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Università degli Studi di Brescia, Italy

pietro.baroni@unibs.it

Antonio Rago, Francesca Toni
Dept. of Computing

Imperial College London, UK
{a.rago15,ft}@imperial.ac.uk

Abstract

The study of properties of gradual evaluation methods in
argumentation has received increasing attention in recent
years, with studies devoted to various classes of frame-
works/methods leading to conceptually similar but formally
distinct properties in different contexts. In this paper we pro-
vide a systematic analysis for this research landscape by mak-
ing three main contributions. First, we identify groups of con-
ceptually related properties in the literature, which can be re-
garded as based on common patterns and, using these pat-
terns, we evidence that many further properties can be consid-
ered. Then, we provide a simplifying and unifying perspec-
tive for these properties by showing that they are all implied
by the parametric principles of (either strict or non-strict) bal-
ance and monotonicity. Finally, we show that (instances of)
these principles are satisfied by several quantitative argumen-
tation formalisms in the literature, thus confirming their gen-
eral validity and their utility to support a compact, yet com-
prehensive, analysis of properties of gradual argumentation.

1 Introduction

Abstract Argumentation Frameworks (AFs) (Dung 1995)
are a well-known formalism to represent and resolve con-
flicts, expressed as a binary relation of attack amongst ar-
guments. While AFs have proven useful to study conflict
management, some of their underlying assumptions may be
rather restrictive in some settings. As a result, several exten-
sions or modifications of AFs and their semantics have been
proposed, including the following, all relevant to this paper:

• a support relation can be considered alongside (or in-
stead of) the attack relation (e.g. see (Amgoud et al. 2008;
Baroni et al. 2015; Amgoud and Ben-Naim 2016b));

• while traditional semantics (Dung 1995) produce simple
assessments of argument acceptance, finer gradual eval-
uation methods, based on numerical scales or rankings,
can be used (e.g. see (Matt and Toni 2008; Leite and Mar-
tins 2011; Gabbay 2012; Amgoud and Ben-Naim 2013;
Baroni et al. 2015; Amgoud et al. 2016));

• while arguments are considered a-priori equal in AFs,
they can be equipped with an initial evaluation (e.g. called
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‘weighting’ in (Amgoud and Ben-Naim 2016b)) reflect-
ing e.g. the authoritativeness of their source or, as in (Leite
and Martins 2011), votes they have received.

Given the variety of gradual evaluation methods possible,
several works include (e.g. (Matt and Toni 2008; Leite and
Martins 2011)) or are completely devoted to (e.g. (Bonzon et
al. 2016; Amgoud and Ben-Naim 2016a)) the definition and
study of properties that these methods (should) satisfy. This
has given rise to a relatively large and varied body of prop-
erties, which may share basic intuitions but are presented in
technically different contexts. This multiplication of studies,
while potentially fruitful, carries the risk of concealing un-
derlying common roots and possible overlappings.

We take a step towards the unification of efforts within
this research trend, by analyzing properties in the context
of generic Quantitative Bipolar Argumentation Frameworks
(QBAFs) where each argument has a (possibly empty) set of
attackers, a (possibly empty) set of supporters, and an ini-
tial evaluation (possibly the same for all arguments) on a
chosen scale, all contributing to a final argument evaluation,
provided by a strength function. QBAFs encompass other
frameworks as special cases, including AFs, Bipolar Argu-
mentation Frameworks (Amgoud et al. 2008), Social AFs
(Leite and Martins 2011), Weighted Argumentation Graphs
(Amgoud et al. 2017), Quantitative Argumentation Debate
frameworks (Baroni et al. 2015), and Support Argumenta-
tion Frameworks (Amgoud and Ben-Naim 2016b).

The paper is organised as follows. After some preliminar-
ies in Section 2, in Section 3 we gather literature properties
in groups, each group being based on a basic idea which can
give rise to many variants, several of which have not been
explicitly considered in the literature. Then in Section 4 we
introduce the principles of (strict and non-strict) balance and
monotonicity and show that they imply the group proper-
ties considered in Section 3 and thus have the potential to
support a greatly simplified analysis of actual formalisms.
Section 5 confirms this potential since suitable instances of
these principles are satisfied by a variety of existing gradual
argumentation formalisms. Section 6 concludes.

2 Preliminaries

Let I be a set equipped with a preorder ≤ where, as usual,
a< b denotes a ≤ b and b ≰ a. We allow, but do not impose,
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that I contains top (⊺) and bottom (�) values; if ⊺,� ∈ I, � <
i < ⊺ for all i ∈ I/{�,⊺}. For example, I = [0,1] with ⊺ = 1,
� = 0, or I = (0,∞). A QBAF assigns attackers, supporters
and an initial evaluation (base score) in I to arguments.
Definition 1. A Quantitative Bipolar Argumentation
Framework (QBAF) is a quadruple ⟨X ,R−,R+, τ⟩ consist-
ing of a set X of arguments, a binary (attack) relation R− on
X , a binary (support) relation R+ on X and a total function
τ ∶X → I; for any α ∈ X , we call τ(α) the base score of α.

QBAFs can be visualised as graphs, e.g. Figure 1 visu-
alises ⟨{a, b, c, d},{(c, a), (c, b)},{(d, b)}, τ⟩ (for any τ ).

Figure 1: Example QBAF visualised as a graph.

In the remainder of the paper, unless specified otherwise,
we assume as given a generic QBAF Q = ⟨X ,R−,R+, τ⟩.

