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Abstract

In this paper, we consider the problem of fair statistical in-
ference involving outcome variables. Examples include clas-
sification and regression problems, and estimating treatment
effects in randomized trials or observational data. The issue
of fairness arises in such problems where some covariates or
treatments are “sensitive,” in the sense of having potential of
creating discrimination. In this paper, we argue that the pres-
ence of discrimination can be formalized in a sensible way
as the presence of an effect of a sensitive covariate on the
outcome along certain causal pathways, a view which gener-
alizes (Pearl 2009). A fair outcome model can then be learned
by solving a constrained optimization problem. We discuss a
number of complications that arise in classical statistical in-
ference due to this view and provide workarounds based on
recent work in causal and semi-parametric inference.

Introduction

As statistical and machine learning models become an in-
creasingly ubiquitous part of our lives, policymakers, reg-
ulators, and advocates have expressed concerns about the
impact of deployment of such models that encode potential
harmful and discriminatory biases. Unfortunately, data anal-
ysis is based on statistical models that do not, by default, en-
code human intuitions about fairness and bias. For instance,
it is well-known that recidivism is predicted at higher rates
among certain minorities in the US (Angwin et al. 2016).
To what extent are these predictions discriminatory? What
is a sensible framework for thinking about these issues? A
growing community is now addressing issues of fairness and
transparency in data analysis in part by defining, analyz-
ing, and mitigating harmful effects of algorithmic bias from
a variety of perspectives and frameworks (Pedreshi, Rug-
gieri, and Turini 2008; Feldman et al. 2015; Hardt, Price,
and Srebro 2016; Kamiran, Zliobaite, and Calders 2013;
Corbe-Davies et al. 2017; Jabbari et al. 2016).

In this paper, we propose to model discrimination based
on a “sensitive feature,” such as race or gender, with respect
to an outcome as the presence of an effect of the feature on
the outcome along certain “disallowed” causal pathways. As
a simple example, discussed in (Pearl 2009), job applicants’
gender should not directly influence the hiring decision, but
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may influence the hiring decision indirectly, via secondary
applicant characteristics important for the job, and corre-
lated with gender. We argue that this view captures a number
of intuitive properties of discrimination, and generalizes ex-
isting formal (Pearl 2009; Zhang, Wu, and Wu 2017) and
informal proposals (Bertrand and Mullainathan 2004).

The paper is organized as follows. We first fix our notation
and give a brief introduction to causal inference and medi-
ation analysis, which will be necessary to formally define
our approach to fair inference. We then discuss representa-
tive prior work on fair inference, and enumerate issues these
methods may run into. Moving forward, we show that fair
inference from finite samples under our definition can be
viewed as a certain type of constrained optimization prob-
lem. We then discuss a number of complications to the basic
framework of fair inference. We illustrate our framework via
experiments on real datasets in the experimental section fol-
lowed by additional discussion and final conclusions.

Notation And Preliminaries

Variables will be denoted by uppercase letters, V , values by
lowercase letters, v, and sets by bold letters. A state space of
a variable will be denoted by XV . We will represent datasets
by D = (Y,X), where Y is the outcome and X is the feature
vector. We denote by xi

j and yi the ith realization of the jth
feature Xj ∈ X and the outcome Y . Similarly, xi is the ith
realization of the entire feature vector.

In this paper, we consider probabilistic classification and
regression problems with a set of features X and an outcome
Y , where a feature S ∈ X is sensitive, in the sense that mak-
ing inferences on the outcome Y based on S carelessly may
result in discrimination. There are many examples of S, Y
pairs that have this property. These include hiring discrim-
ination (Y is a hiring decision, and S is gender), or recidi-
vism prediction in parole hearings (where Y is a parole deci-
sion, and S is race). Our approach readily generalizes to any
outcome based inference task, such as establishing causal ef-
fects, although we do not consider these generalizations here
in the interests of space.

Causal Inference

In causal inference, in addition to the outcome Y , we dis-
tinguish a treatment variable A ∈ X, and sometimes also
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one or more mediator variables M ∈ X, or M ⊆ X. The
primary object of interest in causal inference is the potential
outcome variable, Y (a) (Neyman 1923), which represents
the outcome if, possibly contrary to fact, A were set to value
a. Given a, a′ ∈ XA, comparison of Y (a′) and Y (a) in ex-
pectation: E[Y (a)] − E[Y (a′)] would allow us to quantify
the average causal effect (ACE) of A on Y . In general, the
average causal effect is not computed using the conditional
expectation E[Y |A], since association of A and Y may be
spurious or only partly causal.

Causal inference uses assumptions in causal models to
link observed data with counterfactual contrasts of inter-
est. When such a functional exists, we say the parameter is
identified from the observed data under the causal model.
One such assumption, known as consistency, states that the
mechanism that determines the value of the outcome does
not distinguish the method by which the treatment was as-
signed, as long as the treatment value assigned was invariant.
This is expressed as Y (A) = Y . Here Y (A) reads “the ran-
dom variable Y , had A been intervened on to whatever value
A would have naturally attained.”

Another standard assumption is known as conditional ig-
norability. This assumption states that conditional on a set
of factors C ⊆ X, A is independent of any counterfactual
outcome, i.e. Y (a) ⊥⊥ A|C, ∀a ∈ XA, where (. ⊥⊥ .|.)
represents conditional independence. Given these assump-
tions, we can show that p(Y (a)) =

∑
C p(Y | a,C)p(C),

known as the adjustment formula, the backdoor formula,
or stratification. Intuitively, the set C acts as a set of ob-
served confounders, such that adjusting for their influence
suffices to remove all non-causal dependence of A and Y ,
leaving only the part of the dependence that corresponds to
the causal effect. A general characterization of identifiable
functionals of causal effects exists (Tian and Pearl 2002;
Shpitser and Pearl 2008).

