z) ⊥ z or
y − E(y|Z) ⊥ z (∀z ∈ Z) if Z is a minimal d-separator,
which implies z causes x (or y) if z directly connects to x (or
y). Therefore, we conclude that CIs have useful information
for distinguishing Markov equivalence classes.
In summary, compared with the existing discretization-based
and kernel-based CI testing methods, the proposed method
provides a simpler way to measure CI, which needs only one
unconditional independence test and two regression opera-
tions. When being applied to causal discovery, it can find
more causal relationships, which is experimentally validated.

Introduction

Statistical independence and conditional independence (CI)
are important concepts in statistics, artificial intelligence
(AI) and other related fields. In causal discovery, causal
relationships are usually revealed by checking CIs among
variables. For example, for two sets of variables X and
Y that are conditional independent given Z (denoted by
X ⊥ Y |Z), it means that given Z, further knowing X (or Y )
does not provide any additional information about Y (or X).
Therefore, we know that X and Y have no directed causality
under faithfulness assumption (Pearl 2009).
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Generally speaking, independence and CI play a central
role in causal discovery. The CI relationship X ⊥ Y |Z al-
lows us to separate X−Y when constructing a probabilistic
model based on P (X,Y, Z), which results in a parsimonious
representation (Zhang et al. 2011). By using CI tests, the PC
algorithm (Spirtes, Glymour, and Scheines 2000), for exam-
ple, can return a set of Markov equivalence classes (Pearl
2009). CI testing is much more difficult than marginal in-
dependence testing (Bergsma 2004). Most existing methods
are based on explicit estimation of conditional densities or
their variants, or discretize the conditional set Z to a set
of bins, and transform CI to independence in each bin. Due
to the curse of dimensionality, the conditional set becomes
very large, inevitably the required sample size increases dra-
matically. For example, in (Su and White 2008) the authors
used a characterization of CI, PX|Y Z=PX|Z , to check CI
by measuring the distance between estimates of conditional
density. However, accurate estimation of conditional density
or related quantity is not easy, which deteriorates the testing
result, especially when the conditional set is very large.

Concretely, if Z takes a finite number of values
{z1, ..., zk}, then X ⊥ Y |Z if and only if X ⊥ Y |Z = zi
for each value zi. Given a sample of size n, even if the data
points are distributed evenly on the values of Z, we must
show the independence within each subset of the sample
with the same Z value by using only approximately n/k
points in each subset. When Z is real-valued and Pz is con-
tinuous, or Z contains several variables, the observed val-
ues of Z are almost surely unique. To extend the above pro-
cedure to the continuous cases, we must infer conditional
independence using nonidentical but neighboring values of
Z, where “neighboring” is quantified by some distance met-
ric. Finding neighboring points becomes more difficult as
the dimensionality of Z grows. To approximate CI to un-
conditional independence between X and Y in each subset,
we need a large number of subsets of Z. However, with too
many subsets, the subsets may have not enough data points
to evaluate independence.

To alleviate these problems, researchers resort to kernel-
based methods. With the ability to represent high order mo-
ments, mapping of variables into reproducing kernel Hilbert
spaces (RKHSs) allows us to infer properties of distribu-
tions, such as independence and homogeneity (Gretton et
al. 2006). In (Fukumizu et al. 2007), the authors proposed

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2029



to use the Hilbert-Schmidt norm of the conditional cross
covariance operator, which is a measure of conditional co-
variance of the images of X and Y under the corresponding
functions from RKHSs. When the RKHSs are characteris-
tic kernels, the operator norm is zero if and only if X ⊥
Y |Z. A later method (denoted by KCIT in short) proposed
in (Zhang et al. 2011), uses partial association of regression
functions to measure CI, X ⊥ Y |Z iff for all f ∈ L2

XZ
and g ∈ L2

Y (L2
XZ and L2

Y denote the spaces of square
integrable functions of (X,Z) and Y , respectively) such
that E(f̃ g̃) = 0 where f̃(X,Z) = f(X,Z) − rf (Z) and
g̃(Y, Z) = g(Y )− rg(Z) (rf , rg ∈ L2

Z are regression func-
tions). This method is motivated by Daudin’s work (Daudin
1980) and relaxes the spaces of functions f , g, rf and rg
to RKHSs, corresponding to kernels defined on these vari-
ables. (Doran et al. 2014) introduced the PKCIT method
that utilizes permutation to convert the CI test problem into
an easier two-sample test problem. However, PKCIT takes
too much time to compute the required permutation. (Strobl,
Zhang, and Visweswaran 2017) utilized random Fourier fea-
tures to approximate KCIT, and developed two algorithms
RCIT and RCoT, which are much faster than KCIT.

Compared to discretization-based CI testing methods,
kernel methods exploit more complete information of the
data and involve less random error. It was showed that causal
learning methods based on kernel methods can discover
more accurate causalities.