QBAFs capture several existing formalisms in the litera-
ture as special cases. Let a QBAF Q be referred to as:

aQBAFf if ∀α ∈ X ,R+(α) = ∅ ∧ τ(α) = ⊺
aQBAF if ∀α ∈ X ,R+(α) = ∅
sQBAF if ∀α ∈ X ,R−(α) = ∅
QBAFf if ∀α ∈ X , τ(α) = i for some i ∈ I
Then, for the purposes of our analysis in this paper,

aQBAFfs (i.e. QBAFs with empty support and fixed base
score ⊺ for all arguments) correspond to AFs (Dung 1995),
aQBAFs (i.e. QBAFs with empty support) correspond to
Social AFs (Leite and Martins 2011) (where base scores
are determined by votes) and to Weighted Argumentation
Graphs (Amgoud et al. 2017), sQBAFs (i.e. QBAFs with
empty attack) correspond to Support Argumentation Frame-
works (Amgoud and Ben-Naim 2016b), and QBAFfs (i.e.
QBAFs with a fixed base score for all arguments) correspond
to Bipolar Argumentation Frameworks, as in (Amgoud et al.
2008). Quantitative Argumentation Debate (QuAD) frame-
works (Baroni et al. 2015) can be seen as generic QBAFs.

Arguments in a QBAF have a final evaluation (strength):
Definition 2. For any α ∈ X , the strength of α is given by
σ(α) where σ ∶ X → I is a total function. For any A ⊆ X ,
we refer to the multiset {σ(β)∣β ∈ A} as σ(A).1

If �∈ I, it may or not play a role in evaluating arguments.
Thus, we consider two alternative notions of set equivalence:
Definition 3. Let ∗ be either σ� or σ/�. For Z ⊆ X , let Z∗
denote σ(Z) if ∗ = σ� and σ(Z)/{σ(z) ∈ σ(Z)∣σ(z) = �}
if ∗ = σ/�. Then, for A,B ⊆ X , A is ∗-strength equivalent
to B, denoted A=∗B, iff A∗ =B∗; A is at least as ∗-strong
as B, denoted A≥∗B, iff there exists an injective mapping
f from B∗ to A∗ such that ∀α ∈ B∗, σ(f(α)) ≥ σ(α); A is
∗-stronger than B, denoted A>∗B, iff A≥∗B and B≱∗A.

1In this paper we use the same notation for sets and multisets.

(Matt and Toni 2008) aQBAFf [0,1]
(Amgoud and Ben-Naim 2013) aQBAFf ranking
(Thimm and Kern-Isberner 2014) aQBAFf ranking
(Amgoud and Ben-Naim 2016a) aQBAFf [0,1]
(Bonzon et al. 2016) aQBAFf pre-order
(Amgoud et al. 2016) aQBAFf [1,∞)
(Leite and Martins 2011) aQBAF I ⊇ {�,⊺}

(ordered set)
(Amgoud et al. 2017) aQBAF [0,1]
(Amgoud and Ben-Naim 2016b) sQBAF [0,1]
(Amgoud et al. 2008) QBAFf [−1,1]
(Baroni et al. 2015) QBAF [0,1]
(Rago et al. 2016) QBAF [0,1]

Table 1: Choices of QBAFs (second column) and I (third column)
for the literature considered (first column).

Note that Definition 3 for ∗ = σ� reformulates the no-
tion of group comparison in (Amgoud and Ben-Naim 2013;
Bonzon et al. 2016). In the remainder ∗ is either σ� or σ/�.
Definition 4. For any α ∈ X , the set of attackers of α is
R−(α)={β ∈ X ∣(β,α) ∈ R−} and the set of supporters of
α is R+(α)={β ∈ X ∣(β,α) ∈ R+}. Also, R−∗(α) = R−(α)
if ∗ = σ� and R−∗(α) = R−(α)/{β ∈ R−(α)∣σ(β) = �} if
∗ = σ/�. Similarly, R+∗(α) = R+(α) if ∗ = σ� and R+∗(α) =
R+(α)/{β ∈ R+(α)∣σ(β) = �} if ∗=σ/�.

Thus, we use R−∗(α) (R+∗(α)) to denote the set of attackers
(supporters, resp.) of an argument α including or excluding,
depending on the choice of ∗, those with bottom strength.
Note that R−∗(α) =R−∗(β) implies R−(α) =∗R−(β) but not
vice versa (similarly for support). The notations R−∗,R+∗ and
=∗ will be needed to capture properties from the literature.

The definition of our group properties and principles will
also be parametric w.r.t. an operator over I, ≪, expressing a
form of strict comparison between values in I. The basic re-
quirement for this operator is that < ⊆ ≪ ⊆ ≤ and, naturally,
m ≫ n iff n ≪ m. Throughout the paper, we will consider
the following instances of ≪, in addition to ≪=< and ≪=≤:
• ≪=<×, where m <× n iff m <n or m =n =×, where × is

one of �, ⊺, or some other specified element of I.

3 Grouping Literature Properties

In this section we show that 29 literature properties (Ps) in-
troduced and analysed separately2 for one gradual argumen-
tation formalism or another, can be seen as instances of or
are directly implied by 11 group properties (GPs) that we
introduce for generic QBAFs in terms of parameters I, *, ≪.
Table 1 summarises the concrete choices of I3 and the appro-
priate special type of QBAF for the Ps that we consider (we
will give the other choices of parameters in Table 2 later).

Our analysis in this section results in a principled cat-
alogue of Ps, collated into groups, as well as, as a side-
effect, the (implicit) definition of several other properties,

2Some properties were introduced referring to a generic notion
of strength, others were proven for specific strength proposals.

3The ranges in Table 1 can be identified by inspection of the
papers; rankings/orders can be naturally mapped onto I.
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variants of Ps, which, to the best of our knowledge, have not
been considered yet. To give a simple illustrative example,
consider the property of maximality, stating for attack-only
frameworks that an argument with no attackers has strength
equal to its base score (Amgoud et al. 2017), and the prop-
erty of minimality, stating for support-only frameworks that
an argument with no supporters has strength equal to its
base score (Amgoud and Ben-Naim 2016b). Clearly, they
share the same basic idea that if an argument is not the di-
alectical target of any arguments, then its strength coincides
with its base score. Thus these two Ps can be grouped (in-
tuitively by conjoining them) giving a further property for
QBAFs. Further, the basic idea of this GP admits variants
concerning whether arguments with bottom strength should
count as effective attackers/supporters, i.e. whether the sets
whose emptiness has to be checked are those of attack-
ers/supporters tout court or with non-bottom strength. Each
variant of the basic idea is a reasonable property on its own
but not all variants have been given in the literature.

