The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Dependence in Propositional Logic: Formula-Formula Dependence and
Formula Forgetting — Application to Belief Update and Conservative Extension

Liangda Fang,! Hai Wan,?* Xianqgiao Liu,’ Biqing Fang,” Zhaorong Lai'
1College of Information Science and Technology, Jinan University, Guangzhou 510632, China
{fangld,laizhr} @jnu.edu.cn
2School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
wanhai @mail.sysu.edu.cn, {liuxq35,fangbq3} @mail2.sysu.edu.cn

Abstract

Dependence is an important concept for many tasks in
artificial intelligence. A task can be executed more efficiently
by discarding something independent from the task. In this
paper, we propose two novel notions of dependence in propo-
sitional logic: formula-formula dependence and formula
forgetting. The first is a relation between formulas capturing
whether a formula depends on another one, while the second
is an operation that returns the strongest consequence
independent of a formula. We also apply these two notions
in two well-known issues: belief update and conservative
extension. Firstly, we define a new update operator based
on formula-formula dependence. Furthermore, we reduce
conservative extension to formula forgetting.

Introduction

Dependence' is an important concept in artificial intel-
ligence (AI). Before performing an intelligent task (e.g.,
reasoning and planning), it is intuitive to first determine
what are irrelevant, and discard them for better efficiency.
For example, when a student takes an examination on
literature, she does not need to keep the knowledge of
mathematics in mind. This process of discarding irrelevant
information involves two issues:

1. What is the irrelevant information in the background
knowledge base (KB) for the task?

2. How to discard it in the KB?

In the context of propositional logic, various authors
(Boutilier 1994; Lakemeyer 1997) studied the first issue by
systematically analyzing a dependence relation between a
formula and a variable, namely formula-variable depen-
dence (FV-dependence). Loosely speaking, a formula ¢
depends on a variable v if v always occur in every formula
equivalent to ¢. Further, Lang, Liberatore, and Marquis
(2003) pointed out that, in some applications, we are con-
cerned about not only which variable the formula depends
on but also the polarity of the variable. To distinguish the
case where a formula conveys some information about

*Corresponding author
Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'In this paper, we do not differentiate between “dependence”
and “relevance”, and use these terms interchangeably.

1835

a literal but no information about its complement, they
proposed a more fine-grained notion, namely formula-
literal dependence (FL-dependence). For the second issue,
variable forgetting is highly related to FV-dependence. It
yields the strongest consequence independent of a variable.
The intuitive meaning of literal forgetting is similar.

As mentioned in (Darwiche 1997), dependence is not only
a philosophical notion but also a pragmatic notion. Over the
past years, this notion has been widely used in many fields
of Al, including automated reasoning (Levy, Fikes, and Sa-
giv 1997; Kautz, McAllester, and Selman 1997), knowl-
edge compilation (Bryant 1992; Minato 1993; Darwiche
1997), reasoning about actions (Lin and Reiter 1997), and
especially belief change (Zhang and Zhou 2009; Oveisi et
al. 2017). Belief update, a type of belief change, studies
how an agent modifies her belief base ¢ in the presence of
new information ¢ in a dynamically changing environment.
Herzig, Lang, and Marquis (2013) suggested that belief up-
date should be based on the notion of dependence, and pro-
posed the dependence-based update scheme that consists of
first removing any belief on which the negation of the new
information depends, and then adding the new information.

After investigating FL-dependence and literal forgetting,
a natural next step is to study two more general notions:
formula-formula dependence (FF-dependence) and formula
forgetting. This paper is intended to fill this gap. The
main contributions are as follows. First of all, we give a
formal definition of FF-dependence, which is a dependence
relation between formulas. We also provide a model-based
characterization result and analyze some properties for
FF-dependence. In addition, based on FF-dependence, we
introduce formula forgetting as generalizations of literal
forgetting. We give various equivalent formulations of this
notion, including an axiomatic definition by four postulates,
a syntactic definition via conditioning, and a model-
theoretic definition. Finally, we apply these two notions in
two well-known issues of Al: belief update and conservative
extension. Following the dependence-based update scheme,
we define an update operator o by first forgetting the nega-
tion of the new information in the initial belief base, and then
conjoining the resulting belief base with the new informa-
tion. We characterize o by a set of postulates and assess it
against the well-known KM postulates. We compare it with
other operators from three perspectives including informa-

tion preservation, computational complexity and empirical
results. The comparison shows that of is a suitable alter-
native to belief update. We finally give the correspondence
between conservative extension and formula forgetting. It
turns out that the former can be reduced to the latter.

Preliminaries

In this section, we first recall some basic concepts of
propositional logic, and then present the notions of FL-
dependence and literal forgetting. Most contents of the
first two subsections originate from (Lang, Liberatore, and
Marquis 2003). Finally, we review some background work
regarding belief update.

Propositional logic

We assume the propositional language £ is built from a
finite set P of variables, the connectives —, V, A and two
logical constants T (true) and L (false). We use ¢, ¢, n and
¢ to range over formulas. The notation Var(¢) denotes the
set of variables appearing in ¢. A formula is trivial if it is
equivalent to T or L. A literal is a variable (positive literal)
or a negated one (negative literal). For a literal [, [denotes
the complementary literal of [. A term is a conjunction of
literals. A disjunctive normal form (DNF) is a disjunction of
terms. We say that a term ¢ is in a DNF formula ¢, written
t € ¢, if t is a disjunct of ¢. For a subset X of P, a minterm
over X is a term where it uses only X and each variable of
X appears exactly once. For simplify, we omit X if X = P.
We use 2 x to denote the set of minterms over X.

A formula is in full DNF, if it is a disjunction of minterms.
A formula is in negation normal form (NNF), if — is only
applied to variables. It is well-known that every formula can
be equivalently transformed into full DNF and NNF. A full
DNF formula of ¢ is the disjunction of all minterms entail-
ing ¢. Throughout this paper, we take all variables of P into
consideration, and assume that there is a unique full DNF
formula equivalent to ¢. We call it the full DNF formula
of ¢. An NNF formula of ¢ can be acquired by pushing
the negation inwards via De Morgan’s law and eliminating
double negation. For convenience, we call the formula
generated by the above process the NNF formula of ¢.

Let ¢ be an NNF formula. The variable x in ¢, where x
is not in the scope of —, is called an occurrence of a positive
literal in ¢. The symbols —x in ¢ are called an occurrence
of a negative literal -z in ¢. Note that any occurrence of the
negative literal -2 cannot be considered as an occurrence
of its complement x. A simple example is that the formula
— contains no occurrence of .

An interpretation is a subset of P. A model of ¢ is an
interpretation satisfying ¢, and [¢] denotes the set of models
of ¢. A formula ¢ is satisfiable, if there is a model of ¢. A
satisfiable term is a term satisfied by at least one interpreta-
tion. In other words, it does not contain positive and negative
literals of the same variable simultaneously. The following
is an operation on an interpretation w.r.t. a satisfiable term.