Recently, regression-based tests were proposed for CI
testing. (Grosse-Wentrup et al. 2016) proved that if there
exists a function f such that x − f(Z) ⊥ (y, Z) then
x ⊥ y|Z. (Zhang et al. 2017) showed that if there exists
two functions f and g such that x− f(Z) ⊥ (y − g(Z), Z)
then x ⊥ y|Z. These methods find the function f (or g)
by regressing x (or y) on Z, which are able to relax a CI
test to a set of marginal independence tests. However, they
both showed that their methods are just sufficient but not
necessary to determine CI. In practice, x − f(Z) ⊥ Z is
a strong condition, as x − E(x|Z) ⊥ Z ⇒ Z causes x in
many cases (Zhang and Hyvärinen 2009). Moreover, when
the dimension of Z is large, to check whether a variable
x − f(Z) is independent from a set of variables (y, Z) or
(y − g(Z), Z) (joint distribution) is still prohibitively ex-
pensive. For example, in linear non-Gaussian cases, we of-
ten conduct |y| + |Z| marginal independence tests to check
whether x − f(Z) ⊥ (y, Z) holds. In (Flaxman, Neill,
and Smola 2016), the authors showed that given structural
faithfulness and Markov assumptions (Pearl 2009), when-
ever Z causes x or y, it follows that x ⊥ y|Z if and only if
x− E(x|Z) ⊥ y − E(y|Z). Similarly, here a strong condi-
tion that Z causes x or y is assumed. We can see that if these
conditions are given, then it is easy to derive the correspond-
ing causalities. Moreover, faithfulness condition means x ⊥
y|Z ⇒ x and y are d-separated by Z, and Markov condi-
tion implies y are d-separated by Z ⇒ x ⊥ y|Z, so CI is
relaxed to d-separation given the faithfulness and Markov
assumptions (Pearl 2009). However, CI is neither sufficient
nor necessary to d-separation. In practice, given the faith-
fulness assumption, x − E(x|Z) ⊥ y − E(y|Z) and x ⊥

y|Z have significant correlations. For example, in (Ram-
sey 2014), the authors suggested to use x − E(x|Z) ⊥
y − E(y|Z) to test x ⊥ y|Z under the faithfulness assump-
tion. In (Zhang et al. 2017), the authors further conjectured
that x−f(Z) ⊥ y−g(Z) can lead to x ⊥ y|Z under nonlin-
ear and faithfulness conditions, where f and g are arbitrary
nonlinear functions, x, y and Z are generated by following
nonlinear additive noise model (Zhang and Hyvärinen 2009;
Peters, Janzing, and Schölkopf 2011).

In this work, we aim to investigate the relationship be-
tween the two terms x−E(x|Z) ⊥ y−E(y|Z) and x ⊥ y|Z
in the scenario that x, y and Z are generated by follow-
ing linear structural equation model (Shimizu et al. 2011),
i.e., x =

∑q
i=1 aisi, y =

∑p
i=1 bisi and zj =

∑rj
i=1 cisi

(∀zj ∈ Z) where si is the external influence. We prove that
if all external influences follow Gaussian distributions, then
x ⊥ y|Z if and only if x − E(x|Z) ⊥ y − E(y|Z). Note
that, here we do not assume the faithfulness and Markov
conditions, but only require that x, y and ∀zj ∈ Z are lin-
ear combinations of those external influences. Therefore, we
can relax the test of x ⊥ y|Z to a simpler unconditional
independence test of x − E(x|Z) ⊥ y − E(y|Z) without
considering d-separation. Furthermore, if all these external
influences follow non-Gaussian distributions and the model
satisfies structural faithfulness condition, then we show that
x− E(x|Z) ⊥ y − E(y|Z) ⇔ x ⊥ y|Z.

It is well known that existing causal discovery methods
based on CI tests usually return a set of Markov equiva-
lence classes (Spirtes and Zhang 2016) by detecting a set of
V -structures and their consistent propagations (Meek 1995;
Chickering 2002). With the theoretical results above, we
show that CI testing based on independent residuals contains
information for causal direction inference. We prove that in
the linear non-Gaussian context, x−E(x|Z) ⊥ y−E(y|Z)
⇒ x − E(x|Z)⊥z or y − E(y|Z)⊥z (∀z ∈ Z) if Z is a
minimal d-separator (Tian, Pearl, and Paz 1998). When CI
testing-based methods like PC algorithm (Spirtes, Glymour,
and Scheines 2000) return a causal skeleton, if two vari-
ables x and z are directly connected and x − E(x|Z) ⊥ z
holds, we can easily deduce that z is a cause of x in the non-
Gaussian case.

In summary, compared with the existing discretization-
based and kernel-based CI testing methods, testing indepen-
dence between two residuals needs only one marginal inde-
pendence test and two regression operations. Moreover, this
method can infer more causal directions than these methods
when being applied to causal discovery.

