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Abstract

Knowledge graphs are useful for many artificial intelligence
(AI) tasks. However, knowledge graphs often have missing
facts. To populate the graphs, knowledge graph embedding
models have been developed. Knowledge graph embedding
models map entities and relations in a knowledge graph to a
vector space and predict unknown triples by scoring candi-
date triples. TransE is the first translation-based method and
it is well known because of its simplicity and efficiency for
knowledge graph completion. It employs the principle that
the differences between entity embeddings represent their re-
lations. The principle seems very simple, but it can effectively
capture the rules of a knowledge graph. However, TransE has
a problem with its regularization. TransE forces entity em-
beddings to be on a sphere in the embedding vector space.
This regularization warps the embeddings and makes it dif-
ficult for them to fulfill the abovementioned principle. The
regularization also affects adversely the accuracies of the link
predictions. On the other hand, regularization is important be-
cause entity embeddings diverge by negative sampling with-
out it. This paper proposes a novel embedding model, TorusE,
to solve the regularization problem. The principle of TransE
can be defined on any Lie group. A torus, which is one of
the compact Lie groups, can be chosen for the embedding
space to avoid regularization. To the best of our knowledge,
TorusE is the first model that embeds objects on other than a
real or complex vector space, and this paper is the first to for-
mally discuss the problem of regularization of TransE. Our
approach outperforms other state-of-the-art approaches such
as TransE, DistMult and ComplEx on a standard link pre-
diction task. We show that TorusE is scalable to large-size
knowledge graphs and is faster than the original TransE.

1 Introduction

Knowledge graphs are one of the ways to describe facts of
the real world in a form that a computer can easily process.
Knowledge graphs such as YAGO (Suchanek, Kasneci, and
Weikum 2007), DBpedia (Auer et al. 2007) and Freebase
(Bollacker et al. 2008) are used for many tasks, such as ques-
tion answering, content tagging, fact checking, and knowl-
edge inference. Although some knowledge graphs contain
millions of entities and billions of facts, they still might be
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incomplete and have missing facts. Hence, it is required to
develop a system that can complete knowledge graphs auto-
matically.

In a knowledge graph, facts are stored in the form
of a directed graph. Each node represents an entity
in the real world and each edge represents the rela-
tion between entities. A fact is described by a triple
(h, r, t), where h and t are entities and r is a relation
directed from h to t. Some relations are strongly re-
lated. For example, the relation HasNationality is re-
lated with the relation CityOfBirth. Hence, if the triple
(DonaldJohnTramp, HasNationality, U.S.) is not stored
while (DonaldJohnTramp, CityOfBirth, NewYorkCity)
is stored in a knowledge graph, the former can be easily pre-
dicted because most people born in New York City have the
nationality of U.S. Many kinds of models have been devel-
oped to predict unknown triples and to complete knowledge
graphs through a link prediction task to predict the missing
h or t.

TransE, the original translation-based model for link pre-
diction tasks, was proposed by Bordes et al. (2013) and it
is well known because of its effectiveness and simplicity.
TransE embeds triples and relations on a real vector space
with the principle h + r = t, where h, r and t are em-
beddings of h, r and t, respectively, if the triple (h, r, t) is
stored in the knowledge graph used as training data. Al-
though it is very simple, the principle can capture the struc-
ture of a knowledge graph efficiently. Many extended ver-
sions of TransE have been proposed. These include TransH
(Wang et al. 2014), TransG (Xiao, Huang, and Zhu 2016)
and pTransE (Lin et al. 2015a). On the other hand, vari-
ous types of bilinear models, such as DistMult (Yang et al.
2014), HolE (Nickel, Rosasco, and Poggio 2016) and Com-
plEx (Trouillon et al. 2016), have been proposed recently
and they achieve high accuracy on link prediction tasks with
the metric HITS@1. The TransE model does not yield good
results with the metric HITS@1, but TransE is competitive
with bilinear models with the metric HITS@10. We find the
reason for the TransE results is its regularization. TransE
forces entity embeddings to be on a sphere in the embed-
ding vector space. It conflicts with the principle of TransE
and warps embeddings obtained by TransE. In this way, it
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affects adversely the accuracies of the link predictions, while
it is required for TransE because embeddings diverge unlim-
itedly without it.

In this paper, we propose a model that does not require
any regularization but has the same principle as TransE
by embedding entities and relations on another embedding
space, a torus. Several characteristics are required for an em-
bedding space to operate under the strategy of TransE. A
model under the strategy can actually be defined well on a
Lie group of mathematical objects. By choosing a compact
Lie group as an embedding space, embeddings never diverge
unlimitedly and regularization is no longer required. Thus,
we choose a torus, one of the compact Lie groups, for an
embedding space and propose a novel model, TorusE. This
approach allows the model to learn embeddings, which fol-
low the TransE principle more precisely, and outperforms
alternative approaches for link prediction tasks. Moreover,
TorusE is more scalable to large-size knowledge graphs
because its complexity is the lowest compared with other
methods, and we show that it is faster than TransE empiri-
cally because of the reduced calculation times without regu-
larization.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work for link prediction tasks.
In Section 3, we briefly introduce the original translation-
based method, TransE, and mention its regularization flaw.
Then, the conditions required for an embedding space are
analyzed to find another embedding space. In Section 4, we
propose a new approach to obtain embeddings by changing
an embedding space to a torus. This approach overcomes the
regularization flaw of TransE. In Section 5, we present an
experimental study in which we compare our method with
baseline results of benchmark datasets. In Section 6, we con-
clude this paper.