In this section we give formally our GPs in turn, each pre-
ceded by a short informal description of the underlying basic
idea and followed by formal results on Ps4 that are instances
of or directly implied by the GP. For ease of reference and
to disambiguate some homonymies, we number Ps. Tables 1
and 2 summarise the choices of parameters for capturing Ps
as (implied by) instances of our GPs. Table 2 also indicates
with hyphens instances of GPs without an explicit counter-
part in the literature. Thus, each hyphen corresponds to a
new property, instance of one of our GPs. As an illustration,
the first row of Table 2 specifies that P1 (i.e. maximality,
discussed earlier) is the instance of GP1 (defined later) for
aQBAF(f)s with ∗ = σ�, but no corresponding instance of
GP1 for aQBAF(f)s with ∗ = σ/�, let us call it P1σ/�, has
been considered. Note that in Table 2 hyphens clearly pre-
vail over numbers. Also, where several Ps are present in a
single cell of a GP (e.g. P8, P12 in GP6) in principle the
same number of properties could be present in other cells of
the same GP and one hyphen in these cells actually counts
for more than one “missing” property. Thus, overall, before
entering into details, we remark that our analysis identifies a
significantly wider spectrum of possible properties than the
literature so far. We will support this claim later by exem-
plifying additional properties that our analysis identifies.

Basic Idea 1. The strength of an argument differs from its
base score only if the argument is the dialectical target of
other arguments, i.e. the strength is equal to the base score if
the argument is not the dialectical target of other arguments.

GP1. If R−∗(α) = ∅ and R+∗(α) = ∅ then σ(α) = τ(α).
Proposition 1. The following are instances of GP15:
P1. Maximality (Amgoud and Ben-Naim 2016a; Amgoud et
al. 2017), (Leite and Martins 2011, Prop. 11) - For any α ∈

4Throughout the paper proofs are omitted for lack of space.
5Each P is expressed equivalently using our notation. Here and

throughout, instantiation amounts to the choices of QBAF and I in
Table 1 and of ∗ and ≪, if applicable, in Table 2, except for <×,
specified in text. By showing that Ps are instances of GPs we show
that the former are equivalent to (suitable instances of) the latter.

σ� σ/�
< <× ≤ < <× ≤

GP1
aQBAF(f) P1 -

sQBAF P2 -
QBAF(f) - P3

GP2 aQBAF(f) - - - - P4 -
QBAF(f) - - - - - -

GP3 sQBAF - - - - P5 -
QBAF(f) - - - - - -

GP4 aQBAF(f) - P6
QBAF(f) - -

GP5 sQBAF - P7
QBAF(f) - -

GP6
aQBAF(f) P8, P12 P9

sQBAF P10 P11
QBAF(f) - -

GP7 aQBAF(f) P14 - P15 - P16, P17 -
QBAF(f) - - P13 - - -

GP8 sQBAF - - - - P19 -
QBAF(f) - - P18 - - -

GP9
aQBAF(f) - P20 - - - -

sQBAF - - - - - -
QBAF(f) - - - - - -

GP10 aQBAF(f) P21 P22, P23 - - - -
QBAF(f) - - - - - -

GP11 sQBAF - P24, P25 - - - -
QBAF(f) - - - - - -

Table 2: GPs and their instances (in bold) or implied in-
stances (in normal font) in the literature. GP1, GP4-GP6 do
not use ≪. GP2, GP4, GP7, GP10 have no sQBAF variants
and GP3, GP5, GP8, GP11 have no aQBAF(f) variants.

X , if R−(α) = ∅ then σ(α) = τ(α).
P2. Minimality (Amgoud and Ben-Naim 2016b) - For any
α ∈ X , if R+(α) = ∅ then σ(α) = τ(α).
P3. Equation 4 (Baroni et al. 2015) - For any α ∈ X , if ∄β ∈
R−(α) such that σ(β) > � and ∄γ ∈ R+(α) such that σ(γ) >
� then σ(α) = τ(α).

The hyphens in Table 2 in the rows for GP1 correspond to
the following novel properties, interesting in their own right:

• P1σ/� - For any α ∈ X , if ∄β ∈ R−(α) such that σ(β) > �
then σ(α) = τ(α).

• P2σ/� - For any α ∈ X , if ∄β ∈ R+(α) such that σ(β) > �
then σ(α) = τ(α).

• P3σ� - For any α ∈ X , if R−(α) = ∅ and R+(α) = ∅ then
σ(α) = τ(α).
Here, P1σ/� and P2σ/� are the instance of GP1 for

aQBAF(f)s and sQBAFs, resp., with ∗ = σ/�, and P3σ� is
the instance of GP1 for QBAF(f)s with ∗ = σ�.

Basic Idea 2. In the absence of supporters, if there is at
least an attacker then the strength of an argument is lower
than its base score.

GP2. If R−∗(α)≠∅ and R+∗(α)=∅ then σ(α)≪τ(α).
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Proposition 2. GP2 implies the following for <×=<�6:
P4. Weakening (Amgoud and Ben-Naim 2016a; Amgoud et
al. 2017) - For any α ∈ X , if τ(α) > � and ∃β ∈ R−(α) such
that σ(β) > � then σ(α) < τ(α).
Basic Idea 3. In the absence of attackers, if there is at least
a supporter then the strength of an argument is greater than
its base score.