Measuring conditional independence by

independent residuals

Here we first quote Daudin’s work (Daudin 1980) that gives
the characterization of conditional independence by explic-
itly enforcing the uncorrelatedness of functions in suitable
spaces, because it is used to prove our theorems.

Characterization of conditional independence
(CCI) (Daudin 1980) Let X , Y and Z be three
real random variables or sets of random variables,
E1 = {g ∈ L2

XZ , E(g|Z) = 0}, E2 = {h ∈
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L2
Y Z , E(h|Z) = 0}, E3 = {g′ ∈ L2

X , E(g′) = 0}
and E4 = {h′ ∈ L2

Y , E(h′) = 0} where L2
X , L2

Y , L2
XZ and

L2
Y Z denote the spaces of square integrable functions of

X , Z, (X,Z) and (Y, Z), respectively, then the following
conditions are equivalent to each other:

1) X ⊥ Y |Z;
2) ∀g ∈ E1 and ∀h ∈ E1, E(gh) = 0;
3) ∀g ∈ E1 and ∀h′ ∈ E4, E(gh′) = 0;
4) ∀h ∈ E2 and ∀g′ ∈ E3, E(hg′) = 0.

Consider Z = ∅, we can derive X ⊥ Y ⇔ ∀g′ ∈ E3 and
∀h′ ∈ E4, E(g′h′) = 0.

In what follows, we present the theoretical results on the
relationship between CI and independent residuals in Gaus-
sian and non-Gaussian cases respectively.
Theorem 1. Define m+ 2 random variables x, y and Z =
{z1, ..., zm} as linear combinations of independent random
variables si (i = 1, ..., l), if all si follow Gaussian distribu-
tions, then x ⊥ y|Z if and only if x−E(x|Z) ⊥ y−E(y|Z).

Proof. If x ⊥ y|Z, then ∀g ∈ E1 and ∀h ∈ E2,
E(gh) = 0 according to the condition (2) in CCI. As
E(x − E(x|Z)|Z) = 0 and E(y − E(y|Z)|Z) = 0,
then x − E(x|Z) ∈ E1 and y − E(y|Z) ∈ E2, we have
cov{(x−E(x|Z))(y−E(y|Z))} = E{(x−E(x|Z))(y−
E(y|Z))} − E(x − E(x|Z))E(y − E(y|Z)) = 0. Thus in
the Gaussian case, we have x− E(x|Z) ⊥ y − E(y|Z).

On the other side, consider the partial correlation of x
and y given Z, ρxy.Z =

σxy.Z√
σxx.Zσyy.Z

. The partial variance
or covariance given Z, (σ∗∗.Z), can be considered as the
variance or covariance between residuals of projections of
x and y on the linear space spanned by Z, thus σxy.Z =
cov(x − E(x|Z), y − E(y|Z)) = 0. In the linear Gaussian
case, zero partial correlation is equivalent to the conditional
independence (Baba, Shibata, and Sibuya 2004), we there-
fore obtain x ⊥ y|Z.

Theorem 1 shows that CI and the independence be-
tween two residuals are equivalent in the Gaussian case.
Next, we consider the non-Gaussian case. Here, we
first quote Darmois-Skitovitch theorem (Darmois 1953;
Skitovich 1953) as it is used to prove Theorem 2:

Darmois-Skitovitch theorem (DST) Define two random
variables x and y as linear combinations of independent
random variables si (i = 1, ..., l), x =

∑l
i=1 aisi, y =

∑l
i=1 bisi. Then, if x ⊥ y, all variables sj for which

ajbj �= 0 are Gaussian.
This theorem means that if there exists a non-Gaussian sj

for which ajbj �= 0, then x and y are dependent.
Theorem 2. Define m + 2 random variables x, y and
Z = {z1, ..., zm} generated by following a l-dimensional
linear structural equation model satisfying faithfulness con-
dition, if all the external influences si (i = 1, ..., l) are non-
Gaussian, then x ⊥ y|Z ⇔ x− E(x|Z) ⊥ y − E(y|Z).

Proof. In linear regression, the conditional expecta-
tions E(x|Z) and E(y|Z) are linear combinations of

the independent variables z1, ..., zm, we therefore have
x − E(x|Z) =

∑l
i=1 aisi and y − E(y|Z) =

∑l
i=1 bisi.

Given x − E(x|Z) ⊥ y − E(y|Z) and ∀j, if aj �= 0, then
there must be bj = 0 according to DST. Consider ∀z ∈ Z,
there are two cases: 1) z ⊥ x−E(x|Z) or z ⊥ y−E(y|Z);
2) z �⊥ x− E(x|Z) and z �⊥ y − E(y|Z).

Case 1: Without loss of generality, assume Z = {z1, z2},
then there are two subcases: (1) Z ⊥ x − E(x|Z)
(or Z ⊥ y − E(y|Z)) and (2) z1 ⊥ x − E(x|Z),
z2 �⊥ x−E(x|Z), z1 �⊥ y−E(y|Z) and z2 ⊥ y−E(x|Z).