Causal Diagrams

Causal relationships are often represented by graphical
causal models (Spirtes, Glymour, and Scheines 2001; Pearl
2009). Such models generalize independence models on di-
rected acyclic graphs, also known as Bayesian networks
(Pearl 1988), to also encode conditional independence state-
ments on counterfactual random variables (Richardson and
Robins 2013). In such graphs, vertices represent observed
random variables, and absence of directed edges represents
absence of direct causal relationships. As an example, in
Fig. 1 (a), C is potentially a direct cause of A, while M me-
diates a part of the causal influence of A on Y , represented
by all directed paths from A to Y .

Mediation Analysis

A natural step in causal inference is understanding the mech-
anism by which A influences Y . A simple form of un-
derstanding mechanisms is via mediation analysis, where
the causal influence of A on Y , as quantified by the ACE,
is decomposed into the direct effect, and the indirect ef-
fect mediated by a mediator variable M . In typical media-
tion settings, X is partitioned into a treatment A, a single
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Figure 1: (a) A causal graph with a single mediator. (b) A
causal graph with two mediators, one confounded with the
outcome via an unobserved common cause. (c) A causal
graph with a single mediator where the natural direct effect
is not identified.

mediator M , an outcome Y , and a set of baseline factors
C = X \ {A,M, Y }.

Mediation is encoded via a counterfactual contrast using
a nested potential outcome of the form Y (a,M(a′)), for
a, a′ ∈ XA. Y (a,M(a′)) reads as “the outcome Y if A were
set to a, while M were set to whatever value it would have
attained had A been set to a′. An intuitive interpretation for
this counterfactual occurs in cases where a treatment can be
decomposed into two disjoint parts, one of which acts on Y
but not M , and another acts on M but not Y . For instance,
smoking can be decomposed into smoke and nicotine. Then
if M is a mediator affected by smoke, but not nicotine (for
instance lung cancer), and Y is a composite health outcome,
then Y (a,M(a′)) corresponds to the response of Y to an
intervention that sets the nicotine exposure (the part of the
treatment associated with Y ) to what it would be in smokers,
and the smoke exposure (the part of the treatment associated
with M ) to what it would be in non-smokers. An example of
such an intervention would be a nicotine patch.

Given Y (a,M(a′)), we define the following effects on
the mean difference scale: the natural direct effect (NDE) as
E[Y (a,M(a′))] − E[Y (a′)], and the natural indirect effect
(NIE) as E[Y (a)]−E[Y (a,M(a′))] (Robins and Greenland
1992). Intuitively, the NDE compares the mean outcome af-
fected only by the part of the treatment that acts on it, and
the mean outcome under placebo treatment. Similarly, the
NIE compares the outcome affected by all treatment, and the
outcome where the part of the treatment that acts on the me-
diator is “turned off.” A telescoping sum argument implies
that ACE = NDE + NIE.

Aside from consistency, additional assumptions are
needed to identify p(Y (a,M(a′))). One such assumption is
known as sequential ignorability, and states that conditional
on C, counterfactuals Y (a,m) and M(a′) are independent
for any a, a′ ∈ XA, m ∈ XM . In addition, conditional ig-
norability for Y acting as the outcome, and A,M acting as a
single composite treatment, that is (Y (a,m) ⊥⊥ A,M | C),
and conditional ignorability for M acting as the outcome,
that is (M(a′) ⊥⊥ A | C), should hold. Under these as-
sumptions, the NDE is identified as the functional known as
the mediation formula (Pearl 2011):∑

C,M

(
E[Y |a,M,C]− E[Y |a′,M,C]

)
p(M | a′,C)p(C), (1)

which may be estimated by plug in estimators, or other
methods (Tchetgen and Shpitser 2012a).

1932



Path-Specific Effects

In general, we may be interested in decomposing the ACE
into effects along particular causal pathways. For example
in Fig. 1 (b), we may wish to decompose the effect of A on
Y into the contribution of the path A → W → Y , and the
path bundle A → Y and A → M → W → Y . Effects along
paths, such as an effect along the path A → W → Y , are
known as path-specific effects (Pearl 2001). Just as the NDE
and NIE, path-specific effects (PSEs) can be formulated as
nested counterfactuals (Shpitser 2013). The general idea is
that along the pathways of interest, variables behave as if the
treatment variable A were set to the “active value” a, and
along other pathways, variables behave as if the treatment
variable A were set to the “baseline value” a′, thus “turning
the treatment off.” Using this scheme, the path-specific ef-
fect of A on Y along the path A → W → Y , on the mean
difference scale, can be formulated as

E[Y (a′,W (M(a′), a),M(a′))]− E[Y (a′)] (2)

Under a more complex sets of assumptions
found in (Shpitser 2013), the counterfactual mean
E[Y (a′,W (M(a′), a),M(a′))] is identified via the
edge g-formula (Shpitser and Tchetgen 2015):∑

C,M,W

E[Y |a′,W,M,C]p(W |a,M,C)p(M |a′,C)p(C), (3)

and may be estimated by plug-in estimators. PSEs such as
(2) has been used in the context of observational studies of
HIV patients for assessing the role of adherence in determin-
ing viral failure outcomes (Miles et al. 2017).

Formalizing Discrimination And Prior

Approaches To Fair Inference

We are now ready to discuss prior approaches to fair infer-
ence. In discussing the extent to which a particular approach
is “fair,” we believe the gold standard is human intuition.
That is, we consider an approach inappropriate if it leads
to counter-intuitive conclusions in examples. For space rea-
sons, we restrict attention to a representative subset of ap-
proaches.

A common class of approaches for fair inference is to
quantify fairness via an associative (rather than causal) rela-
tionship between the sensitive feature S and the outcome Y .
For instance, (Feldman et al. 2015) adopted the 80% rule, for
comparing selection rates based on sensitive features. This is
a guideline (not a legal test) advocated by the Equal Employ-
ment Opportunity Commission (EEOC. 1979) as a way of
suggesting possible discrimination. Rate of selection here is
defined as the conditional probability of selection given the
sensitive feature, or p(Y |S). (Feldman et al. 2015) proposed
methods for removing disparities based on this rule via a link
to classification accuracy. A White House report on “equal
opportunity by design" (Executive Office of the President
May 2016) prompted (Hardt, Price, and Srebro 2016) to pro-
pose a fairness criterion, called equalized odds, that ensures
that true and false positive rates are equal across all groups.
This criterion is also associative.