GP3. If R−∗(α) = ∅ and R+∗(α) ≠ ∅ then τ(α) ≪ σ(α).
Proposition 3. GP3 implies the following for <×=<⊺:
P5. Strengthening (Amgoud and Ben-Naim 2016b) - For any
α ∈ X , if τ(α) < ⊺ and ∃β ∈ R+(α) such that σ(β) > � then
σ(α) > τ(α).
Basic Idea 4. If the strength of an argument is lower than
its base score then the argument has at least one attacker.

GP4. If σ(α) < τ(α) then R−∗(α) ≠ ∅.

Proposition 4. The following are instances of GP4:
P6. Weakening Soundness (Amgoud and Ben-Naim 2016a;
Amgoud et al. 2017) - For any α∈X with τ(α) > �, if σ(α) <
τ(α) then ∃β ∈R−(α) with σ(β)>�.

Basic Idea 5. If the strength of an argument is higher than
its base score then the argument has at least one supporter.

GP5. If σ(α) > τ(α) then R+∗(α) ≠ ∅.

Proposition 5. The following are instances of GP5:
P7. Strengthening Soundness (Amgoud and Ben-Naim
2016b) - For any α ∈ X , if σ(α) > τ(α) then ∃β ∈ R+(α)
such that σ(β) > �.

Basic Idea 6. Arguments with equal conditions in terms of
attackers, supporters and base score have the same strength.

GP6. If R−∗(α) = R−∗(β), R+∗(α) = R+∗(β) and τ(α) = τ(β)
then σ(α) = σ(β).
Proposition 6. The following are instances of GP6:
P8. Equivalence (Amgoud and Ben-Naim 2016a; Amgoud
et al. 2017) - For any α,β ∈ X , if τ(α) = τ(β) and there
exists a bijective function f from R−(α) to R−(β) such that
∀γ ∈ R−(α), σ(γ) = σ(f(γ)) then σ(α) = σ(β).
P9. Neutrality (Amgoud and Ben-Naim 2016a; Amgoud et
al. 2017) - For any α,β ∈ X , if τ(α) = τ(β), R−(α) =
R−(β)/{γ}, γ ∈R−(β) and σ(γ)=� then σ(β)=σ(α).
P10. Equivalence (Amgoud and Ben-Naim 2016b) - For any
α,β ∈ X , if τ(α) = τ(β) and σ(R+(α)) = σ(R+(β)) then
σ(α) = σ(β).
P11. Dummy (Amgoud and Ben-Naim 2016b) - For any
α,β ∈ X , if τ(α) = τ(β), R+(α) = R+(β)/{γ} and γ ∈
R+(β) with σ(γ) = � then σ(β) = σ(α).
Proposition 7. GP6 implies the following:
P12. Non-Attacked Equivalence (Bonzon et al. 2016) - For
any α,β ∈X , if R−(α)=∅ and R−(β)=∅ then σ(α)=σ(β).

As mentioned earlier, Table 2 gives yet more properties
than those indicated for the hyphens. For example, the σ/�
version of P12 is noticeably different from P9 (with which it
would share a cell) and interesting in its own right:

6Throughout, implication results assume instantiation of pa-
rameters as in Tables 1,2 and, if applicable, choice of <× as given.

• P12σ/� - For any α,β ∈X , if R−σ/�(α)=∅ and R−σ/�(β)=∅
then σ(α)=σ(β).

Basic Idea 7. A strictly larger set of attackers determines a
lower strength.

GP7. If R−∗(α) ⊊ R−∗(β) and R+∗(α) = R+∗(β) and τ(α) =
τ(β) then σ(β) ≪ σ(α).
Proposition 8. The following are instances of GP7:
P13. Equation 2 (Baroni et al. 2015), (Rago et al. 2016, Prop.
12) - For any α,β ∈ X , such that τ(α) = τ(β) and R+(α) =
R+(β), if R−(α) ⊊ R−(β) then σ(α) ≥ σ(β).
Proposition 9. GP7 implies the following:
P14. Void Precedence (Amgoud and Ben-Naim 2013; Bon-
zon et al. 2016), (Amgoud et al. 2016, Th. 5) - For any
α,β ∈X , if R−(α)=∅ and R−(β)≠∅ then σ(α)>σ(β).
P15. Weak Void Precedence (Thimm and Kern-Isberner
2014) - For any α,β ∈X , if R−(α)=∅ then σ(α)≥σ(β).
P16. Triggering (Amgoud and Ben-Naim 2016a) - for
<×=<� - For any α,β ∈ X , if σ(α) > �, ∀γ ∈ R−(α),
σ(γ) = �, and R−(α) = R−(β)/{δ} for some δ ∈ R−(β)
with σ(δ) > � then σ(β) < σ(α).
P17. Counting (Amgoud et al. 2017)7 - for <×=<� - For any
α,β ∈ X , if τ(α) = τ(β), σ(α) > � and R−(α) = R−(β)/{γ}
for some γ ∈ R−(β) with σ(γ) > � then σ(β) < σ(α).
Basic Idea 8. A strictly larger set of supporters determines
a higher strength.

GP8. If R−∗(α) = R−∗(β) and R+∗(α) ⊊ R+∗(β) and τ(α) =
τ(β) then σ(α) ≪ σ(β).
Proposition 10. The following are instances of GP8:
P18. Equation 3 (Baroni et al. 2015), (Rago et al. 2016, Prop.
13) - For any α,β ∈ X such that τ(α) = τ(β) and R−(α) =
R−(β), if R+(α)⊂R+(β) then σ(α)≤σ(β).
Proposition 11. GP8 implies the following:
P19. Counting (Amgoud and Ben-Naim 2016b) - for <×=<⊺
- For any α,β ∈X , if τ(α)=τ(β), R+(α) = R+(β)/{γ} for
some γ ∈R+(β) with σ(γ)>� and σ(α)<⊺, then σ(β)>σ(α).
Basic Idea 9. A higher base score gives a higher strength.