Subcase (1): If Z ⊥ x − E(x|Z), for the conditional
mutual information I(x; y|Z) of x and y given Z, we have

I(x; y|Z)
= I(x− E(x|Z); y − E(y|Z)|Z)
= I(x− E(x|Z); y − E(y|Z), Z)− I(x− E(x|Z);Z).

Given x−E(x|Z) ⊥ y−E(y|Z) and Z ⊥ x−E(x|Z), we
can deduce that x− E(x|Z) ⊥ (y − E(y|Z), Z) according
to DST. Therefore, I(x−E(x|Z); y−E(y|Z), Z) = 0 and
I(x − E(x|Z);Z) = 0, we have I(x; y|Z) = 0, i.e., x ⊥
y|Z. Similar result can be derived when we consider Z ⊥
y − E(y|Z).

Subcase (2): If z1 ⊥ x − E(x|Z), z2 �⊥ x − E(x|Z),
z1 �⊥ y − E(y|Z) and z2 ⊥ y − E(x|Z), then there must
be z1 ⊥ z2, otherwise x − E(x|Z) cannot be independent
of y − E(y|Z) according to DST. Similar to subcase (1),
considering the conditional mutual information I(x; y|Z)
of x and y given Z, we have

I(x; y|Z)
= I(x−E(x|Z); y−E(y|Z), z1, z2)−I(x−E(x|Z); z1, z2)
= I(x− E(x|Z); z2)− I(x− E(x|Z); z2) = 0.
⇒ x ⊥ y|Z

Case 2: Consider the external influence of x, denote
by sx, we have x − E(x|Z) �⊥ sx or faithfulness must
be violated. As x − E(x|Z) ⊥ y − E(y|Z), we have
sx ⊥ y − E(y|Z). Note that, there is only one edge
between sx and x, sx → x, then we can further deduce
that x ⊥ y − E(y|Z), which means x cannot be directly
connected to y or faithfulness is violated. ∀z ∈ Z, there are
three scenarios: 1) z is on the path between x and y; 2) z is
a collider or a descendant of a collider w.r.t. x and y; 3) z is
not included in any path between x and y.

Scenario (1): If z is on the path between x and y, let sz
denote the external influence of z, we have sz ⊥ x−E(x|Z)
or sz ⊥ y−E(y|Z) according to x−E(x|Z) ⊥ y−E(y|Z)
and DST. Similarly, there is only one edge between sz and
z, sz → z, then we can further deduce that z ⊥ x−E(x|Z)
or z ⊥ y − E(y|Z). As aforementioned in Case 1, we have
x ⊥ y|Z.

Scenario (2): Given z is a collider or a descendant of a
collider w.r.t. x and y, let sz denote the external influence of
z. To ensure that x−E(x|Z) ⊥ y−E(y|Z) holds, sz must
be removed from x − E(x|Z) and y − E(y|Z), thus there
must be at least a descendant of z contained in Z. However,
such a descendant will lead to x − E(x|Z) �⊥ y − E(y|Z),
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this is contradictory.
Scenario (3): As x ⊥ y − E(y|Z) or y ⊥ x − E(x|Z),

if z is not contained in any path between x and y, we can
easily deduce that z ⊥ x−E(x|Z) or z ⊥ y−E(y|Z), i.e.,
x ⊥ y|Z.

On the other side, x ⊥ y|Z can also lead to x−E(x|Z) ⊥
y − E(y|Z). Given x and y are d-separated by Z, with-
out loss of generality, we assume that Z is the minimal d-
separator. If ∀z ∈ Z is either a descendant of x (or y) and
an ancestor of y (or x) (i.e., x→...→z→...→y) or a common
ancestor of x and y (i.e., x←...←z→...→y), then we can de-
duce that x−E(x|Z) ⊥ Z (or y−E(y|Z) ⊥ Z) according
to the mechanism of additive noise model (Hoyer et al. 2009;
Peters, Janzing, and Schölkopf 2011), and further conclude
that x − E(x|Z) ⊥ y − E(y|Z). Similarly, other cases can
also be analyzed by following this way. Finally, we have
x ⊥ y|Z ⇒ x− E(x|Z) ⊥ y − E(y|Z).

Theorem 1 and 2 indicate that we can do a CI test by just
testing the independence of two residuals in linear Gaus-
sian and non-Gaussian cases. We denote this CI test method
as ReCIT (the abbreviation of Residual-based Conditional
Independence Test). In next section, we apply ReCIT to
causal discovery. We show that CI contains information
about causal direction, which can distinguish Markov equiv-
alent classes.