Definition 1. Let w be an interpretation and ¢ a satisfiable
term. Forcing w on ¢, written w_,+, is defined as (w'\ Var(¢))U
{z |z € Pandt |= z}.

1836

Both w and w_,; agree on the valuations of all variables
except those of Var(t). The latter is the model of ¢ that is
the closest to w. For instance, let w = {a,b} and t = a A ¢,
then w_,; = {b, c}.

Formula-literal dependence and literal forgetting

The main intuition FL-dependence aims to capture is
that the literal [is an indispensable part of the formula
¢: roughly speaking, every NNF formula equivalent to ¢
contains the occurrence of /.

Definition 2. Let ¢ be a formula and [a literal. We say ¢ is
Lit-dependent on [, written | | ¢, if every NNF formula
equivalent to ¢ contains the occurrence of [. Otherwise, ¢ is
Lit-independent from [, written [+4 ¢.

Example 1. Let ¢ = —(a A—b) A (bV —b), and) = —a V b.
It is obvious that v is an NNF formula equivalent to ¢, and
does not contain —b. Hence neither ¢ nor ¥ depends on —b.

Although Definition 2 is a syntactic formulation of
FL-dependence, it is syntax-independent.

Proposition 1. Let ¢ and ¢’ be formulas where ¢ = ¢', and
laliteral. Then, | — ¢ iff | — ¢'.

The notion of FV-dependence can be easily defined from
that of FL-dependence.

Definition 3. Let ¢ be a formula and « a variable. We say
¢ is Var-dependent on x, written x +»y ¢, if x —| ¢ or
T =L Q.

We also say x is a dependent variable of ¢, if x v ¢.
We use DepLit(¢) (resp. DepVar(¢)) to denote the set of
dependent literals (resp. variables) of ¢.

We hereafter present the notion of literal forgetting. We
first introduce term conditioning (Darwiche 1998) that is an
important syntactic operation for literal forgetting.

Definition 4. Let ¢ be a formula and ¢ a satisfiable term. The
conditioning of ¢ on t, written ¢|4, is defined by substituting
each variable z of ¢ by T (resp. L) if x (resp. Z) is a positive
(resp. negative) literal of ¢.

For instance, conditioning (a Ab) V (b A c) on a A b gives
aformula (L A =T) V (T A ¢), which is equivalent to c.

According to the Shannon expansion (Shannon 1938),
any formula ¢ can be decomposed into (I A ¢[;) V (I A 7).
From the syntactic point of view, forgetting [just removes
the occurrence of [from the expansion. The notion of literal
forgetting can be defined in a syntactic way via conditioning.

Definition 5. Let ¢ be a formula and [a literal. The result of
forgetting [in ¢, written 3, [.¢, is defined as ¢|; V (I A ¢[;).

For example, 3. a.[(aAb)V(anc)] = [(TAD)V (=T Ac)]V
{aN[(LAD)V (=LA} =bV (anc).

One of key propositions of literal forgetting is as follows:
Forgetting a literal [generates the strongest consequence
that does not depend on [.

Proposition 2. Let ¢ be a formula and | a literal. . 1.¢ is
the strongest consequence of ¢ that is Lit-independent of l.

Forgetting a single literal can be extended to a variable, a
set of literals or variables. Forgetting a variable x is defined

by forgetting the positive literal = and the negative one z
sequentially. As the order in which literals of L are handled
does not matter, forgetting a set L of literals can be sequen-
tially computed by forgetting a single literal [of L one by
one. The operation of forgetting a set of variables is similar.

Definition 6. Let L be a set of literals, X a set of variables,
le Landz € X.

° Eivl‘(b = E||_§3(E||_Jf¢),
e . L.¢g=3L\{l}.(3l.0);

Note that if L = () (resp. X = (), welet 3, L.¢ = ¢ (resp.
JvX.0 = 9).

Finally, we establish the link between term conditioning
and variable forgetting. The conditioning of ¢ on ¢ can be
computed via forgetting all dependent variables of ¢ in ¢ A t.

Proposition 3. Let ¢ be a formula and t a satisfiable term.
Then, ¢|; = IyDepVar(t).(¢ A t).

Belief update

Belief update focuses on the evolution of the belief base in
line with the new information, reflecting the modification
of the world. Based on the principle of minimal change,
Katsuno and Mendelzon (1991) proposed the KM postulates
to capture rational belief update operators, which map the
initial belief base ¢ and the new information v to a new
belief base ¢ ¢ 1. The postulates are as follows:

Ul g0 =9

U2 If ¢ = 9, then ¢p o p = ¢

U3 If ¢ and 1) are satisfiable, then ¢ © 1 is also satisfiable;
U4 If g = ¢ and) =)/, then p o p = ¢/ o ';

US (pod) An k= do(wAn):

U6 Ifpoy =o' and p o)’ =1, then p o = ¢ o t)/;
U7 If ¢ is aminterm, then (¢po)) A (poy)’) = do (Y V'),
U8 (Vv o)o=(po) V(¢ o).

According to the postulate (U8), the new belief base ¢ o)
collects the updates of each model of ¢ by). More formally,

[6 0] = Upegop(w o ¥)-

The Possible Models Approach (PMA) and Forbus
operators, introduced by Winslett (1988) and Forbus (1989)
respectively, are two famous update operators. Both of
them are based on the principle of minimal change, thereby
satisfying all of the KM postulates. The PMA operator oppa
is based on minimization of the distance between interpre-
tations, while the Forbus operator ¢f,, is defined in terms of
the cardinality of distances. The definitions of updating an
interpretation w by ¥ of oppma and of,, are as follows:

wopma ¥ ={v € [Y] |V € [¥].(wo V) C (woO N}
worer) = {v € [¥] | Vi1 € []lw & v < w & ul}-
where w © v is the symmetric difference between w and v

and |w © v| is the cardinality of w & v.
On the other hand, Herzig, Lang, and Marquis (2013)
suggested that belief update should be based on the notion

1837

of dependence, and proposed the dependence-based update
scheme, consisting of two steps: (1) forget every piece of
¢ which — depends on; (2) expand the resulting belief
base with 1. This scheme has some resemblance to the
so-called Levi Identity (Levi 1977) which defines an update
operator from a given erasure operator. Based on the notion
of FV-dependence, Herzig and Rifi (1998) proposed an
operator ¢y which first forgets in ¢ all variables on which
—) depends”. More precisely,

¢ ov ¢ = (SvDepVar(—1)).¢) A 9.

Herzig, Lang, and Marquis (2013) criticized the update
operator oy for forgetting too much in the initial belief
base, and proposed an update operator ¢, by forgetting all
dependent literals of —¢ rather than dependent variables.
The definition of ¢ is as follows:

¢ oL ¥ = (FLDepLit(~)).0) A ¢

Besides the above work about dependence-based belief
update, Parikh (1999) proposed a postulate (P) of relevance
for belief change. The following is a stronger version
introduced by Peppas et al. (2015).

SP If Var(¢) N Var(¢’) = 0 and Var(y)) C Var(¢'), then
(PAd) o =N (¢ o).
Postulate (SP) says that if a belief base can be split into
two disjoint compartments, then only the compartment
affected by the new information will be modified.