GP9. If R−∗(α) = R−∗(β), R+∗(α) = R+∗(β) and τ(α) < τ(β)
then σ(α) ≪ σ(β).
Proposition 12. GP9 implies the following:
P20. Proportionality (Amgoud et al. 2017) - for <×=<� - For
any α,β ∈ X , if R−(α) = R−(β), τ(β) > τ(α) and either
σ(α) > � or σ(β) > �, then σ(β) > σ(α).
Basic Idea 10. A weaker set of attackers determines a
higher strength.

GP10. If R−(α) <∗ R−(β), R+∗(α) = R+∗(β) and τ(α) =
τ(β) then σ(β) ≪ σ(α).
Proposition 13. The following are instances of GP10:
P21. Strict Counter-Transitivity (Amgoud and Ben-Naim
2013; Bonzon et al. 2016), (Amgoud et al. 2016, Th. 8) -
For any α,β ∈ X , if R−(α) <σ� R−(β), then σ(α) > σ(β).

7We ignore here the more restrictive form of Counting given
earlier in (Amgoud and Ben-Naim 2016a).
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Proposition 14. GP10 implies the following for <×=<�:
P22. Boundedness (Amgoud and Ben-Naim 2016a) - For
any α,β ∈ X with γ ∈ R−(α) and δ ∈ R−(β) where
σ(δ) > σ(γ), if R−(β)/{δ} = R−(α)/{γ} and σ(α) = �
then σ(β) = �.
P23. Reinforcement (Amgoud et al. 2017)8 - For any α,β ∈
X , with τ(α) = τ(β), either σ(α) > � or σ(β) > �, γ ∈
R−(α) and δ ∈ R−(β) where σ(δ) > σ(γ), if R−(β)/{δ} =
R−(α)/{γ} then σ(β) < σ(α).
Basic Idea 11. A stronger set of supporters determines a
higher strength.
GP11. If R−∗(α) = R−∗(β), R+(α) >∗ R+(β) and τ(α) =
τ(β) then σ(β) ≪ σ(α).
Proposition 15. GP11 implies the following, for <×=<⊺:
P24. Boundedness (Amgoud and Ben-Naim 2016b) - For
any α,β ∈ X with γ ∈ R+(α), δ ∈ R+(β) and σ(δ)>σ(γ),
if τ(α) = τ(β), R+(β)/{δ} = R+(α)/{γ} and σ(α) = ⊺ then
σ(β)=⊺.
P25. Reinforcement (Amgoud and Ben-Naim 2016b) - For
any α,β ∈ X , with γ ∈ R+(α) and δ ∈ R+(β) where
σ(δ) > σ(γ) > �, if τ(α) = τ(β), R+(β)/{δ} = R+(α)/{γ}
and σ(α) < ⊺ then σ(β) > σ(α).

Other Ps are implied by combinations of GPs, as illus-
trated by the following theorem:
Theorem 1.

• GP6 and GP7 with ∗ = σ� and ≪=≤ imply:
P26. Monotony (Amgoud and Ben-Naim 2016a), (Matt
and Toni 2008, Prop. 6) - For any α,β ∈ X , if τ(α) = τ(β)
and R−(α) ⊆ R−(β) then σ(α) ≥ σ(β).

• GP6 and GP8 with ∗ = σ� and ≪=≤ imply:
P27. Monotony (Amgoud and Ben-Naim 2016b) - For any
α,β ∈X , if τ(α)=τ(β) and R+(α)⊆R+(β) then σ(α)≤σ(β).

• GP6 and GP11 with ∗ = σ� and ≪=≤ imply:
P28. Theorem 7 in (Amgoud et al. 2016) - For any α,β ∈
X , if τ(α) = τ(β) and there exists an injective mapping f
from R−(α) to R−(β) such that ∀γ ∈ R−(α), σ(f(γ)) ≥
σ(γ) then σ(β) ≤ σ(α).
P29. Counter-Transitivity (Amgoud and Ben-Naim 2013;
Bonzon et al. 2016) - For any α,β ∈ X , if τ(α) = τ(β)
and R−(α) ≤σ� R−(β), then σ(α)≥σ(β).

4 (Strict) Balance/Monotonicity Principles

GPs capitalise on similarities across argumentation frame-
works and instantiation of parameters to synthesise vari-
ous Ps, while pointing to several new ones, but are still
numerous. In this section we define more synthetic princi-
ples of (strict) balance (Section 4.1) and monotonicity (Sec-
tion 4.2), in terms of the same parameters as for GPs, and
show that they imply all the GPs (by showing that if the
implied GPs’ premises hold, then so do the implying princi-
ple’s, and that the principle’s conclusions imply the conclu-
sions of the GPs). As a by-product, any Ps equivalent to or
implied by the GPs, as shown in Section 3, are also implied
by these principles.

8We ignore here the more restrictive form of Reinforcement
given earlier in (Amgoud and Ben-Naim 2016a).

4.1 (Strict) Balance

The intuition behind our first principle is that a difference
between strength and base score of an argument must corre-
spond to some imbalance between the strengths of its attack-
ers and supporters, e.g. from a dialectical viewpoint, because
the reasons against an argument are stronger than the reasons
for it. Thus, an argument with attackers ∗-strength equiva-
lent to its supporters has a strength equal to its base score,
while an argument with attackers ∗-stronger than (∗-weaker
than) its supporters has a strength not greater (not less, resp.)
than its base score and cannot attain the top (bottom, resp.)
value. (Strict) Balance, admitting multiple instances for dif-
ferent choices of ∗ and ≪, expresses this:

Principle 1. A strength function σ is:
● balanced iff for any α ∈ X :
1. If R−(α) =∗ R+(α) then σ(α) = τ(α).
2. If R−(α) >∗ R+(α) then σ(α) ≪ τ(α).
3. If R−(α) <∗ R+(α) then σ(α) ≫ τ(α).
● strictly balanced iff σ is balanced and for any α ∈ X :
4. If σ(α)<τ(α) then R−(α) >∗ R+(α).
5. If σ(α)>τ(α) then R−(α) <∗ R+(α).