2 Related Work

Various models have been proposed for knowledge graph
completion through the link prediction task. These models
can be roughly classified into three types: translation-based
models, bilinear models and neural network-based models.
We describe notations here to discuss related work. h, r and
t denote a head entity, relation, and a tail entity, respectively.
The bold letters h, r and t denote embeddings of h, r and t,
respectively, on an embedding space Rn. E and R represent
sets of entities and relations, respectively.

2.1 Translation-based Models

The first translation-based model is TransE (Bordes et al.
2013). It has gathered attention because of its effective-
ness and simplicity. TransE was inspired by the skip-gram
model (Mikolov et al. 2013a; 2013b), in which the dif-
ferences between word embeddings often represent their
relation. Hence, TransE employs the principle h + r =
t. This principle efficiently captures first-order rules such
as “∀e1, e2 ∈ E, (e1, r1, e2) → (e1, r2, e2)”, “∀e1, e2 ∈
E, (e1, r1, e2) → (e2, r2, e1)” and “∀e1, e2 ∈ E, {∃e3 ∈
E, (e1, r1, e3) ∧ (e3, r2, e2)} → (e2, r3, e1)”. The first one is
captured by optimizing embeddings so that r1 = r2 holds,

the second one is captured by optimizing embeddings so that
r1 = −r2 holds, and the third one is captured by optimizing
embeddings so that r1 + r3 = r2 holds. It was pointed by
many researchers that the principle was not suitable to rep-
resent 1-N, N-1 and N-N relations. Some models that extend
TransE have been developed for solving those problems.

TransH (Wang et al. 2014) projects entities on the hyper-
plane corresponding to a relation between them. Projection
makes the model more flexible by choosing components of
embeddings to represent each relation. TransR (Lin et al.
2015b) has a matrix for each relation and the entities are
mapped by linear transformation that multiplies the matrix
to calculate the score of a triple. TransR is considered as
generalized TransH because projection is one of linear trans-
formations. These models have an advantage in power of ex-
pression comparing with TransE. At the same time, however,
they easily become overfitted.

TransE can be extended in other ways. In TransG (Xiao,
Huang, and Zhu 2016), a relation contained in a knowledge
graph can have multiple meanings, and so a relation is repre-
sented as multiple vectors. pTransE (Lin et al. 2015a) takes
relation paths between entities into account to calculate the
score of a triple. A relation path is represented by the sum-
mation of each relation in a path.

2.2 Bilinear Models

Recently, bilinear models have yielded great results of link
prediction. RESCAL (Nickel, Tresp, and Kriegel 2011) is
the first bilinear model. Each relation is represented by an
n-by-n matrix and the score of triple (h, r, t) is calculated by
a bilinear map that corresponds to the matrix of the relation
r and whose arguments are h and t. Hence, RESCAL is also
the most generalized bilinear model.

Extensions of RESCAL have been proposed by restricting
bilinear functions. DistMult (Yang et al. 2014) restricts the
matrices representing relations to diagonal matrices. Dist-
Mult makes the model easy to train and eliminates the re-
dundancy. However, it also has the problem that the scores
of (h, r, t) and (t, r, h) are the same. To solve this problem,
ComplEx (Trouillon et al. 2016) uses complex numbers in-
stead of real numbers and takes the conjugate of the embed-
ding of the tail entity before calculating the bilinear map.
The score of the triple is the real part of the output of the
bilinear map.

Bilinear models have more redundancy than translation-
based models and so easily become overfitted. Hence, em-
bedding spaces are limited to low-dimensional space. This
might be a problem in a huge knowledge graph that contains
large numbers of entities, because high-dimensional space
is required to embed the entities so that they are adequately
distinguished.

2.3 Neural Network-based Models

Neural network-based models have layers and an activa-
tion function like a neural network. Neural Tensor Network
(NTN) (Socher et al. 2013) has a standard linear neural net-
work structure and a bilinear tensor structure. This can be
considered as a generalization of RESCAL. The weight of
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the network is trained for each relation. ER-MLP (Dong et
al. 2014) is a simplified version of NTN.

Neural network-based models are the most expressive
models among the three categories because they have a large
number of parameters. Hence, they can possibly capture
many kinds of relations but, at the same time, they tend to
overfit training data the most easily.

3 TransE and Its Flaw

In this section, we explain TransE (Bordes et al. 2013) in
detail and show its regularization flaw. In the latter part of
this paper, we propose a novel model that employs a similar
strategy to TransE that overcomes the flaw.

The algorithm of TransE consists of three main parts as
follows:

• Principle: TransE learns embeddings so that h + r = t
holds if (h, r, t) ∈ Δ, where Δ denotes the set of true
triples. To measure how much a triple embedding follows
the principle, a scoring function f is used. Usually L1 or
the square of the L2 norm of h+r− t is used as f (h, r, t). In
this case, f (h, r, t) = 0 means h + r = t holds completely.