Formula-formula dependence

In this section, we introduce the notion of FF-dependence.
We first extend the notion of occurrence of literals to
that of arbitrary formulas. We then define the notion of
FF-dependence in terms of occurrence. We further give
a model-theoretical characterization of FF-dependence.
Finally, some properties of FF-dependence are given.

Recall that the definition of FL-dependence (cf. Defini-
tion 2) says that a formula ¢ is Lit-dependent on a literal [if
every NNF formula equivalent to ¢ contains the occurrence
of [. It is hard to extend this definition to FF-dependence. We
therefore resort to another equivalent definition: ¢ does not
depend on [if substituting every occurrence of [in the NNF
formula of ¢ with T leads to a logically different formula.

This definition cannot be directly transferred to the notion
of FF-dependence. It is possible that ¢ depends on 1) but the
latter does not explicitly occur in the former even if both ¢
and 1 are in NNF. For example, consider the two equivalent
formulas ¢ = @V band ¢ = (aVb) A (bVb). Because ¢
appears in itself, so replacing ¢ in itself by T results in T.
We get that T # ¢, and hence ¢ depends on itself. Based
on the principle of syntax-independence, ¢ should depend
on 1. However, replacing all occurrences of v in ¢ does not
modify ¢ since ¢ does not explicitly occur in ¢. We obtain
that ¢ does not depend on .

To define the notion of FF-dependence, we need to solve
two problems:

>Two equivalent update operators were proposed in (Hegner
1987) and (Doherty, Lukaszewicz, and Madalinska-Bugaj 1998)
respectively.

1. Which normal form is suitable for the notion of FF-
dependence?

2. How to define the occurrence of a formula in the normal
form of another formula?

For the first problem, we choose full DNF instead of
NNF. In the following, we introduce the notion of occur-
rence of a formula in the full DNF of another formula. This
notion should obey two principles: syntax-independence
and self-elimination. Suppose that two formulas ¢ and ¢’
are equivalent. The former requires that “given a full DNF
formula v, the occurrence of ¢ in 1) is also that of ¢’ in ¢)”".
The latter means that “if ¢’ is in full DNF, then replacing
the occurrence of ¢ in ¢’ with T results in T”. To illustrate
the definition of occurrence, it is necessary to define the
notion of dependent minterms.

Definition 7. We say a term t is a dependent minterm of ¢,
if ¢ is a minterm over DepVar(¢) and ¢ |= ¢.

We use €1 to denote the set of dependent minterms of ¢.

We also let 0, beempty if g = 1, and Q4 be {T}if ¢ = T.
Clearly, the disjunction of €2 is equivalent to ¢.
Example 2. Let) = (aVb) A(cV). The sets of dependent
variables and dependent minterms of 1 are as follows:
DepVar(y) = {a,b} and €y {aANb,aNb,aAb}.
Neither @ A'b A ¢ nor a A b is a dependent minterm of 1)
since the former contains the variable ¢ not in DepVar(¢),
and the latter does not entails .

We hereafter give a definition of occurrence. We first
consider a simple case that is the occurrence of a term in a
minterm.

Definition 8. Let ¢ be a term and ¢’ be a minterm. We say a
literal { of ¢’ is an occurrence of ¢ in ¢/, if [is an occurrence
oftand t’ = t.

Example 3. Consider three terms t; = a A b to = aAb,
and t' = a N b A ¢ The literals a and b are occurrences of
ty int'. But neither of them is an occurrence of to in t' since
t l# ta. Moreover; t' contains no occurrence of t.

The notion of occurrence of a formula ¢ in a full DNF
formula ¢ can be defined as that of every dependent minterm
of 1 in every disjunct of ¢.

Definition 9. Let ¢ and 1) be two formulas where ¢ is in full
DNF. Let ¢’ be a minterm of ¢, and [a literal of ¢'. We say
the occurrence of [in ¢ is an occurrence of v in ¢, if there is
a dependent minterm ¢ of v s.t. [is an occurrence of ¢ in ¢'.

Since two equivalent formulas have the same set of depen-
dent minterms, Definition 9 satisfies syntax-independence. It
is easily verified that Definition 9 satisfies self-elimination.

Example 4. Continued with Example 2, we have ¢ = (a V
b)A(eve)and Qy = {a ANb,a ANb,a A b}. Consider the full
DNF formula ¢ = (aNbAc)V(aNbAc)V(aNbAc)V (AADAE).
The occurrences of a and b in the first term a N\ b N\ ¢ of ¢
are that of ¢ in ¢. So are the occurrences of a and b in the
second term. However, the occurrences of a and b in the third
and fourth disjuncts are not since no dependent minterm of
1 satisfies the condition of Definition 9.

We now are ready to define the notion of FF-dependence.

1838

Definition 10. We say ¢ is Fml-dependent on 1), written
Y +—¢ ¢, if substituting every occurrence of 1 in the full
DNF formula of ¢ with T leads to another formula that is
not equivalent to ¢. Otherwise, ¢ is Fml-independent from
W, written 1 v .

We illustrate Definition 10 with the following example.

Example 5. Continued with Example 4, we have ¢ = (a V
b) A (cVE). Let ¢ = (aAb)V (aNc)V (bAC). It is easily
verified that ¢ = ¢'. Replacing every occurrence of V) in ¢
with T results in a formula (TAT Ac)V(TATAc)V(an
bAc)V(aANbAT) =cV(aAb). Clearly, this formula is
not equivalent to ¢. Hence, both ¢ and ¢’ depend on).

Definition 10 is a simple approach to define the notion
of FF-dependence. To capture this notion comprehensively,
we present a model-theoretic characterization.

Proposition 4. Let ¢ and ¢ be formulas, and X
DepVar (). Then, ¢ is Fml-dependent on v iff there exist
an interpretation w and two terms t € 0, and t' € Qx \ {t}
st.wkE@¢Atand w_y = .

This proposition means that ¢ depends on v, if there exist
an interpretation w and a dependent minterm ¢ of v such
that (1) w = ¢ A t; and (2) ¢ is essential for w to satisfy ¢,
i.e., there is a minterm ¢’ over DepVar(¢)) such that forcing
w on ¢’ no longer satisfies ¢.

Next, we continue Example 5 to illustrate Proposition 4.

Example 6. We have ¢’ = (@ Ab)V (@aAc)V (bAE),
Y= (aVb)A(cVe)and Qy ={aAb,aNb,aAb}. Then,
we let w = {a,c}, t = aAbandt = aAb. Clearly, t € Qy,
t'e Qx \ {t} and w E ¢ At. Thus, w_,p = {a,b,c} that
does not satisfy ¢. So ¢ depends on 1.

Finally, we analyze some properties of FF-dependence.

It is obvious that a formula is Fml-dependent on a literal if
and only if the former is Lit-dependent on the latter.

Proposition 5. Let ¢ be a formula and [be a literal. Then
L=l @ iff L —F o

FF-dependence satisfies syntax-independence, symmetry
and almost reflexivity (i.e., every non-trivial formula de-
pends on itself). red Trivial formulas do not depend on any
formula.