Causal discovery based on ReCIT

We have the following theorem:

Theorem 3. Given m + 2 random variables x, y and Z =
{z1, ..., zm} that are generated by following a linear non-
Gaussian structural equation model that satisfies the faith-
fulness and Markov conditions, for any z ∈ Z directly con-
necting to x (or y), if x − E(x|Z) ⊥ y − E(y|Z), then we
have x − E(x|Z) ⊥ z (or y − E(y|Z) ⊥ z) ⇒ z causes x
(or z causes y).

Proof. If x and y are d-separable, we can find a Z such
that x − E(x|Z) ⊥ y − E(y|Z) under the faithfulness
and Markov assumptions. From the proof of Theorem 2, we
know that there must be x−E(x|Z) ⊥ z or y−E(y|Z) ⊥ z
if Z is a minimal d-separator. Without loss of generality, we
assume x−E(x|Z) ⊥ z. Let ε denote the exogenous distur-
bance of z, then x − E(x|Z) ⊥ z means x − E(x|Z) ⊥ ε
in the linear non-Gaussian case according to DST. If z is a
child of x, then x → z ← ε forms a V -structure, we can
deduce that x − E(x|Z) �⊥ ε as z is a collider, which is a
contradiction. Therefore, z can only be the parent of x. Sim-
ilarly, we can prove the case w.r.t. y.

Note that, the conclusion x−E(x|Z)⊥ z or y−E(y|Z) ⊥
z (∀z ∈ Z) of Theorem 3 is different from the assumptions
or preconditions in the existing regression-based CI testing
methods (Flaxman, Neill, and Smola 2016; Grosse-Wentrup
et al. 2016; Zhang et al. 2017), they all require x-E(x|Z)⊥
Z or y-E(y|Z)⊥ Z, or Z causes x or y.

Compared with the existing CI testing methods, ReCIT
can detect more causal directions even there is no V -
structure contained in the corresponding DAG. To make it

clearer, let us consider a simple example. Given a DAG:
x1 ← x2 → x3, it is easy to find x1 − E(x1|x2) ⊥ x2 and
x3 − E(x3|x2) ⊥ x2. We therefore can infer x1 ← x2 and
x2 → x3. However, it is difficult for the existing CI testing
methods to distinguish the three structures x1 ← x2 → x3,
x1 ← x2 ← x3 and x1 → x2 → x3, because all of them fit
the observed conditional and unconditional independence,
though obviously having completely different structures.

In what follows, we present a new causality discovery
algorithm based on ReCIT under the PC algorithm frame-
work. We denote the new algorithm as PCReCIT , where
we use ReCIT to check CIs, and use existing methods (e.g.
KCIT (Zhang et al. 2011)) to test unconditional indepen-
dence. Concretely, we calculate x−E(x|Z) and y−E(y|Z)
simply by least square regression, i.e., x − E(x|Z) = x −
Z(ZTZ)−1ZTx and y − E(y|Z) = y − Z(ZTZ)−1ZT y.
And any independence testing method can be used to test the
independence between x− E(x|Z) and y − E(y|Z).

PCReCIT is outlined in Algorithm 1. The first step (lines 1
– 6) is to construct the causal skeleton by employing ReCIT.
The procedure follows the PC algorithm. That is, we form
the complete undirected graph G on the variables set X ,
then check whether every two variables xi and xj are con-
ditional independent, given a set of variables Z. Here, we
keep the corresponding regression results xi −E(xi|Z) and
xj − E(xj |Z) in two sets Tempxi

and Tempxj
, which are

useful in the next step of inferring causal direction. We then
detect V -structures as in the PC algorithm (lines 7 – 11).
That is, to check whether a local structure xi − xk − xj can
form a V -structure. If it is, orient it as xi → xk ← xj .
For a structure xi − xk, as xi − E(xi|Z) ⊥ xk (xk ∈ Z)
implies xi ← xk, if xi − E(xi|Z) ∈ Tempxi , we test the
dependence between xi −E(xi|Z) and xk. If independence
holds, then orient xi ← xk. These operations are shown in
lines 12 – 18. Finally, we conduct consistent propagation to
orient more directions and output the partial DAG (PDAG)
w.r.t. the given data (line 19).

Performance evaluation
We conduct extensive experiments to evaluate ReCIT, and
compare it with KCIT (Zhang et al. 2011). We also com-
pare the causal inference performance of ReCIT and KCIT
under the PC algorithm framework (Spirtes, Glymour, and
Scheines 2000), i.e., PCReCIT vs. PCKCIT . To the best of
our knowledge, KCIT is one of the best methods for CI test-
ing in general cases. There are many comparisons between
KCIT and other existing CI testing methods in the litera-
ture (Zhang et al. 2011; Doran et al. 2014; Zhang et al. 2017;
Strobl, Zhang, and Visweswaran 2017). In our ReCIT im-
plementation, we do regression using least square regression
and the unconditional independence tests using KCIT.