The issue with these approaches is they do not give in-
tuitive results in cases where the sensitive feature is not

randomly assigned (as gender is at conception), but in-
stead exhibits spurious correlations with the outcome via
another, possibly unobserved, feature. We illustrate the diffi-
culty with the following hypothetical example. Certain states
in the US prohibit discrimination based on past convic-
tion history. Prior convictions are influenced by other vari-
ables, such as gender (men have more prior convictions than
women, on average). Consider a hypothetical dataset (con-
sisting mostly of people with prior convictions) with two
features – prior conviction (C) and gender (G) as well as
the hiring outcome (H). The values are coded as follows:
male is 1, female is 0, prior conviction and hiring are 1,
lack of prior conviction and no hiring is 0. Assume the
dataset is drawn from the joint density specified as follows:
p(G = 1) = 0.5, and

p(H=1| G,C) G value C value p(C=1 |G)
0.06 1 1 0.99
0.01 0 1 0.01
0.2 1 0

0.05 0 0

That is, gender is randomly assigned at birth, the people
in the cohort are very likely to have prior convictions (with
men having more), and p(H|C,G) specifies a certain hiring
rule for the cohort. For simplicity, we assume no other fea-
tures of people in the cohort are relevant for either the prior
conviction or the hiring decision. It’s easy to show that

p(H = 1|C = 1) = 0.0595 ≈ 0.0515 = p(H = 1|C = 0).

However, intuitively we would consider a hiring rule in this
example fair if, in a hypothetical randomized trial that as-
signed convictions randomly (conviction to the case group,
no conviction to the control group), the rule would yield
equal hiring probabilities to cases and controls. In our ex-
ample, this implies comparing counterfactual probabilities
p(H(C = 1)) and p(H(C = 0)). Since we posited no
other relevant features for assigning C and H than A, these
probabilities are identified, via the adjustment formula de-
scribed earlier, yielding p(H(C = 1)) = 0.035, and
p(H(C = 0)) = 0.125. That is, any method relying on
associative measures of discrimination will likely conclude
no discrimination here, yet the intuitively compelling test of
discrimination will reveal a strong preference to hiring peo-
ple without prior convictions. The large difference between
p(H(C = 0)) and p(H | C = 0) has to do with extreme
probabilities p(C|G) in our example. Even in less extreme
examples, any approach that relies on associative measures
of association will be led astray due to failing to properly
model sources of confounding for the relationship of the
sensitive feature and the outcome. One might imagine that
a simple repair in this example would be to also include G
as a feature. The reason this does not work in general is not
all features are possible to measure, and in general counter-
factual probabilities are complex functions of the observed
data, not just conditional densities (Shpitser and Pearl 2006).

In the example above, it made intuitive sense to think of
discrimination as a causal relationship between the sensitive
feature and outcome. In other examples, discrimination intu-
itively entails only a part of the causal relationship. Consider
a modification of the hiring example above where potential
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discrimination is with respect to gender (a variable random-
ized at conception, which means worries about confounding
are no longer relevant). As before, consider binary variables
G and H for gender and hiring, and an additional vector
C, representing applicant characteristics relevant for the job,
of the kind that would appear on the resume. The intuition
here is it is legitimate to consider job characteristics in mak-
ing hiring decisions even if those characteristics are corre-
lated with gender. However, it is not legitimate to consider
gender directly. This intuition underscores resume “name-
swapping” experiments where identical resumes are sent for
review with names switched from a Caucasian sounding
name to an African-American sounding name (Bertrand and
Mullainathan 2004). In such experiments, name serves as a
proxy for race as a direct determinant of the hiring decision.

The definition of discrimination as related to causal path-
ways is further supported in the legal literature. The fol-
lowing definition of employment discrimination, which ap-
peared in the legal literature (7th Circuit Court 1996), and
was cited by (Pearl 2009), makes clear the counterfactual
nature of our intuitive conception of discrimination:

The central question in any employment-discrimination
case is whether the employer would have taken the
same action had the employee been of a different race
(age, sex, religion, national origin etc.) and everything
else had been the same.

The counterfactual “had the employee been of a different
gender” phrase entails considering, for women, the outcome
Y had gender been male G = 1, while the “everything else
had been the same” phrase entails considering job character-
istics under the original gender G = 0. The resulting coun-
terfactual Y (G = 1,C(G = 0)) is precisely the one used in
mediation analysis to define natural direct effects.

It is possible to construct examples, discussed further,
where some causal paths from a sensitive variable to the out-
come are intuitively discriminatory, and others are not. Thus,
our view is that discrimination ought to be formalized as the
presence of certain path-specific effects. The specific paths
which correspond to discrimination are a domain specific is-
sue. For example, physical fitness tests may be appropriate
to administer for certain physically demanding jobs, such as
construction, but not for white collar jobs, such as account-
ing. As a result, a path from gender to the result of a test to
a hiring decision may or may not be discriminatory, depend-
ing on the nature of the job.

Existing work considered similar proposals. Prior work
closest to ours appears in (Zhang, Wu, and Wu 2017),
where discrimination was also linked to path-specific ef-
fects. While we agree with the link, we disagree on three es-
sential points. First, the authors do not appear to do any sta-
tistical inference and operate directly on discrete densities.
In high dimensional settings, where most practical outcome
based inference takes place, statistical modeling becomes
necessary, and an approach that avoids it will not scale. In
this paper we show how removing certain path-specific ef-
fects corresponds to a constrained inference problem on sta-
tistical models. As we show later, the constrained optimiza-
tion problems that arise are non-trivial. Second, the authors

propose an ad hoc repair in cases where the path-specific
effect is not identifiable. We believe this is a misunderstand-
ing of the concept of non-identifiability. If discrimination is
indeed linked to a path-specific effect and this effect is not
identifiable (not a function of the observed data), then the
problem of removing discrimination is not solvable without
more assumptions. In domains such as recidivism predic-
tion, failure today and a better method tomorrow is prefer-
able to an improper correction that preserves discriminatory
practice. We discuss more principled approaches to repair-
ing lack of identifiability of discriminatory path-specific ef-
fects in later sections. Finally, the authors, while repairing
the observed data distribution to be fair, do not modify new
instances to be classified in any way. Since new instances
are, by definition, drawn from the observed data distribu-
tion, which is “unfair,” no guarantees about discrimination
when classifying new samples can be made. We discuss this
issue further below.