For illustration, consider the QBAF given in Figure 1 with
τ(a) = τ(b), σ(c)=� and σ(d)>�. Let σ be balanced and
≪=<. If ∗ = σ�, by Definition 3, R−(a) >∗ R+(a) and so,
by Point 2 of Principle 1, σ(a)≪ τ(a), meaning σ(a) < τ(a).
However, if ∗ = σ /�, by Definition 3, R−(a) =∗ R+(a) and
so, by Point 1 of Principle 1, σ(a) = τ(a). Let instead ≪=<⊺.
Then, for both choices of ∗, R−(b) <∗ R+(b) and so, by
Point 3 of Principle 1, σ(b) ≫ τ(b), meaning σ(b) > τ(b)
or b’s strength is saturated, i.e. σ(b) = τ(b) = ⊺.

Proposition 16. If σ is balanced for some ∗,≪ then it satis-
fies GP1 to GP3 for the same ∗,≪; if σ is strictly balanced
for some ∗,≪ then it satisfies GP1 to GP5 for the same ∗,≪.

Note that the reverse of Proposition 16 does not hold. For
example, if a is an argument in a QBAF such that R−∗(a) =
R+∗(a) ≠ ∅ but σ(a) ≠ τ(a) then GP1–GP5 may hold while σ
is not (strictly) balanced.

4.2 (Strict) Monotonicity

Our second principle requires that the strength of an argu-
ment depends monotonically on its base score and on the
strengths of its attackers and supporters. From a dialectical
viewpoint, the strength of an argument depends exclusively
on its intrinsic strength, the reasons for it and the reasons
against it, and any strengthening or weakening of these will
strength or weaken the argument. To define this principle
formally, we first define the notion of shaping triple of an
argument, as follows.

Definition 5. For any α ∈ X , the shaping triple of α is
(τ(α),R+(α),R−(α)), denoted ST (α).

We define partial orders over shaping triples, parametric
w.r.t. ∗, based on the ordering of their elements. Intuitively,
the orders rank the ability of the triples to boost arguments.

Definition 6. Given α,β ∈ X , ST (β) is said to be:
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• as ∗-boosting as ST (α), denoted ST (α) ≃∗ ST (β), iff
τ(α)=τ(β), R+(α)=∗R+(β), and R−(β)=∗R−(α);

• at least as ∗-boosting as ST (α), denoted
ST (α)⪯∗ST (β), iff τ(α) ≤ τ(β), R+(α) ≤∗ R+(β), and
R−(β) ≤∗ R−(α).

• strictly more ∗-boosting than ST (α), de-
noted ST (α)≺∗ST (β), iff ST (α)⪯∗ST (β) and
ST (β)⪯̸∗ST (α).
In the remainder of Section 4, whenever we refer to α,β ∈

X , we assume that, unless stated otherwise, τ(α) = τ(β),
R+(α)=∗R+(β) and R−(β)=∗R−(α).

(Strict) Monotonicity is defined by comparing shaping
triples using the orders in Definition 6. Both are parametric
w.r.t. ∗, and strict monotonicity is also parametric w.r.t. ≪.
Principle 2. A strength function σ is:
• monotonic iff for any α,β ∈X , if ST (α) ≃∗ ST (β) then
σ(α)=σ(β) and if ST (α)⪯∗ST (β) then σ(α)≤σ(β);

• strictly monotonic iff σ is monotonic and for any α,β ∈X ,
if ST (α)≺∗ST (β) then σ(α)≪σ(β).
For illustration, consider the QBAF in Figure 1 with

τ(a)=τ(b) and σ(d) = �. For a strictly monotonic σ:
• if ∗=σ�, by Definitions 3 and 6, ST (a)≺∗ST (b). Then,

by Principle 2, σ(a) ≪ σ(b). For ≪=<, σ(a) ≪ σ(b)
amounts to σ(a) < σ(b), while for ≪=<�, it amounts to
σ(a) < σ(b) unless σ(a)=σ(b)=�;

• if ∗ = σ/�, by Definitions 3 and 6, ST (a) ≃∗ ST (b) and
then, by Principle 2, σ(a) = σ(b).
Note that for ≪=<� (≪=<⊺), if a shaping triple already

gives rise to a � (⊺, resp.) strength, a less (more, resp.) boost-
ing triple cannot produce a strictly lesser (greater, resp.)
strength. For ≪=<, strict monotonicity and the attainment
of extreme values are somehow incompatible.
Proposition 17. If σ is monotonic for some ∗,≪ then it sat-
isfies GP6 for the same ∗,≪; if σ is strictly monotonic for
some ∗,≪ then it satisfies GP6 to GP11 for the same ∗,≪.

Note that the reverse of Proposition 17 does not hold. For
example, if a, b are arguments in a QBAF such that R−∗(b) <
R−∗(a), R+∗(b) > R−∗(a) and τ(b) > τ(a) but σ(a) > σ(b) then
GP6–GP11 may hold while σ is not (strictly) monotonic.

5 Principles vs. Existing Approaches

In this section we show that suitable instances (i.e. types of
QBAF, I, * and ≪) of our principles are satisfied by several
gradual evaluation methods considered in the literature for
various kinds of argumentation framework. Thus, by virtue
of Propositions 16, 17, for each approach we synthetically
prove that it satisfies the implied GPs and any literature and
other property they are equivalent to or that the GPs imply.
This shows that the level of generalisation afforded by the
principles is well-chosen, by showing that the principles, for
specific choices of parameters, are satisfied by existing con-
crete gradual semantics for various instances of QBAFs.

Note that if a principle is satisfied for ≪=< then it is also
satisfied for every possible ≪ since < is the strongest possi-
ble instance of ≪.