Effect of Z’s dimensionality and sample size

We first examine how the probabilities of Type I (where the
CI hypothesis is incorrectly rejected) and Type II (where
the CI hypothesis is not rejected although being false) er-
rors of ReCIT change with the size of the conditioning set Z
(D = 1, 2, ..., 5) and the sample size (n = 100 and 200) by
simulation. Here, we consider two cases as follows.
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Algorithm 1 PC algorithm based on ReCIT (PCReCIT )

Input: a set of variables X = {x1, ..., xn}, a threshold k.
Output: a partial DAG G.

1: Form the complete undirected graph G on the variables
set X .

2: for ∀xi, xj ∈ X and adjacent in G do
3: if ∃Z ⊆ X \ {xi, xj} and (|Z| < k) such that xi −

E(xi|Z) ⊥ xj − E(xj |Z) then
4: remove edge xi − xj from G and record Z

in Sepset(xi, xj) and record xi − E(xi|Z) and xj −
E(xj |Z) in temporary sets Tempxi,Z and Tempxj ,Z .

5: end if
6: end for
7: for ∀xi, xj , xk ∈ X such that the pair xi, xk and the

pair xj , xk are adjacent in G but the pair xi, xj are not
adjacent in G do

8: if xk �∈ Sepset(xi, xj) ∪ Sepset(xj , xi) then
9: orient xi − xk − xj as xi → xk ← xj .

10: end if
11: end for
12: for ∀xi, xk ∈ X such that xi and xk are adjacent do
13: if ∃Z such that xi − E(xi|Z) ∈ Tempxi and xk ∈

Z then
14: if xi − f(Z) ⊥ xk then
15: orient xi − xk as xi ← xk.
16: end if
17: end if
18: end for
19: do consistent propagation.

In Case I, only one variable in Z, denoted by Z1, is ef-
fective, i.e., other conditioning variables are independent of
X , Y , and Z1. We generate X and Y from Z1 according
to the additive noise model (ANM) data generating proce-
dure: they are generated as a ∗ Z1 + ε where a ∼ U(0.2, 1)
are different for X and Y , and ε ∼ U(−0.2, 0.2). Hence,
X ⊥ Y |Z holds. In our simulations, Zi is i.i.d. U(0, 1).

In Case II, all variables in the conditioning set Z are ef-
fective in generating X and Y . We first generate the in-
dependent variables Zi, then X and Y are generated as∑

i bi ∗ Zi + ε where bi follows a.
We compare ReCIT with KCIT in terms of both types of

error. The significance levels are fixed at α1 = 0.01 and
α2 = 0.05 respectively. Note that for a good testing method,
the probability of Type I error should be as close to the sig-
nificance level as possible, and the probability of Type II
error should be as small as possible. We check how the er-
rors change when increasing the dimensionality of Z and
the sample size n. For each parameter setting, we randomly
repeat the testing 1000 times and average their results.

Type I and II errors are calculated like this: for example
D = 3, in Case I x should be independent of y given (Z1),
(Z1, Z2), (Z1, Z3) and (Z1, Z2, Z3), then Type I error =1-
the number of CIs/4. On the other side, x is independent
of y given ∅, (Z2), (Z3) and (Z2, Z3), then Type II error =
the number of CIs/4. Similarly, we can calculate Type I
and II errors in Case II.

We first examine Type I error in Case I and Case II. As
shown in Fig. 1(a) and (c), Type I error of ReCIT is close
to the significance level. As D increases, the probability of
Type I error increases slightly. In Case I, Type I error of
ReCIT is lower than that of KCIT. However, in Case II, even
when D = 3, the probability of Type I error of KCIT is obvi-
ously larger than the significance level. Furthermore, KCIT
is very sensitive to D. We can see that increasing sample
size (from 100 to 200) can obviously reduce Type I error in
Case I, while in Case II the effect is not so obvious.
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Figure 1: The probabilities of Type I and Type II errors ob-
tained by simulation in various situations. The significance
level α1 = 0.01, α2 = 0.05 and the sample size n1 = 100,
n2 = 200. Top: Case I (only one variable in Z is effective to
X and Y ). Bottom: Case II (all variables in Z are effective).

To further illustrate why ReCIT can perform much bet-
ter than KCIT in terms of Type I error in Case II (see
Fig. 1(c)), we conduct another experiment to evaluate the
two methods under different noise weights. We simulate four
sets of noise, ε1 ∼ U(−0.05, 0.05), ε2 ∼ U(−0.2, 0.2),
ε3 ∼ U(−0.5, 0.5) and ε4 ∼ U(−1, 1) and keep the sam-
ple size n = 100 and the significance level α = 0.05. The
results are showed in Fig. 2. We can see that, in the case of
ε4 ∼ U(−1, 1), the error rate of KCIT is extremely close to
the significance level (0.05). However, as the noise weight
grows, the error rate dramatically increases. Recall that the
data-generating function is

∑
i bi ∗ Zi + ε, which means if

the noise ε is much less than the linear combination term∑
i bi ∗ Zi, KCIT tends to be unreliable in this case. On the

other hand, we can see that the error rate of ReCIT keeps
close to the significance level in all cases. This is because
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in the process of ReCIT, x− E(x|Z) = εx and y − E(y|Z)
= εy . Then, testing x ⊥ y|Z is equivalent to testing the in-
dependence between two independent noise terms εx and
εy . Therefore, the accuracy is not affected by noise weight.
Fig. 1(a, c) and Fig. 2 show that ReCIT performs better and
more robust than KCIT in different situations in terms of
Type I error.