Inference On Outcomes That Minimizes

Discriminatory Path-Specific Effects

We now describe our proposal precisely. Assume we are
interested in making inferences on outcomes given a joint
distribution p(Y,X) either modeled fully via a generative
model, or partly via a discriminative model p(Y,X\W|W).
In addition, we assume that p(Y,X) is induced by a causal
model in the sense of (Pearl 2009; Spirtes, Glymour, and
Scheines 2001), that the presence of discrimination based
on some sensitive feature A with respect to Y is represented
by a PSE, and that this PSE is identified given the causal
model as a functional f(p(Y,X)). Finally, we fix upper and
lower bounds εl, εu on the PSE, representing the degree of
discrimination we are willing to tolerate.

Our proposal is to transform the inference problem on
p(Y,X) into an inference problem on another distribution
p∗(Y,X) which is close, in the Kullback-Leibler (KL) di-
vergence sense, to p(Y,X) while also having the property
that the PSE lies within (εl, εu). In some sense, p∗ repre-
sents a hypothetical “fair world” where discrimination is re-
duced, while p represents our world, where discrimination
is present. A special case most relevant in practice is when
εl = εu is set to values that remove the PSE entirely. We con-
sider the more general case of bounding the PSE by εl, εu to
link with earlier work in (Zhang, Wu, and Wu 2017), and
for mathematical convenience. In our framework, any func-
tion of p of interest that we wish to make fair, such as the
ACE or E[Y |X], is to be computed from p∗ instead. That is,
just as causal inference is interested in hypothetical worlds
representing randomized trials, so is fair inference interested
in hypothetical worlds representing fair situations. And just
as in causal inference, where it was important to only make
inference in the hypothetical world of interest, it is impor-
tant to make inferences only in the fair world, especially
given new instances. This is because new instances are likely
drawn from the observed data distribution p, not from the
hypothetical “fair distribution” p∗. Since p does not ensure
discrimination is removed, any guarantees on discrimination
removal made in p∗ will not translate to draws from p for
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reasons similar to ones described in the covariate shift liter-
ature in machine learning – the distribution of the new in-
stance is not the right distribution. We thus map any new
instance xi to a sensible version of it that is drawn from p∗.

A number of approaches for doing this mapping are pos-
sible. In this paper we propose perhaps the simplest con-
servative approach. That is, we will consider only genera-
tive models for p(Y,X \ W|W), and map to “fair” ver-
sions of this distribution p∗(Y,X \ W|W). This ensures
that p∗(W) = p(W), and thus xi

W can be viewed as drawn
from p∗(W), that is from the “fair world.” Since there is no
unique way of specifying what values of X \ W the “fair
version” of the xi instance would attain, we simply average
over these possible values using p∗. This amounts to predict-
ing Y using E

∗[Y |W] with xi
W, and the expectation taken

with respect to p∗(Y |W).
The choice of variables to include in W, which gov-

erns the degree to which our model resembles a genera-
tive or a discriminative model is not obvious. More dis-
criminative models with larger W sets allow the use of
larger parts of new instances for classification, which yields
more information on the outcome. On the other hand, more
generative models with smaller W sets will be KL-closer
to the true model. To see this, consider two models, one
which eliminates the discriminatory PSE by only constrain-
ing E[Y |A,M,C], and one which eliminates the same PSE
by constraining both E[Y |A,M,C] and p(M |A,C). It is
clear that the second model will be at least as KL-close to the
true model p(Y,X) as the first, and likely closer in general.
In this paper we propose a simple approach for choosing W,
based on the form of the estimator of the PSE, described
further below. We leave the investigation of more principled
approaches for selecting W to future work.

A feature of our proposal is that we are selectively ig-
noring some known information about a new instance xi,
if this information was drawn from the distribution that dif-
fers from p∗. We believe this is unavoidable in fair inference
settings – the entire point is using the information “as ef-
fectively as possible" is discriminatory. We do want to use
information as well as possible, but only insofar as we re-
main in the “fair world".

Fair Inference From Finite Samples

Given a set of finite samples D drawn from p(Y,X), a PSE
representing discrimination identified as f(p(Y,X)), a (pos-
sibly conditional) likelihood function LY,X(D;α) parame-
terized by α, an estimator g(D) of the PSE, and εl, εu, we
approximate p∗ by solving a constrained maximum likeli-
hood problem

α̂ =argmax
α

LY,X(D;α)

subject to εl ≤ g(D) ≤ εu. (4)

Our choice for the set W will be guided by the form of
the estimator g(.). Specifically W will contain variables
with models not a part of g(.). Since the estimators for the
PSE developed within the causal inference literature do not
model the baseline factors C, C ⊆ W. In addition, certain
estimators also do not use other parts of the model. For ex-

ample, (5) below does not use p(A | C). For such estimators
we also include those variables in W.

We now illustrate the relationship between the choice of
W and the choice of g by considering three of the four con-
sistent estimators of the NDE (assuming the model shown
in Fig. 1 (a) is correct) presented in (Tchetgen and Shpitser
2012b). The first estimator is the MLE plug in estimator for
(1), given by

1

n

∑
i,m

(
E[Y |a,m, ci]− E[Y |a′,m, ci]

)
p(m|a′, ci). (5)

Since solving (4) using (5) entails constraining
E[Y |A,M,C] and p(M |A,C), classifying a new point
entails using Ẽ[Y |A,C] =

∑
M Ẽ[Y |A,M,C]p̃(M |A,C),

where Ẽ and p̃ represent constrained models.
The second estimator uses all three models, as follows:

1

n

∑
i

(
ai p(mi | a′, ci) {yi − E[Y |a,mi, ci]}

p(a|ci) p(mi|a, ci)

+
(1− ai) {E[Y |a,mi, ci]− η(1, 0, ci)}

p(a′|ci) + η(1, 0, ci)

− (1− ai) {yi − η(0, 0, ci)}
p(a′|ci) + η(0, 0, ci)), (6)

with η(a, a′, c) ≡ ∑
m E[Y |a,m, c] p(m|a′, c). Since the

models of A,M , and Y are all constrained with this esti-
mator, predicting Y for a new instance is via Ẽ[Y |C]. We
discuss the advantages of this estimator in the next section.