5.1 Besnard & Hunter Categorizer

(Besnard and Hunter 2001) introduce the notion of h-
categoriser, which basically is a function providing a quan-
titative evaluation of argument strength for tree-shaped ab-
stract argumentation frameworks (aQBAFfs). In our nota-
tion, the h-categoriser is defined as follows, for α ∈ X :

σ(α) = 1

1 +∑β∈R−(α) σ(β)
. (1)

It can be noted that 0 < σ(α) ≤ 1, thus in this approach I =
(0,1] with ⊺ = 1 and no bottom value � in I. Consequently,
in this approach there is no difference between σ� and σ/�.

Proposition 18. The h-categoriser is strictly balanced and
strictly monotonic for any choice of ∗ and ≪ (i.e. for ≪=<).

This implies that the h-categoriser satisfies, in addition to
GP1–GP11 (by Propositions 16 and 17), also the implied Ps
(e.g. P1) and the “missing” properties (e.g. P1σ/�).9

5.2 Leite & Martins Social Model

(Leite and Martins 2011) introduce a generic gradual evalu-
ation method for social abstract argumentation frameworks
(aQBAFs). The method is defined in terms of well-behaved
social abstract argumentation semantic framework, which is
a 5-tuple S = (L, τ,⋏,⋎,¬) where: L is a totally ordered set
including ⊺ and �; τ is a vote aggregation function which as-
signs a base score in L to each argument α based on the posi-
tive and negative votes received by α in the considered social
context; the operator ⋏ ∶ L × L → L is continuous, commu-
tative, associative, monotonic w.r.t. both arguments, and ⊺ is
its identity element; the operator ⋎ ∶ L×L→ L is continuous,
commutative, associative, monotonic w.r.t. both arguments,
and � is its identity element; the operator ¬ ∶ L → L is anti-
monotonic, continuous, with ¬⊺ = �, ¬� = ⊺, and ¬¬x = x.
Then σ ∶ X → L is a S −model iff for α ∈ X :

σ(α) = τ(α) ⋏ ¬ ⋎ {σ(β) ∣ β ∈ R−(α)} (2)

It can be noted that � is the identity element of ⋎ and thus
this approach fits the option ∗ = σ/�. In (Leite and Martins
2011) there is no remark about whether the monotonicity
properties of ⋏, ⋎, and ¬ are to be interpreted as strict. By
interpreting them as strict then a well-behaved S −model
is balanced10. Monotonicity is part of the definition of S −
model, and is strict if the monotonicity properties of ⋏, ⋎,
and ¬ are strict. Formally:

Proposition 19. A well behaved S −model is monotonic
with ∗ = σ/�. If the monotonicity properties of ⋏, ⋎, and ¬
are strict, then a well behaved S −model is strictly balanced
and strictly monotonic with ∗ = σ/� and for any choice of ≪
(i.e. for ≪=<).

9We will not repeat this same remark for other formalisms.
10This interpretation is natural as non-strict monotonicity might

lead to flat evaluation methods annihilating all differences. The in-
stance in (Leite and Martins 2011) satisfies strict monotonicity.
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5.3 Amgoud & Ben-Naim Support Semantics

(Amgoud and Ben-Naim 2016b) introduce three gradual se-
mantics for support argumentation frameworks (sQBAFs).

According to the top-based semantics the strength of ar-
guments ranges in I=[0,1] and is related to their base score
and to the strength of their strongest supporter (see Theo-
rem 3 of (Amgoud and Ben-Naim 2016b)) according to the
following equation, for α ∈ X :

σ(α) = τ(α) + (1 − τ(α)) max
β∈R+(α)

σ(β) (3)

where maxβ∈R+(α) = 0 if R+(α) = ∅. Accordingly, support-
ers with � strength have no effect, which means that this
approach fits the option ∗ = σ/�.

Proposition 20. The top-based semantics is strictly bal-
anced and monotonic with ∗ = σ/� and ≪=<⊺.

The top-based semantics is not strictly monotonic since
clearly there can be cases where ST (α) <σ/� ST (β) but
τ(α) = τ(β) and maxγ∈R+(α) σ(γ) =maxδ∈R+(β) σ(δ).

The reward-based semantics is based on the notion of
founded argument: α ∈ X is founded iff there is a finite se-
quence α0 . . . αn, for n ≥ 0, such that τ(α0) > 0, αn = α,
and for every i = 0, . . . n − 1: αi ∈ R+(αi−1). Then, the
strength of arguments ranges in I=[0,1] and is related to
their base score and to the strength of their supporters (see
Theorem 6 of (Amgoud and Ben-Naim 2016b)) according
to the following equation, for α ∈ X :

σ(α) = τ(α) + (1 − τ(α))
⎛
⎝

n(α)−1

∑
j=1

1

2j
+ m(α)
2n(α)

⎞
⎠

(4)

where n(α) = ∣R+F (α)∣ and m(α) =
∑β∈R+

F
(α) σ(β)

n(α)
and, by

convention, ∑n(α)−1
j=1

1
2j
+ m(α)

2n(α)
= 0 if R+F (α) = ∅.

Proposition 4 of (Amgoud and Ben-Naim 2016b) proves
that if an argument α is founded then σ(α) > 0. It is also
immediate to see that if σ(α) > 0 then α is founded (from
σ(α) > 0 and Equation (4) we get that either τ(α) > 0 or
R+F (α) ≠ ∅). It follows that supporters with zero strength
have no effect, and thus this approach fits the option ∗ = σ/�.

Proposition 21. The reward-based semantics is strictly bal-
anced and strictly monotonic with ∗ = σ/� and ≪=<⊺.

Finally, according to the aggregation-based semantics,
the strength of arguments ranges in I=[0,1] and is related to
their base score and to the strength of their supporters (see
Theorem 9 of (Amgoud and Ben-Naim 2016b)) according
to the following equation, for α ∈ X :

σ(α) = τ(α) + (1 − τ(α))
∑β∈R+(α) σ(β)

1 +∑β∈R+(α) σ(β)
(5)

It follows that supporters with zero strength have no effect
(they do not affect the sum ∑β∈R+(α) σ(β)), and thus this
approach fits the option ∗ = σ/�.