Proposition 6.

o Syntax-independence: ¢ —¢ 1 iff ¢' g ¢ when ¢ = ¢’
and) = ';

o Symmetry: ¢ g Y iff 1) —g ¢;

o Almost reflexivity: ¢ —¢ ¢ when ¢ is not trivial.

e For any formula ¢, ¢ v/>g T and ¢ /> L.

We analyze the computational complexity of FF-
dependence as follows:

Proposition 7. FF-dependence is in AY and NP-hard.

Proof. Upper bound: First, we compute DepVar(1)) by call-
ing an NP oracle that decides whether ¢/ depends on v for
each variable of v. Further, we guess an interpretation w and
two terms ¢ and t’, and then check whether they satisfy the
condition of Proposition 4. The whole procedure calls NP

oracles n + 1 times where n is the number of P (). So,
FF-dependence is in AF.

Lower bound: By Proposition 5, FL-dependence is
a restriction of FF-dependence. The complexity of FL-
dependence is NP-complete (Lang, Liberatore, and Marquis
2003). Hence, FF-dependence is NP-hard.

Formula forgetting

In the previous section, we investigate the notion of FF-
dependence. Following this notion, we study the notion of
formula forgetting in this section. We first propose a set of
postulates that precisely characterize the notion of formula
forgetting. We then discuss some properties of formula
forgetting. Finally, the computation and model-theoretic
characterization of formula forgetting are also studied.

Zhang and Zhou (2009) proposed four postulates (W),
(IR), (PP) and (NP) for variable forgetting in modal logic
S5. We extend these postulates to formula forgetting in
propositional logic.

Definition 11. We say ¢ is a result of forgetting 7 in ¢, if it
satisfies the following postulates:

W Weakening: ¢ = v;
IR Independence:) vAg 13
PP Positive Persistence: for any formula &, if n +A¢ £ and

¢ =& theny =&
NP Negative Persistence: for any formula &, if i v4F € and

¢ = &, then o) [~ €.

Postulate (W) says that forgetting weakens the original
formula. Postulate (IR) requires that after forgetting, the
resulting formula should be irrelevant to the formula which
we have forgotten. Finally, postulates (PP) and (NP) viewed
together state that forgetting 1 does not affect entailment of
queries that are Fml-independent from 7.

Similarly to literal forgetting, the result of formula
forgetting is unique up to logical equivalence. We use
Jr1).¢ to denote the result of forgetting 1) in ¢.

The following proposition reflects strong relationships be-
tween formula forgetting and FF-dependence: Forgetting 1
in ¢ does not change ¢ if and only if ¢ does not depend on).
Proposition 8. Let ¢ and 1) be two formulas. Then, ¢
IV iff Y A @

The following proposition further illustrates
essential properties of formula forgetting.
Proposition 9. /. Jgl.¢o = 3.1.¢ for any literal l;

2. ¢ is satisfiable iff Ie1p. ¢ is satisfiable.

3. If o= ¢ andp =)', then Fgip.¢p = Ty . ¢,

4. FrY.(oV) = Fr.0) V (Frv.¢');

5. If DepVar(¢) N DepVar(v) = 0, then Igp.(d N ¢')

d N (Fep.¢d').

Firstly, formula forgetting is a generalization of literal
forgetting. Secondly, forgetting any formula preserves sat-
isfiability of the original formula. Thirdly, it is syntax-
irrelevance, and distributive over disjunction. Finally, for-

getting v in a conjunction of two formulas does not affect
the counterpart that shares no dependent variable of .

some

1839

We next investigate the computation of formula forget-
ting. Recall the definition of literal forgetting (cf. Definition
5), forgetting a literal [in ¢ consists of two steps:

1. Transform ¢ into (I A @|;) V (I A ¢|;) via the Shannon
expansion;

2. Eliminate the occurrence of I, i.e., ¢|; V (I A ¢|;).

The Shannon expansion can be generalized to a multi-
variable expansion w.r.t. a set X of variables, i.e.,
¢ = Vicq, (t A @) Itis natural to imagine that forgetting
a formula ¢ in ¢ should first decompose ¢ w.r.t. the
set of dependent variables of i, and then remove every
dependent minterm of). We therefore obtain a brute-force
computation of formula forgetting as follows.

Proposition 10. Let X DepVar (). Then, Jptp.¢p =
[vteﬁw (@le)] Vv [VteQX\Qw (tA D).

The computation of formula forgetting via Proposition
10 is computationally expensive when DepVar(¢) is large.
To simplify the computation, we give another approach
via conditioning. It is hard to extend the definition of term
conditioning (cf. Definition 4) to formula conditioning since
a formula may contain a literal and its negation simulta-
neously, and it may even be unsatisfiable. We hereafter
resort to Proposition 3, and formalize the notion of formula
conditioning via variable forgetting.

Definition 12. The conditioning of ¢ on), written qb\d,, is
defined as JyDepVar(y)).(¢ A).

Note that if) = T (resp. L), then ¢|,, = ¢ (resp. L).

From now on, we adopt Definition 12 as the definition of
the notation ¢|,, when 1) is a satisfiable term .

A semantic characterization of formula conditioning
is as follow: the models of the conditioning of ¢ on ¥ is
the union of model w where forcing it on any dependent
minterm of v leads to a model of ¢.

Proposition 11. [¢]y] = Ucq, {w [wot = ¢}

The following proposition states that the result of for-
getting v in ¢ is equivalent to the disjunction of ¢ and the
conditioning of ¢ on 1.

Proposition 12. 3rp.¢ = ¢ V ¢ly.

Now, we use an example to illustrate the computation of
formula forgetting.

Example 7. Continued with Example 5. We have ¢/ = (
b)V(anc)V(bAE), ¥ = (aVb)A(cVE), and DepVar(1
{a,b}.

Firstly, the conjunction of ¢' and v is as follows:
dAYp=[@anb)v@ncVvonae)A((avd)AlleVe)

=((anb)V(and)) e
Then, conditioning of ¢ on 1 leads to:
|y = Iv{a,b}.[((aANb)V(aADb) AN =c

Hence, the result of forgetting v in ¢’ is B
Jrp.¢' = V'] = [(@Ab)V(anc)V(bAE)|Ve = (anb)Ve.

Theoretically, the computation of formula forgetting
via Proposition 12 cause single-exponential blowup in the
size of the original formula unless P = NP. But this is a
practical solution by using existing techniques of knowledge

an
) =

compilation, e.g., binary decision diagrams (BDDs) (Bryant
1992). BDD is a compact form of propositional formula,
and supports efficient boolean operations. This will be
shown in our experimental evaluation.

By Propositions 11 and 12, we get a semantic character-
ization of formula forgetting. Forgetting 1) in ¢ amounts to
introduce the models of the conditioning of ¢ on).