The final estimator is based on inverse probability weight-
ing (IPW). The IPW estimator uses the A and M models
to estimate the NDE. We can fit the models p(A|C) and
p(M |A,C) by MLE, and use the following weighted em-
pirical average as our estimate of the NDE:

1

n

∑
i

(
ai yi p(mi|A = 0, ci)

p(A = 1|ci) p(mi|A = 1, ci)
− (1− ai) yi

p(A = 0|ci)
)
. (7)

Since solving the constrained MLE problem using this esti-
mator entails only restricting parameters of A and M mod-
els, predicting a new instance ai,mi, ci is done using

E[Y |C] =
∑
A,M

E[Y |A,M,C] p(M |A,C) p(A|C). (8)

A sensitive feature may affect the outcome through mul-
tiple paths, and paths other than a single edge path corre-
sponding to the direct effect may be inadmissible. Consider
an example where A is gender, and Y is a hiring decision
in a construction labor agency. We now consider two medi-
ators of A, the number of children M , and physical strength
as measured by an entrance test W . In this setting, it seems
that it is inappropriate for the applicant’s gender A to di-
rectly influence the hiring decision Y , nor for the number
of the subject’s children to influence the hiring decision ei-
ther since the consensus is that women should not be penal-
ized in their career for the biological necessity of having to
bear children in the family. However, gender also likely in-
fluences the subject’s performance on the entrance test, and
requiring that certain requirements of strength and fitness is
reasonable in a job like construction. The situation is repre-
sented by Fig. 1 (b), with a hidden common cause of M and
Y added since it does not influence the subsequent analysis.
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In this case, the PSE that must be minimized for the pur-
poses of making the hiring decision is given by (2), and is
identified, given a causal model in Fig. 1 (b), by (3). If we
use the analogue of (5), we would maximize L(D;α) sub-
ject to

1

n

n∑
i=1

∑
w,m

E[Y |0, wi,mi, ci]p(mi|0, ci)×

{p(wi|1,mi, ci)− p(wi|0,mi, ci)} (9)

being within (εl, εu). This would entail classifying new in-
stances ai, wi,mi, ci using Ẽ[Y |A,C]. Our proposal can be
generalized in this way to any setting where an identifiable
PSE represents discrimination, using the complete theory
of identification of PSEs (Shpitser 2013), and plug-in MLE
estimators that generalize (9). We consider approaches for
non-identifiable PSEs in one of the following sections.

Fair Inference Via Box Constraints

Generally, the optimization problem in (4) involves complex
non-linear constraints on the parameter space. However, in
certain cases the optimization problem is significantly sim-
pler, and involves box constraints on individual parameters
of the likelihood. In such cases, standard optimization soft-
ware such as the optim function in the R programming lan-
guage can be used to directly solve (4). We describe two
such cases here. First, if we assume a linear regression model
for the outcome Y = w0 + waA + wmM + wcC in the
causal graph of Fig. 1(a), then the NDE on the mean differ-
ence scale, E[Y (1,M(0))]−E[Y (0,M(0))] is equal to wa,
and (4) simplifies to a box constraint on wa. Note that set-
ting εl = εu = 0 in this case coincides to simply dropping
A from the outcome regression.

Second, consider a setting with a binary outcome Y spec-
ified with a logistic model, logit(P (Y = 1 | A,M,C)) =
θ0 + θaA + θmM + θcC, a continuous mediator specified
with a linear model, and the NDE (within a given level of
C) defined on the odds ratio scale as in (VanderWeele and
Vansteelandt 2010):

NDE =
P (Y (1,M(0)) = 1)|C)/P (Y (1,M(0)) = 0)|C))

P (Y (0,M(0)) = 1)|C)/P (Y (0,M(0)) = 0)|C))
.

In this setting, it was shown in (VanderWeele and Vanstee-
landt 2010) that under certain additional assumptions, the
NDE has no dependencies on C, and is approximately equal
to exp(θa). Hence, (4) can be expressed using box con-
straints on θa. Note that the null hypothesis of the absence of
discrimination corresponds to the value of 1 of the NDE on
the odds ratio scale, and to 0 on the mean difference scale.

Fair Inference With A Regularized Outcome Model

In many applications, the goal of inference is not to approx-
imate the true model itself, but to maximize out of sample
prediction performance regardless of what the true model
might be. Validation datasets or resampling approaches can
be used to assess the performance of such predictive mod-
els, with various regularization methods used to make the
tradeoff between bias and variance. The difficulty here is that
searching for a model Y with good out of sample prediction

performance implies the true Y model might be sufficiently
complex that it may not lie within the model we consider.
This means we cannot use any estimator of the PSE that re-
lies on the Y model. This is because most estimators that
rely on the Y model are not consistent if the Y model is mis-
specified. An inconsistent estimator of the PSE implies we
cannot be sure solving the constrained optimization problem
will indeed remove discrimination.

The key approach for addressing this is to use estima-
tors that do not rely on the Y model. For the special case
of the NDE, one such estimator is the IPW estimator, de-
scribed earlier and in (Tchetgen and Shpitser 2012b). An-
other is the estimator in (6), which was shown to be triply
robust in (Tchetgen and Shpitser 2012b), meaning it remains
consistent in the union model where any two of the three
models (of Y , M and A) are specified correctly. With either
estimator, predicting a new instance ai,mi, ci entails using
Ẽ[Y |C]. Since A and M models are assumed to be known,
we regularize the model E[Y |A,M,C] to maximize out of
sample predictive performance using Ẽ[Y |C]. Using these
estimators ensures any regularization of the Y model does
not influence the estimate of the NDE, meaning that discrim-
ination remains minimized. We give an example analysis il-
lustrating this approach in the experiment section.