Proposition 22. The aggregation-based semantics is strictly
balanced and strictly monotonic with ∗ = σ/� and ≪=<⊺.

5.4 Local Valuation in Bipolar Frameworks

(Amgoud et al. 2008) introduces a generic local grad-
ual evaluation scheme for arguments in bipolar argumenta-
tion frameworks (QBAFfs): we analyse here two instances
thereof. In both cases arguments’ strengths range over the
interval I=[−1,1]. No explicit notion of base score is given
in (Amgoud et al. 2008): for our purposes here, we assume
that τ(α) = 0 for each α ∈ X . The first instance, which we
call LocMax, is defined as follows, for α ∈ X :

σ(α) =
maxβ∈R+(α) σ(β) −maxγ∈R−(α) σ(γ)

2
(6)

Under the convention that when applied to the empty set the
max operator returns � = −1, we get that supporters and at-
tackers with � strength have no effect, and thus this approach
fits the option ∗ = σ/�. To satisfy balance it also requires the
choice ≪=<0, where m <0 n iff m < n or m = n = 0.

Proposition 23. LocMax is balanced and monotonic with
∗ = σ/� and ≪=<0.

LocMax is not strictly balanced since, for example, σ(α) <
τ(α) can occur when the maximum strength of the attackers
is greater than that of the supporters but the attackers and
supporters are incomparable for any choice of ∗.

Instance two, called LocSum, is given, for α∈X , by:

σ(α) = 1

1 + h(R−(α)) −
1

1 + h(R+(α)) (7)

where, for S ⊆ X , h(S) ≜ ∑β∈S
σ(β)+1

2
. Under the conven-

tion that when applied to the empty set the sum returns 0, we
get that supporters and attackers with a strength of −1 = �
have no effect, and thus this approach fits the option ∗ = σ/�.

Proposition 24. LocSum is balanced and strictly monotonic
with ∗ = σ/� and for any choice of ≪ (i.e. with ≪=<).

LocSum is not strictly balanced since, for example, σ(α) <
0 can occur when h(R−(α)) > h(R+(α)) but the attackers
and supporters are incomparable for any choice of ∗.

5.5 Semantics for Weighted Argumentation

(Amgoud et al. 2017) gives three semantics for Weighted
Argumentation Frameworks (aQBAFs), analysed below.

The weighted max-based semantics is such that (Theo-
rems 4 and 5 of (Amgoud et al. 2017)) for α ∈ X :

σ(α) = τ(α)
1 +maxβ∈R−(α)σ(β)

. (8)

Note that attackers with 0 strength have no actual effect
in Eq. 8, and thus this approach fits the option ∗ = σ/�.

Proposition 25. The weighted max-based semantics is
strictly balanced and monotonic with ∗ = σ /� and for any
choice of ≪ (i.e. with ≪=<).

The weighted max-based semantics is not strictly mono-
tonic as clearly there can be cases where ST (α) <σ/� ST (β)
but τ(α)=τ(β) and maxγ∈R+(α) σ(γ)=maxδ∈R+(β) σ(δ).
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The weighted card-based semantics is such that (Theo-
rems 6 and 7 of (Amgoud et al. 2017)) for α ∈ X :

σ(α) = τ(α)
1 + ∣R−(α)∣ + ∑β∈R−(α) σ(β)

∣R−(α)∣

, (9)

where
∑β∈R−(α) σ(β)

∣R−(α)∣ = 0 if ∣R−(α)∣ = 0.

Note that attackers with 0 strength play a role in (9) (e.g.
through the term ∣R−(α)∣), and thus for this approach ∗ = σ�.
Proposition 26. The weighted card-based sem. is strictly
balanced and strictly monotonic for ∗ = σ� and any ≪.

The weighted h-categorizer semantics generalises the h-
categorizer given in Section 5.1 so that, for α ∈ X :

σ(α) = τ(α)
1 +∑β∈R−(α) σ(β)

. (10)

Note that attackers with 0 strength have no actual effect in
Eq. 10, and thus this approach fits the option ∗ = σ/�.
Proposition 27. The weighted h-categoriser is strictly bal-
anced and strictly monotonic with ∗ = σ/� and for any ≪.

6 Conclusion

This paper provides a twofold answer to the question stated
in the title. On the one hand, the analysis in Section 3
shows that considering systematically all possible instances
of some common, intuitive patterns leads to the identifica-
tion of a large number of distinct properties, only partially
covered in the literature to date. We have explicitly for-
malised four such novel properties and left others implicit.
On the other hand, the results in Section 4 show that con-
sidering such a wide spectrum of properties explicitly may
not be necessary since the principles of balance and mono-
tonicity are sufficient to imply the satisfaction of many other
properties. The use of these principles can hence greatly
simplify the design and analysis of actual argumentation
formalisms. The results in Section 5 confirm their practical
value, by showing that a variety of gradual methods, con-
ceived in different contexts, all satisfy suitable instances of
both balance and monotonicity. It is our principles’ simplic-
ity and power, confirmed by these results, which make this
work an advancement on previous literature. Other group-
ings and principles may also be possible: identifying them
would be a natural continuation of our work. Given the foun-
dational nature of this work, a variety of other future re-
search directions can be considered. Among the many ones,
we mention a study about which combinations of the param-
eters ∗ and ≪ are more appropriate with respect to the needs
of different argumentative contexts (e.g. epistemic vs. prac-
tical reasoning, monological or dialogical argumentation),
a comparison with the properties of traditional non-gradual
semantics, and the study of possible relationships with other
properties considered in the literature and not included in the
analysis of this paper, such as cardinality precedence, qual-
ity precedence or compensation (Amgoud et al. 2017).
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