Figure 2: The probability of Type II error in Case II (all vari-
ables in Z are effective) for different noise weights.

However, as shown in Fig. 1(b) and 1(d), we can see that
the results of ReCIT and KCIT are close to zero in terms of
Type II error in both Case I and Case II. As D increases, the
probability of Type II error always increases. Intuitively, this
is reasonable: due to the finite sample size effect, as the con-
ditioning set becomes larger and larger, X and Y tend to be
considered as conditionally independent. On the other hand,
as the sample size increases from 100 to 200, the probability
of Type II error approaches zero. In particular, as shown in
Fig. 1(d), the curves of ReCIT with sample size=200 keep
close to zero. That is, increasing sample size from 100 to
200 can dramatically reduce Type II error.

As far as causal discovery is concerned, the performance
of CI test based methods is always heavily affected by Type
II error instead of Type I error. This is due to two reasons:
1) two adjacent variables will not be affected by Type I er-
ror; 2) Assume that a CI of two non-adjacent variables is
incorrectly rejected when Type I error is occurred, by in-
creasing the size of d-separators, we can usually find another
controlling set to d-separate the two variables. Despite this,
KCIT and ReCIT have very similar performance when the
dimensionality of Z is 1 and 2, which means that when the
given DAG is very small (with small d-separators), these two
methods perform similarly in discovering causal skeleton.
However, ReCIT can learn more causal directions, which
will be discussed in the next subsection.

Performance in causal discovery

CI tests are frequently used in causal inference where we
assume that the true causal structure of n random vari-
ables x1, ..., xn can be represented by a directed acyclic
graph (DAG) G. More specifically, the causal Markov con-
dition assumes that the joint distribution satisfies all CIs that
are imposed by the true causal graph. The constraint-based
methods like the PC algorithm make additional assumption
of faithfulness (i.e., the joint distribution does not allow any
CI that is not entailed by the Markov condition) and recover

the graph structure by exploiting the CIs and independence
that can be found in the data. Obviously, this is only pos-
sible up to Markov equivalence classes, which are sets of
graphs that impose exactly the same independence and CIs.
Hence, the PC algorithm based on existing CI test methods
orient causal directions by finding V-structures and consis-
tent propagations (Pearl 2009). In our experiments, we show
that PCReCIT can reveal much more causal directions as
mentioned above.

We generate data from a random DAG G. In particular,
we sample four random variables x1, ..., x4 and allow ar-
rows from xi to xj only for i < j. With probability 0.5
each possible arrow is either present or absent. The root vari-
ables are generated by U(0, 1) and the leaf variables xi are
generated by

∑
i ai ∗ paxi + ε where ai ∼ U(0.2, 1) and

ε ∼ U(−0.2, 0.2) independent across paxi
. For significance

level 0.05 and sample sizes between 25 and 400, we simulate
1000 DAGs and evaluate the performance of the two meth-
ods PCReCIT and PCKCIT on discovering causal skeleton
and PDAG (including identifiable causal directions).

As shown in Fig. 3(a), we can see that when the sam-
ple size is small (e.g. less than 100), PCReCIT performs
significantly better than PCKCIT . As the sample size in-
creases, the performance of PCKCIT tends close to that of
PCReCIT . When the sample size up to 400, the F1 curves
of PCReCIT and PCKCIT tend to overlap, but the former
is still slightly (about 0.025) better than that of the latter.
Considering that the regression coefficient Z(ZTZ)−1ZT

in ReCIT can be easily calculated based on the least square
method, and any possible error is generated by marginal in-
dependence test w.r.t. two residuals. Therefore, PCReCIT

performs significantly better than PCKCIT in discovering
causal skeleton when the sample size is small, which is the
frequently-encountered case in reality.

We also evaluate the two methods in discovering PDAG.
The results are presented in Fig. 3(b). We can see that
PCReCIT achieves better result in all cases, though the per-
formance of PCKCIT in discovering causal skeleton is very
close to that of PCReCIT when the sample size is large
enough. The reason is that PCKCIT orients causal directions
only based on V -structure and consistent propagation (Pearl
2009), in other words, returns only a set of Markov equiva-
lence classes, while PCReCIT can uncover more causal di-
rections according to Theorem 3.