Fairness In Computational Bayesian Methods

Methods for fair inference described so far are fundamen-
tally frequentist in character, in a sense that they assumed
a particular true parameter value, and parameter fitting was
constrained in a way that an estimate of this parameter was
within specified bounds. Here, we do not extend our ap-
proach to a fully Bayesian setting, where we would update
distributions over causal parameters based on data, and use
the resulting posterior distributions for constraining infer-
ences. Instead, we consider how Bayesian methods for esti-
mating conditional densities can be adapted, as a computa-
tional tool, to our frequentist approach.

Many Bayesian methods do not compute a posterior dis-
tribution explicitly, but instead sample the posterior using
Markov chain Monte Carlo approaches (Metropolis et al.
1953). These sampling methods can be used to compute any
function of the posterior distribution, including conditional
expectations, and can be modified to obey constraints in our
problem in a straightforward way. As an example, we con-
sider BART, a popular Bayesian random forest method de-
scribed in (Chipman, George, and McCulloch 2010). This
method constructs a distribution over a forest of regression
trees, with a prior that favors small trees, and samples the
posterior using a variant of Gibbs sampling, where a new
tree is chosen while all others are held fixed. A well known
result (Gelfand, Smith, and Lee 1992) states that a Gibbs
sampler will generate samples from a constrained posterior
directly if it rejects all draws that violate the constraint.

We implemented this simple method by modifying the R
package (with a C++ backend) BayesTree, and applied the
result to the model in Fig 2 (a), where NDE was estimated
via a mixed estimation strategy described in (Tchetgen and
Shpitser 2012b), where A was assumed to be randomly as-
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signed (i.e. no modeling, and hence no constraining, of A
was required), and the Y model was fit using constrained
BART. The experiment using the resulting constrained out-
come model is described in the experimental section.

Dealing With Non-Identification of the PSE

Suppose our problem entailed the causal model in Fig. 1 (b),
or Fig. 1 (c) where in both cases only the NDE of A on Y is
discriminatory. Existing identification results for PSEs (Sh-
pitser 2013) imply that the NDE is not identified in either
model. This means estimation of the NDE from observed
data is not possible as the NDE is not a function of the ob-
served data distribution in either model.

In such cases, three approaches are possible. In both
cases, the unobserved confounders U are responsible for the
lack of identification. If it were possible to obtain data on
these variables, or obtain reliable proxies for them, the NDE
becomes identifiable in both cases. If measuring U is not
possible, a second alternative is to consider a PSE that is
identified, and that includes the paths in the PSE of interest
and other paths. For example, in Fig. 1 (b), while the NDE
of A on Y , which is the PSE including only the path A → Y ,
is not identified, the PSE which includes paths A → Y ,
A → M → Y , and A → M → W → Y , namely (2), is.
The first counterfactual in the PSE contrast is identified in
Fig. 1 (b) by (3), and the second by the adjustment formula.

If we are using the PSE on the mean difference scale, the
magnitude of the effect which includes more paths than the
PSE we are interested in must be an upper bound on the
magnitude of the PSE of interest in order for the bounds we
impose to actually limit discrimination. This is only possible
if, for instance, all causal influence of A on Y along paths
involved in the PSE are of the same sign. In Fig. 1 (b), this
would mean assuming that if we expect the NDE of A on Y
to be negative (due to discrimination), then it is also negative
along the paths A → M → W → Y , and A → M → Y .

If measuring U is impossible, and it is not possible to find
an identifiable PSE that includes the paths of interest from
A to Y , and serves as a useful upper bound to the PSE of
interest, the other alternative is to use bounds derived for
non-identifiable PSEs. While finding such bounds is an open
problem in general, they were derived in the context of the
NDE with a discrete mediator in (Miles et al. 2016).

The issue with non-identification of the PSE was also
noted in (Zhang, Wu, and Wu 2017). They proposed to
change the causal model, specifically by cutting off some
paths from the sensitive variable to the outcome such that
the identification criterion in (Shpitser 2013) became satis-
fied, and the PSE became identified. We disagree with this
approach, as we believe it amounts to “redefining success.”
If the original causal model truly represents our beliefs about
the structure of the problem, and in particular the pathways
corresponding to discrimination, then making any sort of
inferences in a model modified away from truth no longer
tracks reality. We would certainly not expect any kind of re-
pair within a modified model to result in fair inferences in
the real world. The workarounds for non-identification we
propose aim to stay within the true model, but try to obtain

A M Y

C

(a)

A M L R Y

CU1 U2

(b)

Figure 2: Causal graphs for (a) the COMPAS dataset, and
(b) the Adult dataset.

information on the true non-identified PSE, either by non-
parametric bounds, or by including other pathways along
with the “unfair” pathways.

Experiments

We first illustrate our approach to fair inference via two
datasets: the COMPAS dataset (Angwin et al. 2016) and the
Adult dataset (Lichman 2013). We also illustrate how a part
of the model involving the outcome Y may be regularized
without compromising fair inferences if the NDE quantify-
ing discrimination is estimated using methods that are robust
to misspecification of the Y model.

The COMPAS Dataset

Correctional Offender Management Profiling for Alternative
Sanctions, or COMPAS, is a risk assessment tool, created by
the company Northpointe, that is being used across the US
to determine whether to release or detain a defendant be-
fore his or her trial. Each pretrial defendant receives several
COMPAS scores based on factors including but not limited
to demographics, criminal history, family history, and so-
cial status. Among these scores, we are primarily interested
in “Risk of Recidivism". Propublica (Angwin et al. 2016)
has obtained two years worth of COMPAS scores from the
Broward County Sheriff’s Office in Florida that contains
scores for over 11000 people who were assessed at the pre-
trial stage and scored in 2013 and 2014. COMPAS score for
each defendant ranges from 1 to 10, with 10 being the high-
est risk. Besides the COMPAS score, the data also includes
records on defendant’s age, gender, race, prior convictions,
and whether or not recidivism occurred in a span of two
years. We limited our attention to the cohort consisting of
African-Americans and Caucasians.