Corollary 1. [3r1).¢] = [¢] U U;eq, {w | wot = o}
Belief update based on FF-dependence

In this section, following the dependence-based update
scheme, we define a new update operator o based on
FF-dependence. Then, we completely capture our update
operator by identifying two extra postulates, show that the
update operator satisfy the postulates (U1) - (U4) and (U8)
and identify a special case in which all of the KM postulates
holds. Finally, we compare of with other operators <y,
oL, opma and of, from various perspectives including
information preservation, computational complexity and
experimental results.

Belief update via formula forgetting

The update operator based on FF-dependence is defined in
terms of formula forgetting.

Definition 13. Let ¢ and 1) be formulas. The update opera-
tor o, is defined as ¢ of ¢ = [Fp(—)).¢] A 1.

The following example illustrates the mechanism of the
update operator of.

Example 8. Continued Example 5, we have ¢' = (@ Ab) V
(@nc)vbne,v=(aVb)A(cVe) Weletn=aANb
that is equivalent to —). The procedure of updating ¢' by n
via o consists of two steps:

1. Forget—min¢': Ig(—m).¢' = (@Ab) Ve
2. Conjoin the result of formula forgetting with n:
Br(=m).¢'TAn=[@nb) Ve A(@nb)=aAnhb.

In the following, we give the model-theoretical charac-
terization of op. We first provide the definition of the update
of an interpretation by the new information.

Definition 14. Let w be an interpretation. The update wop ¢
based on FF-dependence is defined as
ifw =

_ vl
wor Y = { {w_y |t €Qy}, otherwise.

If an interpretation w satisfies the new information 1,
then we do not modify the interpretation. Otherwise, we
force w on each dependent minterm ¢ of v such that the new
interpretation w_,; satisfies 1.

The FF-dependence based update of a formula ¢ by v
collects the updates of each model of ¢ by 1:

Proposition 13. [¢ of ¥] = U, (w oF ¥).
Now, we give a representation result for the operator ¢f.

Theorem 1. An operator o: L x L +— L is equal to o iff it

satisfies (U2), (US), and

UP [If DepVar(¢) N DepVar(yp) = 0, then (¢ A ¢') o 9p =
oA (¢ ot);

1840

UF If DepVar(¢) C DepVar(y), ¢ £ L, and p Np = L,
then ¢ ©) = 1.

Proof. (=-): By Definition 14 and Proposition 13, of satis-
fies (U2) and (U8). Suppose that DepVar(¢) NDepVar(1)) =
(), by Proposition 9, we have (¢ A ¢') o 1 = [Fe(—10).(¢ A
AN =N [Fr(—).¢' | Ap = p A (¢ o 3). The above
implies that of satisfies (UP). Suppose that DepVar(¢) C
DepVar(1)), ¢ # L and ¢ Ay = L. Itis easily verified that
Ol = T.Thus, ot = [Fe(46). 61 = (TVG)AY = .
Hence, ©f satisfies (UF).

(<) : Suppose that ¢ satisfies (U2), (U8), (UP) and (UF).
By postulate (U8), ¢ ¢ ¢ = Uwem w ¢ 1. In the following,
we only prove that, for any interpretation w, w ¥ = w op .
It follows from (U2) that if w = ¢, then w ¢ ¢ = w.

Suppose that w = ¢. Let X = DepVar(¢)). Based on
DepVar(1)) and w, we construct two terms ¢ and ¢’ as fol-
lows:

o l= /\pGX and w|:pp A /\peX and wlEp —ps

o t'= /\pEP\X and wi=p P /\ /\peP\X and whep P

Obviously, t A t’ is the minterm corresponding to w. By
postulates (UP) and (UF), we get that (t At') o) = (toh) A
V=yAt.Soworp={w_y|teQy} O

Postulate (UP) is analogous to the postulate (SP) except
use dependent variables instead of variables. It says that if
the belief base can be divided into two disjoint compart-
ments, then the compartment, which is not related to the new
information, remains unchanged. Postulate (UF) means that
if any dependent variable of ¢ is also a dependent variable
of v, and ¢ is satisfiable and conflicts with), then the belief
is simply replaced by the new information after updating.

By Theorem 1 and Proposition 13, it is easily verified that
o satisfies some of KM postulates.

Theorem 2. The operator o satisfies (Ul)-(U4) and (US).

It is easy to construct counterexamples to show that none
of (US5)-(U7) are satisfied. Due to space limitations, we do
not provide the counterexamples. The reason why the oper-
ator of fails to satisfy them is that of does not follow the
principle of minimal change to which the three postulates
correspond. From the semantic perspective, this principle re-
quires that the update of w by v should be a set of models
of 1 that are the closest to w. However, w of 9 generally
involves some models that violate this condition. For ex-
ample, consider w = {a,b,c} and ¢» = @ V b. Then w o
¥ = {{a,c},{b,c},{c}}. Clearly, both {a, c} and {b, c} are
closer to w than {c}, and hence {c} is not the closest model.

Interestingly, when we restrict v to be a satisfiable term,
w ¢ 1) contains only one model w_, . We take it for granted
that it is the only model of ¢ that is the closest to w. Under
this restriction, og obeys the principle of minimal change,
and hence satisfies (U5)-(U7).

Theorem 3. If any formula) appearing in ¢ © 1) must be
a term in the KM postulates, then the operator o satisfies
(UI)-(US).

To prove the theorem, we now give the following lemma
which means that if the update of an interpretation w by a
term ¢ satisfies another one t', then it is the same as the up-
date of w by the conjunction of ¢ and ¢’

Lemma 1. Ler t and t' are two terms. If w og t |= t', then
WOFl = woF (t/\t/).

We now prove Theorem 3.

Proof. (U5) Let w be a model of (¢ o 1) A n. There is a
model v of ¢ s.t. w = v o 1. Thus, v of ¢ = 7. This,
together with Lemma 1, imply that w = v o (¢ A 7).
Hence, (¢ o ¥) A = ¢ oF (¥ Am).

(U6) Let w be a model of ¢. By the assumption, we have
wop Y = ¢ and w o ¢’ = 1. By Lemma 1, we get that
Wopy) = wop (YAY') = wopt)’. Hence, popth = popt)’.

(U7) Let w be a model of (¢ of ¥) A (¢ of ¥'). Since ¢ is
a minterm, there is a unique model v of ¢. Because both
1 and 1)’ are terms, so w = v of ¥ and w = v o ¢’. By
postulate (U1), we get that w = ¢'. This, together with
Lemma 1, imply that w = v o (¥ A ¢)'). We construct a
term ¢ as follows:

Npep and (piep orwip) PN NpeP and (pl=mp or g7 =-p) 7P

It is easily verified that ¢ = 1 A ¢’ and ¢ is a dependent
term of ¢ V ’. Hence, w o (¥ A ') C wop (v V),
and (¢ oF) A (P or ¢') = @ oF (¥ V). -

From the postulational point of view, the essential
difference between revision and update is as follows:
revision satisfies the conjunction property (R2), proposed in
(Katsuno and Mendelzon 1991): if the new information 1
does not contradict the initial base ¢, then the revised belief
base should be equivalent to the conjunction of ¢ and . On
the contrary, update satisfies the distribution property (US8):
update is distributive over the initial base. The operator o
satisfies (U8) but not (R2). Hence, we consider ¢ as an
update operator, not a revision operator.