We apply PCReCIT to a causal graph presented
in (Shimizu et al. 2006), which was generated by following
a linear non-Gaussian structure equation model w.r.t. a
DAG consisting six variables as shown in Fig. 4(a). We
select this graph because it contains no V -structure, which
is used to further show the advantage of ReCIT in inferring
causal direction. The resulting skeletons reconstructed
by PCReCIT and PCKCIT are shown in Fig. 4(b) and
Fig. 4(c) respectively. We can see that all the causal edges
discovering by PCReCIT are correct. However, as shown in
Fig. 4(c), only two directions of edges 1→5 and 2→5 are
correctly inferred by PCKCIT , others are failed to be in-
ferred by any propagation. As there is no V -structure in this
graph, theoretically none causal direction can be found by
PCKCIT . However, the edge between node 1 and node 2 are
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Figure 3: Performance comparison between PCReCIT and
PCKCIT with various sample sizes in discovering (a) causal
skeleton and (b) PDAG.

incorrectly removed by both ReCIT and KCIT, i.e., the CI
hypothesis w.r.t. node 1 and node 2 is not rejected although
being false, therefore 1→5←2 forms a false V -structure. It
can be seen that even some local structures are incorrectly
inferred by PC, ReCIT can still distinguish the real causal
directions. In one word, by taking the advantage of ReCIT,
existing constraint-based methods (say the PC algorithm)
can greatly improve the performance in causal discovery, as
ReCIT helps to distinguish the Markov equivalence classes.

Figure 4: Performance comparison in causal direction in-
ference. (a) The ground truth causal model; (b) The recon-
structed DAG based on PCReCIT ; (c) The reconstructed
PDAG based on PCKCIT . Here, the red lines are the edges
whose directions are not determined.

.

Verifying the equivalence between CI and
independent residuals

The above experiments show that ReCIT can work better
than KCIT. In some sense, we have verified that the inde-
pendence between residuals x−E(x|Z) ⊥ y−E(y|Z) can
lead to CI x ⊥ y|Z. Now, we apply ReCIT to two datasets
Hailfinder and Win95pts used in a previous work (Cai,
Zhang, and Hao 2013) to check whether independent resid-
uals can cause CI. Hailfinder is a weather forecasting net-
work including 56 variables and 66 edges, Win95pts is a
printer troubleshooting network containing 76 variables and
70 edges. The results are presented in Table 1. We can see

that the number of CIs used in PCReCIT is extremely close
to that used by PCKCIT . If ReCIT is only sufficient but not
necessary to CI, then the number of ReCIT should be obvi-
ously larger than that of KCIT. In addition, we also present
the recall, precision and F1 (R/P/F1) w.r.t. skeleton discov-
ery, as the performance of skeleton discovery corresponds to
the accuracy of CI tests. We can see that they have very sim-
ilar score. These results indicate that x ⊥ y|Z is equivalent
to x− E(x|Z) ⊥ y − E(y|Z) almost surely.

Table 1: Performance on Hailfinder and Win95pts net-
works.

Dataset PCReCIT PCKCIT

R/P/F1 CIs R/P/F1 CIs
Hail. 0.5/0.7/0.6 75859 0.5/0.7/0.6 75854
Win. 0.5/0.6/0.5 141628 0.5/0.6/0.5 141628

Conclusion

This paper studies the relationship between conditional in-
dependence x ⊥ y|Z and the independence of two residuals
x − E(x|Z) ⊥ y − E(y|Z). In some previous works, the
independence of two residuals is regarded as a week condi-
tion for CI under faithfulness and Markov assumptions. To
make the week condition be sufficient, some additional con-
dition such as x − E(x|Z) ⊥ Z (or y − E(y|Z) ⊥ Z),
Z causes x (or y) are required. In this work, we prove that
if x, y and Z are generated by following a linear structural
equation model and all external influences follow Gaussian
distributions, then x ⊥ y|Z if and only if x − E(x|Z) ⊥
y − E(y|Z). Furthermore, if all these external influences
follow non-Gaussian distributions and the model satisfies
structural faithfulness condition, then we have x ⊥ y|Z ⇔
x − E(x|Z) ⊥ y − E(y|Z). We therefore can relax the
test of x ⊥ y|Z to a simpler unconditional independence
test of x − E(x|Z) ⊥ y − E(y|Z) without assuming any
other graph-related condition. Intuitively, our result means
that if x ⊥ y|Z holds, then when removing the effect of
Z from x and y by regression, the remaining effect of Z
on x is independent from that of y, and vice versa. On the
other hand, we show that CIs can distinguish Markov equiv-
alence classes, as we deduce that x−E(x|Z) ⊥ y−E(y|Z)
⇒ x − E(x|Z) ⊥ z or y − E(y|Z) ⊥ z where Z is a
minimal d-separator (∀z ∈ Z), which implies z causes x
(or y) if z directly connects to x (or y). We conduct exten-
sive experiments to evaluate the proposed method, and our
experimental results show that our method outperforms the
kernel-based method KCIT in discovering causality in linear
non-Gaussian cases.
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