We are interested in predicting whether a defendant would
reoffend using the COMPAS data. For illustration, we as-
sume the use of prior convictions, possibly influenced by
race, is fair for determining recidivism. Thus, we defined
discrimination as effect along the direct path from race to the
recidivism prediction outcome. The simplified causal graph
model for this task is given in Figure 2 (a), where A denotes
race, prior convictions is the mediator M , demographic in-
formation such as age and gender are collected in C, and
Y is recidivism. The “disallowed" path in this problem is
drawn in green in Figure 2(a). The effect along this path is
the NDE. The objective is to learn a fair model for Y . i.e. a
model where NDE is minimized.
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We obtained the posterior sample representation of
E[Y |A,M,C] via both regular and constrained BART. Un-
der the unconstrained posterior, the NDE (on the odds ratio
scale) was equal to 1.3. This number is interpreted to mean
that the odds of recidivism would have been 1.3 times higher
had we changed race from Caucasian to African-American.
In our experiment we restricted NDE to lie between 0.95
and 1.05. Using unconstrained BART, our prediction accu-
racy on the test set was 67.8%, removing treatment from the
outcome model dropped the accuracy to 64.0%, and using
constrained BART lead to the accuracy of 66.4%. As ex-
pected, dropping race, an informative feature, led to a greater
decrease in accuracy, compared to simply constraining the
outcome model to obey the constraint on the NDE.

In addition to our approach to removing discrimination,
we are also interested in assessing the extent to which the
existing recidivism classifier used by Northpointe is biased.
Unfortunately, we do not have access to the exact model
which generated COMPAS scores, since it is proprietary,
nor all the input features used. Instead, we used our dataset
to predict a binarized COMPAS score by fitting the model
p̃(Y |M,C) using BART. We dropped race, as we know
Northpointe’s model does not use that feature. Discrimina-
tion, as we defined it, may still be present even if we drop
race. To assess discrimination, we estimate the NDE, our
measure of discrimination, in the semiparametric model of
p(Y,M,A,C), where the only constraint is that p(Y |M,C)
is equal to p̃ above. This model corresponds to (our approx-
imation of) the “world” used by Northpointe. Measuring the
NDE on the ratio scale using this model yielded 2.1, which
is far from 1 (the null effect value). In other words, assum-
ing the defendant is Caucasian, then the odds of recidivism
for him would be 2.1 times higher had he been, contrary
to fact, African-American. Thus, our best guess on North-
pointe’s model is that it is severely discriminatory.

The Adult Dataset

The “adult” dataset from the UCI repository has records on
14 attributes such as demographic information, level of ed-
ucation, and job related variables such as occupation and
work class on 48842 instances along with their income that
is recorded as a binary variable denoting whether individu-
als have income above or below 50k – high vs low income.
The objective is to learn a statistical model that predicts the
class of income for a given individual. Suppose banks are
interested in using this model to identify reliable candidates
for loan application. Raw use of data might construct mod-
els that are biased towards females who are perceived to
have lower income in general compared to males. The causal
model for this dataset is drawn in Figure 2(b). Gender is the
sensitive variable in this example denoted by A in figure 2(b)
and income class is denoted by Y . M denotes the marital
status, L denotes the level of education, and R consists of
three variables, occupation, hours per week, and work class.
The baseline variables including age and nationality are col-
lected in C. U1 and U2 capture the unobserved confounders
between M,Y and L,R, respectively.

Here, besides the direct effect (A → Y ), we would like
to remove the effect of gender on income through marital

status (A → M → . . . → Y ). The “disallowed" paths are
drawn in green in Figure 2(b). The PSE along the green
paths is identifiable via the recanting district criterion in
(Shpitser 2013), and can be computed by calculating odds
ratio or contrast comparison of the counterfactual variable
Y (a,M(a), L(a′,M(a)),R(a′,M(a), L(a′,M(a))),C),
where a′ is set to a baseline value, a = 1 in one coun-
terfactual, and a = 0 in the other. The counterfactual
distribution can be estimated from the following functional:∑

V\A{p(Y |a,m, l, r, c)
∏3

i=1 p(ri|a′,m, l, c)p(l|a′,m, c)

p(m|a, c) p(c)}, where V are all observed variables.
If we use logistic regression to model Y and linear regres-

sion to model other variables given their past, and compute
the PSE on the odds ratio scale, it is straightforward to show
that the PSE simplifies to exp

(
θya + θymθma + θyl θ

l
mθma +

∑
i θ

y
ri(θ

ri
mθma + θril θlmθma )

)
, where θji denotes the coeffi-

cient associated with variable i in modeling the variable j,
(VanderWeele and Vansteelandt 2010). Therefore, the con-
straint in (4) is an easy function to compute, and the resulting
constrained optimization problem relatively easy to solve.

The Y model is trained by maximizing the constrained
likelihood in (4) using the R package nloptr. We trained two
more models for Y , one using the full model with no con-
straint, and the other one by dropping all terms containing
the “sensitive variable" A. We only included the “drop A"
model in our simulations as a very simple naive approach
to the problem that, superficially, might appear to be sensi-
ble for removing discrimination. In fact, we believe drop-
ping the sensitive feature from the model is a poor choice in
our setting, both because sensitive features are often highly
predictive of the outcome in interesting (and politicized)
cases, and because dropping the sensitive feature does not
in fact remove discrimination (as we defined it)! For per-
formance evaluation on test set, we should use E[Y |A,C]
in constrained model, E[Y |A,M,L,R,C] in unconstrained
model, and E[Y |M,L,R,C] in drop-A model.

The PSE in the unconstrained model is 3.16. This means,
the odds of having a high income would have been more
than 3 times higher for a female if her sex and marital status
would have been the same as if she was a male. We solve
the constrained problem by restricting the PSE, as estimated
by (9), to lie between 0.95 and 1.05. Accuracy in the un-
constrained model is the highest, 82%, and the lowest in
the “drop A” scenario, 42%, (as expected). The constrained
model not only boosts accuracy to 72%, but also guarantees
fairness, in our sense.