We next give the upper and lower bounds of the inference
problem of the update operator of.

Proposition 14. Deciding whether ¢ o 1 |= 1 is in AY and
coNP-hard.

Comparison with other update operators

In this subsection, we compare our belief update operator
with other operators from different perspectives.

Information preservation The first perspective we focus
on is how much information of the initial base is preserved
after updating. From the semantic perspective, the less
difference between the models of the initial base and those
of the updated one, the more information that the update
procedure preserves.

Definition 15. Let ¢ and ¢’ be two update operators. We
say ¢ preserves at least as much information as o', written
o <; o if [pov] Ofé] C o] © [¢] for any formulas
¢ and 1. The notation <; is obtained as usual by taking the
asymmetric parts of <;.

1841

Table 1: Comparison of various update operators

Update operator V/C Min Max Avg
or 20/91 | 0.024 | 0.146 0.051
507218 | 0.072 | 92.681 1.201

oy 20/91 | 0.030 | 0.199 0.068
50/218 | 0.070 | 91.647 1.206

oL 20/91 0.015 | 0.076 0.029
507218 | 0.027 | 64.218 0.164

or 20/91 | 9.205 1,227 | 632.867
o 50/218 | 9.555 1,350 | 857.459
oPuA 20/91 | 11.279 1,700 | 876.926
507218 | 11.461 1,895 1,225

The following proposition says that update operators
based on dependence preserve more information than those
based on the principle of minimal change. Among three
dependence-based update operators, of preserves the most
information.

Proposition 15. Ofor <; OpMA <i OF <; OL <; Ov.

Computational complexity We next make a comparison
from the perspective of the computational complexity. The
complexity results of inference problems of oppma, ©For, OV
and ¢ are as follows.

Proposition 16. (Eiter and Gottlob 1992) Deciding whether
@ opMmA Y =1 (resp. ¢ opor Y = 1) s Hg—complete.

Proposition 17. (Herzig and Rifi 1999; Herzig, Lang, and
Marquis 2013) Deciding whether oy |= 1) (resp. oo 0 =
n) is coNP-complete.

Definition 16. Let ¢ and ¢’ be two update operators. We say
© is at least as computational complexity as ¢, written o <,
o', iff the upper bound the complexity of ¢ is contained in the
lower bound of the complexity of ¢’. The notations <. and
=, are obtained by taking the asymmetric and symmetric
part of <. respectively.

By Propositions 14, 16 and 17, we get the following
corollary. Because the computational complexity of ¢y and
oL are the same, so oy =, ¢ holds. Similarly, oppma =¢ OFor
also holds. The lower bound of ©g, which is coNP, is the
same as the upper bound of o_. Thus, o, <. ¢ holds.
However, we cannot get that o <. ¢ since the lower
bound of ¢ does not contain the upper bound of ¢f, which
is AQP. Hence, we only obtain that ¢ <. of. In addition,
o <. opma holds while oppa <. ©of does not. This is
because the upper bound of oppa, Which is I, is not a
subset of the lower bound of of even if it is A% -complete.
So o <. opma holds. The computational complexity of o
is between those of oy /o and ©pma /<For-

Corollary 2. oy =, o <. O <. OpMA =c¢ OFor-

Empirical results We have shown that the computa-
tional complexity of of is higher than the other two
dependence-based update operators in theory, but prac-
tice might be another matter. To assess the latter, we
conduct an experiment of computing the new belief
base. The benchmarks used in (Marchi, Bittencourt, and
Perrussel 2010) is from SATLIB that is available in

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html. We test
two scales of test-sets: 91 clauses with 20 variables and 218
clauses with 50 variables. Each test-set has 1000 instances.
For each instance, we use its corresponding theory as the ini-
tial belief base, and the negation of the first 4 clauses as the
new contradictory information. In this experiment, we use
BDDs to represent the initial KB and the new information
and compute the updated KB via some operations of BDDs.

We illustrate the computation of each update operator in
the following. Based on Definitions 12 and 13 and Proposi-
tion 12, computing ¢ o v consists of (1) generating the set
DepVar(—)); (2) forgetting all variables of DepVar(—)) in
¢ A —); (3) conjoining Jg(—1)).¢ with . The computation
of ¢ oy ¥ (resp. ¢ oL 1) is similar to the above except
conjoin JyDepVar(—)).¢ (resp. 3 DepLit(—1)).¢) with).
We implement ¢ppya and ©f,, according to the approach
proposed by Gorogiannis and Ryan (2002).

In Table 1, the update operator and the numbers of
variables and clauses are reported in columns 1 and 2 re-
spectively. Columns 3 - 5 indicate the minimum, maximum
and average time (in ms) of updating the KB. We can make
two observations from Table 1. Firstly, all of approaches
based on dependence are much more efficient than anyone
based on the principle of minimal change. Secondly, for
three dependence-based update operators, the maximum
updating times of three dependence-based update operators
are less than 100ms while the average ones are less than
1.5ms in the benchmarks with 218 clauses and 50 variables.
The difference can be negligible, and hence the updating
times of them are almost the same.

We close this section by noting that ¢ is a suitable alter-
native to update operator. It is the dependence-based update
operator preserving the most information. In practice, the
computational efficiency of of are almost the same as those
via oy and o, albeit that theoretically the computational
complexity of o is higher than those of them. Compared to
the two operators based on the principle of minimal change,
it preserves less information, but it is much more efficient.

Conservative extension via formula forgetting

Conservative extension plays a prominent role in Al and
logics (Ghilardi, Lutz, and Wolter 2006; Lutz, Walther,
and Wolter 2007; Jung et al. 2017). Generally speaking,
a conservative extension is a supertheory of a theory that
proves no new theorems about the language of the original
theory. We next give a syntax-independent definition of
conservative extension in terms of dependent variables.

Definition 17. We say that ¢ A v is a syntax-independent
conservative extension of ¢, if for every formula 7 with

DepVar(n) C DepVar(¢), ¢ At = n implies that ¢ |= 7).

The above definition is slightly different from the original
version that is based on variables. Each syntax-independent
conservative extension also is an original one, but the
converse does not hold. For example, ¢ = a A (b V b) and
1» = b. The formula ¢ A 1) is not a conservative extension
of ¢ since ¢ A ¢p |= 1 but ¢ [~ 1. However, it is a syntax-
independent conservative extension of ¢. This difference
does not impede the widespread use of syntax-independent

1842

version. In many practical applications, the background KB
and query are firstly simplified, i.e., they merely contain
their dependent variables (Levy, Fikes, and Sagiv 1997;
Lang, Liberatore, and Marquis 2003). Based on this assump-
tion, two definitions of conservative extension are the same.

Finally, we obtain that deciding if ¢ A 1 is a syntax-
independent conservative extension of ¢ can be reduced to
determining if forgetting ¢ A 1 in each dependent minterm
of ¢ leads to a tautology.

Theorem 4. ¢ A1) is a syntax-independent conservative ex-
tension of ¢ iff IJr(p A1)t = T for every t € Q.

Proof. (=): Suppose that there is t € Qg s.t. Ie(d A).t F#
T.Let ' be the set {t |t € Qpand Ie(d A).t Z T} It
is easy to verify that t A ¢p = L for t € €. Hence,
oA = [Vicana V Vieal AN = Vi, an M- Let
n= Vte(Qd)\Q’) t. Obviously, ¢ A ¢ |= n and ¢ [~ 7. This
contradicts the assumption.

(«<=): Suppose that there is) s.t. DepVar(n) C DepVar(¢),
¢ AN = nand ¢ = n. Hence, there is t € Qg s.t. ¢ [~
n. Since DepVar(n) C DepVar(¢), we get that ¢ = —.
Because A =1, s0t Ay = n. Thus, t A = L. We get
that 3p(¢ A 1).t Z T. This contradicts the assumption. [

Example 9. Let ¢ = (aAb)V (aAb) and 1y = (aAd)V (bAc).
Then, pAp = (aADAd)V (aNbAc) and 1y = {a Nb,a A b}.
Thus, Ie(d A).(aNb) = T and Ip(pA1b).(@Ab) = T. So

¢ A\ is a syntax-independent conservative extension of ¢.

Related Work

Dependence is well-known as a fundamental concept in
many fields of artificial intelligence, particularly belief
change. Several authors axiomatized the notion of depen-
dence by postulates, and connected it to belief contraction.
Belief contraction, a type of belief change, which is removal
of existing beliefs. Del Cerro and Herzig (1996) gave
postulates for a dependence relation between formulas, and
established the correspondence between the dependence
relation and belief contraction. In (del Cerro and Herzig
1996), a belief state is represented as a belief set, i.e., an in-
finite set of formulas closed under implication. Oveisi et al.
(2017) pointed out that a belief base, which need not be de-
ductively closed and is often finite, is a practical alternative
for representing belief states. They also identified a similar
connection between dependence and base contraction.

The main difference between our work and the above ap-
proaches to dependence relations between formulas, is that
our dependence relation corresponds to formula forgetting
while their relations correspond to belief contraction. Belief
contraction gets rid of as little as possible from the initial
belief ¢ in order that the new belief state does not entail
1. By contrast, formula forgetting eliminates all parts of ¢
relevant to v even if ¢ does not entail .

The above works focus on axiomatizations of depen-
dence. Besides, there are several works that define the
notion of dependence by the ideas of language splitting and
variable sharing. Parikh (1999) showed the finest splitting
theorem, which says that any finite set X of formulas has

a unique finest splitting (i.e., a partition {Py,..., P,}
of P that refines every other splitting of ¢). ¥ can be
decomposed into a set {¢1,...,¢,} of formulas where
every ¢; uses only variables of P;. Based on this theorem,
a formula 1) is said to be canonically cell-relevant to n w.r.t.
3., if there is a cell P; of the finest splitting of ¥ such that
P, N DepVar(yy) # 0 and P; N DepVar(n) # (. Parikh
(1999) also proposed a postulate (P) of relevance for belief
change, and showed that the postulate (P) is consistent with
the basic AGM postulates for belief revision.

Kourousias and Makinson (2007) extended the above
work to the infinite case. Later, Peppas et al. (2015) demon-
strated that the revision operator, proposed by Dalal (1988),
satisfied all AGM postulates as well as the stronger version
(SP) of postulate (P).

Rodrigues (1997) proposed another definition of rele-
vance, called path-relevance. A formula 1) is said to be
path-relevant to n w.rt. 3, if there is a finite sequence
€, ,&Enyq of formulas such that & = 9, &nyr = 7,
&1, ,&m € X, and Var(&;) N Var(&41) # D for 0 <4 <
m. The notion of path-relevance is not syntax-independence.
To repair this defect, Makinson (2009) proposed a new
definition of path-relevance via language splitting and
dependent variables, and proved that it is indeed equivalent
to the notion of canonical cell-relevance. A formula 1 is
said to be canonically path-relevant to n w.r.t. X, if there is a
finite sequence &g, - - - , €41 of formulas such that £y = 1,
Emt1 =1, &1, -+, &y are cells of the finest splitting of X,
and DepVar(&;) N DepVar(&;11) # (0 for 0 < i < m.

The above works assume that the underlying logic
contains classical propositional logic. Horn logic is a
very useful fragment of propositional logic, whose sat-
isfiability is tractable. For this logic, relevance-sensitive
belief contraction and revision were investigated by Wu,
Zhang, and Zhang (2011) and Delgrande and Peppas (2015)
respectively.

In other areas of artificial intelligence, some authors
proposed different definitions of dependence relation
between formulas. To speed up inferences from large KBs,
Levy, Fikes, and Sagiv (1997) proposed a proof-theoretic
framework for analyzing which components of a KB X
are irrelevant to a query . A formula ¢ of a given KB
Y is irrelevant to a query v if ¥ can be derived without
exploiting ¢. In the area of knowledge acquisition and
machine learning, novelty is an important dependence
relation between formulas given a background KB (Greiner
and Genesereth 1983). It is used to decide whether a fact
is new to some concepts w.r.t. the background KB. Greiner
and Genesereth (1983) first formalized semantics for this
relation. Later, Marquis (1991) proposed two equivalent
characterizations in terms of prime implicant and abduction.

Conclusions

The focus of this paper is on dependence in propositional
logic. The main contributions are as follows:

First of all, this paper sheds light on the theoretical
underpinnings of dependence in propositional logic. We
have generalized the notions of FL-dependence and literal

1843

forgetting to FF-dependence and formula forgetting respec-
tively. We have provided several equivalent formulations of
FF-dependence and formula forgetting. Furthermore, some
properties of them have been given.

In addition, we have applied these notions in belief
update and conservative extension. We have defined the
update operator of in terms of formula forgetting. We have
completely characterized this operator by identifying some
extra postulates and have assessed them against the KM
postulates. Compared to the other dependence-based update
operators ¢y and o, o preserves more information, and
has almost the same efficiency. In contrast to the operators
based on the principle of minimal change, ¢ is much more
efficient than them although it preserves less information.
Finally, we show that conservative extension can be reduced
to formula forgetting.

Acknowledgments

We thank the anonymous reviewers for helpful comments.
We are grateful to Andreas Herzig, Fangzhen Lin, Yongmei
Liu, Quilin Qi, Kewen Wang, Yisong Wang, Zhe Wang,
Heng Zhang, Xiaowang Zhang, Yi Zhou and Zhigiang
Zhuang for their helpful discussions on the paper. This work
was partially supported by the Natural Science Foundation
of China (Nos. 61463044, 61472369, 61572234, 61573386,
61603152 and 61703182), Natural Science Foundation of
Guangdong Province (No. 2016A030313292), Guangdong
Province Science and Technology Plan project (Nos.
2016B030305007 and 2017B010110011), Guangzhou
Science and Technology Plan project (No. 705241369105),
the Talent Introduction Foundation of Jinan University
(Nos. 88016534 and 88016653), Guangxi Key Laboratory
of Trusted Software (Nos. kx201604 and kx201606), the
Fundamental Research Funds for the Central Universities
(No. 11617347), and Sun Yat-sen University Cultivation
Project (No. 16lgpy40). Liangda Fang is also affiliated
to Guangxi Key Laboratory of Trusted Software, Guilin
University of Electronic Technology, Guilin, China.