Selecting The Outcome Model To Maximize Out Of
Sample Predictive Performance

The search for an outcome model with the best out of sample
performance, as is often done in machine learning problems,
may result in a model which does not give consistent esti-
mates of the NDE and thus does not guarantee removal of
discrimination, if the NDE estimator is not chosen carefully.
As discussed in the previous sections, the key approach is
to use estimators that do not rely on the Y model being cor-
rectly specified, such as the triply robust estimator, and the
IPW estimator. Here we demonstrate, via a simple simula-
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tion study, that selecting the outcome model to maximize
predictive performance does not interfere with solving the
constrained optimization problem for removing discrimina-
tion as long as we use triply robust or IPW estimators given
that A and M models are specified correctly.

We generated 4000 data points using the models shown in
(10) and split the data into training and validation sets.

A ∼ Bernoulli(p = 0.5)

C1, C2 ∼ N
(
μ = (0, 0),Σ =

(
2 1
1 2

))

logit(p(M)) ∼ −3 + 0.8C1 + 0.7C2 + 0.3A+ 0.3AC1+

− 0.3AC2

Y = 5 + 3A+C1 + 0.3C2 + 0.8M + 0.5A(C1 + C2 +M)

+0.4C1C2 + 0.2M(C1 + C2) +N (0, 2). (10)

We assume A and M models are correctly specified; A
is randomized (like race or gender) and M has a logistic
regression model with interaction terms. Using the IPW es-
timator, which only uses A and M models, we obtain the
NDE (on the ratio scale) of 3.01. As expected, the triply ro-
bust estimator, which uses A,M , and Y models, gives us the
same estimate of NDE, even under a misspecified Y model.

To select the most predictive outcome model, we searched
over possible candidate models and performed constrained
optimization that restricted the NDE to be within −0.5 and
0.5. We chose the model that lead to the smallest rMSE
on the test data, where the predictions were done using
Ẽ[Y |C], with this expectation evaluated by marginalizing
over the candidate outcome model E[Y |A,M,C], and the
constrained models for M and A. Our pool of candidate
models were the linear regression models with different sub-
sets of interaction terms. As expected, when using the triply
robust estimator under the correctly specified models for A
and M , the NDE for all candidate Y models we considered
was almost the same and close to the truth (3.01). Out of the
pool of candidate models, the following model was selected
to have the smallest rMSE:

E[Y | D] = 5.1 + 2.86A+ 1.2C1 + 0.5C2 + 0.39C1C2+

0.15M + 1.74AM + 0.29MC1 + 0.02MC2,

where D ⊆ C. Consider, by contrast, what happened when
we used an estimator that relied on the Y model being spec-
ified correctly. We pick the following (incorrect) Y model:

E[Y | D] = θ0 + θaA+
∑
i

θiCi + θmM + θac(AC1)
2,

and compute the NDE using (1), to obtain the value of 2.7.
Performing the constrained optimization using the above

model and the estimator in (1) would lead us to the opti-
mal coefficients for the M and Y models that ensure the
NDE is within (−0.5, 0.5), as desired. However, since the Y
model was incorrect, and (1) was not robust to misspecifi-
cation of Y , the results cannot be trusted. Indeed, using the
constrained coefficients for M and Y models in the triply
robust estimator, that is robust to misspecified of Y , leads to
a large NDE of 3.07.

The takeaway here is that the classical machine learning
task of model selection to optimize out of sample predic-
tion performance, be it via parameter regularization or other

methods, can only ensure fairness if the estimators for the
degree of fairness, as quantified by the PSE, do not rely on
the model being selected, the models the estimators do rely
on are specified correctly, and only the part of the model the
estimators do not rely on is selected.

Discussion And Conclusions

In this paper, we considered the problem of fair statistical in-
ference on outcomes, a setting where we wish to minimize
discrimination with respect to a particular sensitive feature,
such as race or gender. We formalized the presence of dis-
crimination as the presence of a certain path-specific effect
(PSE) (Pearl 2001; Shpitser 2013), as defined in mediation
analysis, and framed the problem as one where we max-
imize the likelihood subject to constraints that restrict the
magnitude of the PSE. We explored the implications of this
view for predicting outcomes out of sample, for cases where
the PSE of interest is not identified, and for computational
Bayesian methods. We illustrated our approach using exper-
iments on real datasets.

One of the advantages of our approach is it can be readily
extended to concepts like affirmative action and “the wage
gap” in a way that matches human intuition. To conceptual-
ize affirmative action, we propose to define a set of “valid
paths" from A (race/sexual orientation) to Y (admission de-
cision), perhaps paths through academic merit, or extracur-
riculars, or even the direct path, and solve a constrained opti-
mization problem that increases the PSE along these paths.
Here we mean placing a lower bound εl on the PSE away
from the value corresponding to “no effect". Then, we learn
p∗ as the KL-closest distribution to the observed data distri-
bution p that satisfies the constraint on the PSE. Finally, we
predict the admission decision of a new instance X in a sim-
ilar way as the proposal in our paper, by using the informa-
tion in the new instance X shared between p and p∗, and pre-
dicting/averaging over other information using p∗. We thus
“count the causal influence of the sensitive feature on ad-
mission via prescribed paths" more highly among disadvan-
taged minorities. Defining these paths is a domain-specific
issue. Increasing the PSE potentially lowers predictive per-
formance, just as decreasing the PSE did in our experiments
on reducing discrimination. This makes sense since we are
moving away from the PSE implied by the “unfair world"
given by the MLE towards something else that we deem
more “fair". A similar definition can be made for “the wage
gap", which we believe should be meaningfully defined as a
comparison of the PSE of gender on salary with respect to
“inappropriate paths.”

One methodological difficulty with our approach is the
need for a computationally challenging constrained opti-
mization problem. An alternative would be to reparameter-
ize the observed data likelihood to include the causal pa-
rameter corresponding to the discrimination PSE, in a way
causal parameters have been added to the likelihood in struc-
tural nested mean models (Robins 1999). Under such a repa-
rameterization, minimizing the PSE always corresponds to
imposing box constraints on the likelihood. However, this
reparameterization is currently an open problem.
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