References

Boutilier, C. 1994. Toward a logic for qualitative decision the-
ory. In Proceedings of the Fourth International Conference on
Principles of Knowledge Representation and Reasoning (KR-
1994), 715-86.

Bryant, R. E. 1992. Symbolic Boolean Manipulation with
Ordered Binary-Decision Diagrams. ACM Computing Surveys
24(3):293-318.

Dalal, M. 1988. Investigations into a theory of knowledge base
revision: Preliminary report. In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-1988),
475-479.

Darwiche, A. 1997. A logical notion of conditional inde-
pendence: properties and applications. Artificial Intelligence
97(1):45-82.

Darwiche, A. 1998. Compiling Devices: A Structure-Based
Approach. In Proceedings of the Eighth International Joint
Conference on Principles of Knowledge Representation and
Reasoning (KR-1998), 156—166.

del Cerro, L. F., and Herzig, A. 1996. Belief change and de-
pendence. In Proceedings of the Sixth Conference on Theoret-
ical Aspects of Rationality and Knowledge (TARK-VI), 147—
161.

Delgrande, J. P., and Peppas, P. 2015. Belief revision in horn
theories. Artificial Intelligence 218:1-22.

Doherty, P.; Lukaszewicz, W.; and Madalinska-Bugaj, E.
1998. The PMA and Relativizing Change for Action Up-
date. In Proceedings of the Sixth International Conference on
Principles of Knowledge Representation and Reasoning (KR-
1998), 258-269.

Eiter, T., and Gottlob, G. 1992. On the complexity of proposi-
tional knowledge base revision, updates, and counterfactuals.
Artificial Intelligence 57(2-3):227-270.

Forbus, K. D. 1989. Introducing Actions into Qualitative Sim-
ulation. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-1989), 1273—
1278.

Ghilardi, S.; Lutz, C.; and Wolter, F. 2006. Did I Damage
My Ontology? A Case for Conservative Extensions in De-
scription Logics. In Proceedings of the Tenth International

Conference on Principles of Knowledge Representation and
Reasoning (KR-2006), 187-197.

Gorogiannis, N., and Ryan, M. D. 2002.
of Belief Change Operators Using BDDs.
70(1):131-156.

Greiner, R., and Genesereth, M. R. 1983. What’s New? A Se-
mantic Definition of Novelty. In Proceedings of the Eighth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-
1983), 450-454.

Hegner, S. J. 1987. Specification and Implementation of
Programs for Updating Incomplete Information Databases.
In Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS-1987),
146-158.

Herzig, A., and Rifi, O. 1998. Update operations: a review. In
Proceedings of Thirteenth European Conference on Artificial
Intelligence (ECAI-1998), 13-17.

Herzig, A., and Rifi, O. 1999. Propositional belief base update
and minimal change. Artificial Intelligence 115(1):107-138.

Herzig, A.; Lang, J.; and Marquis, P. 2013. Propositional Up-
date Operators Based on Formula/Literal Dependence. ACM
Transactions on Computational Logic 14(3):24:1-24:31.

Jung, J. C.; Lutz, C.; Martel, M.; Schneider, T.; and Wolter,
F. 2017. Conservative Extensions in Guarded and Two-
Variable Fragments. In Proceedings of the Forty-Fourth Inter-
national Colloquium on Automata, Languages, and Program-
ming (ICALP-2017), 108:1-108:14.

Katsuno, H., and Mendelzon, A. O. 1991. On the Differ-
ence between Updating a Knowledge Base and Revising it. In
Proceedings of the Second International Joint Conference on
Principles of Knowledge Representation and Reasoning (KR-
1991), 387-394.

Kautz, H.; McAllester, D.; and Selman, B. 1997. Exploiting
Variable Dependency in Local Search. In Proceedings of the

Fifteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-1997).

Implementation
Studia Logica

1844

Kourousias, G., and Makinson, D. 2007. Parallel interpola-
tion, splitting, and relevance in belief change. The Journal of
Symbolic Logic 72(03):994-1002.

Lakemeyer, G. 1997. Relevance from an epistemic perspec-
tive. Artificial Intelligence 97(1-2):137-167.

Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
Independence: Formula-variable independence and forgetting.
Journal of Artificial Intelligence Research 18:391-443.

Levi, I. 1977. Subjunctives, dispositions and chances. Syn-
these 34:423-455.

Levy, A. Y.; Fikes, R. E.; and Sagiv, Y. 1997. Speeding up
inferences using relevance reasoning: a formalism and algo-
rithms. Artificial Intelligence 97(1):83-136.

Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1-2):131-167.

Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative Ex-
tensions in Expressive Description Logics. In Proceedings of
the Twentieth International Joint Conference on Artificial In-
telligence (IJCAI-2007), 453-458.

Makinson, D. 2009. Propositional relevance through letter-
sharing. Journal of Applied Logic 7:377-387.

Marchi, J.; Bittencourt, G.; and Perrussel, L. 2010. Prime
forms and minimal change in propositional belief bases. An-
nals of Mathematics and Artificial Intelligence 59(1):1-45.

Marquis, P. 1991. Novelty revisited. In Proceesings of the
Sixth International Syposium on Methodologies for Intelligent
Systems (ISMIS-1991), 550-559.

Minato, S. 1993. Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems. In Proceedings of the Thir-
tieth ACM/IEEE Design Automation Conference (DAC-1993),
272-2717.

Oveisi, M.; Delgrande, J. P.; Pelletier, F. J.; and Popowich, F.
2017. Kernel contraction and base dependence. Journal of
Artificial Intelligence Research 60:97-148.

Parikh, R. 1999. Beliefs, belief revision, and splitting lan-
guages. Logic, language and computation 2(96):266-278.
Peppas, P.; Williams, M.-A.; Chopra, S.; and Foo, N. 2015.
Relevance in belief revision. Artificial Intelligence 229:126—
138.

Rodrigues, O. T. 1997. A methodology for iterated informa-
tion change. Ph.D. Dissertation, Imperial College London.

Shannon, C. E. 1938. A symbolic analysis of relay and switch-
ing circuits. Transactions of the American Institute of Electri-
cal Engineers 57(12):713-723.

Winslett, M. 1988. Reasoning about action using a possi-
ble models approach. In Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI-1988), 89-93.

Wu, M.; Zhang, D.; and Zhang, M. 2011. Language Split-
ting and Relevance-Based Belief Change in Horn Logic. In
Proceedings of the Twenty-Fifth AAAI Conference on Artifi-
cial Intelligence (AAAI-2011), 268-274.

Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Proper-
ties and applications. Artificial Intelligence 173(16-17):1525—
1537.