• Negative Sampling: With only the principle, TransE learns
the trivial solution that all entity embeddings are the same
and all relation embeddings are 0. Hence, negative triples
are required. Usually a knowledge graph contains only
positive triples, so TransE makes a negative triple by
changing the head or the tail entity at random for each true
triple. This is called negative sampling. TransE learns em-
beddings so that f (h′, r, t′) gets larger if (h′, r, t′) ∈ Δ′(h,r,t),
where (h, r, t) ∈ Δ and Δ′(h,r,t) = {(h′, r, t)|h′ ∈ E, h′ �
h} ∪ {(h, r, t′)|t′ ∈ E, t′ � t}.
• Regularization: To not allow embeddings to diverge un-

limitedly, regularization is needed. TransE employs nor-
malization as regularization. Embeddings of entities are
normalized so that their magnitude becomes 1 in each step
of learning. That is, for every entity e ∈ E, e ∈ S n−1 ⊂ Rn,
where S n−1 is an n-1 dimensional sphere.

TransE exploits margin loss. The objective function is de-
fined as follows:

L =
∑

(h,r,t)∈Δ

∑
(h′,r,t′)∈Δ′(h,r,t)

[γ + f (h, r, t) − f (h′, r, t′)]+ (1)

where [x]+ denotes the positive part of x and γ > 0 is a mar-
gin hyperparameter. TransE is trained by using stochastic
gradient descent.

All three parts are necessary if entities and relations are
embedded on a real vector space. However, the principle
and regularization conflict during training, because for each
e ∈ E and r ∈ R, e + r � S n−1 almost always holds.
Hence, the principle h + r = t is rarely realized in most
cases, as shown in Figure 1. In this figure, it is assumed that
(A, r, A′), (B, r, B′) and (C, r,C′) hold. The points represent
the entity embeddings and the arrows represent the embed-
ding of r. Embeddings of (A, r, A′) are obtained so that they
follow the principle completely. However, B + r and C + r
are out of the sphere and B′ and C′ are regularized on it.

A

A’

B

B’

C

C’

Figure 1: The image of embeddings obtained by TransE
when n is 2. It is assumed that (A, r, A′), (B, r, B′) and
(C, r,C′) hold.

The regularization warps embeddings and they do not sat-
isfy the principle. As a result, it becomes difficult to predict
new triples more accurately.

4 TorusE

In this section, our aim is to change the embedding space to
solve the regularization problem while employing the same
principle used in TransE. We first consider the required con-
ditions for an embedding space. Then, a Lie group is intro-
duced as candidate embedding spaces. After that, we pro-
pose the novel model, TorusE, which embeds entities and
relations without any regularization on a torus. The torus is
a compact Lie group.

4.1 Required Conditions for Embedding Space

To avoid the problem of regularization shown in Figure 1,
we need to change the embedding space from Rn, which
is an open manifold, to a compact space, because any real
value continuous functions on a compact space are bounded.
It means embeddings never diverge unlimitedly because the
scoring function is also bounded. This allows us to avoid
regularization and solve the conflict between the principle
and the regularization during training. Some conditions are
required for an embedding space according to the embed-
ding strategy of TransE. We list them as follows.

• Differentiability: The model is trained by gradient descent
so that the object function is required to be differentiable.
Hence, an embedding space has to be a differentiable
manifold.

• Calculation possibility: It is required that the principle can
be defined on an embedding space. To do so, an embed-
ding space has to be equipped with operations such as
summation and subtraction. Hence, an embeddings space
needs to be an Abelian group and the group operation has
to be differentiable.

• Definability of a scoring function: To construct an objec-
tive function for training the model, a scoring function is
required to be defined on it.
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If a space fills these three conditions and is compact, we
can use it as an embedding space and solve the regulariza-
tion flaw of TransE. Actually, an Abelian Lie group fills all
conditions required for embedding spaces with the TransE
strategy. We explain the Lie group in the next section.

4.2 A Lie Group

The foundation of the theory of Lie groups was established
by Sophus Lie. Lie groups, which play various roles in
physics and mathematics, are defined as follows.

Definition 1 A Lie group is a group that is also a finite-
dimensional smooth manifold, in which the group operations
of multiplication and inversion are smooth maps.

A Lie group is called an Abelian Lie group when the oper-
ation of multiplication is commutative. For an Abelian Lie
group, we denote μ(x, y), μ(x, y−1) and x−1 by x+y, x−y and
−x, respectively, where μ is the group operation.

An Abelian Lie group satisfies the Differentiability and
Calculation possibility conditions from the definition. It is
also known that distance function d can be defined on any
manifold. By defining a scoring function f (h, r, t) = d(h +
r, t), an Abelian Lie group also satisfies the Definability. A
real vector space as an embedding space of TransE is an
example of an Abelian Lie group, because it is a manifold
and an Abelian group with ordinary vector addition as the
group operation. TransE also uses the distance function as
the scoring functions derived from the norms as the vector
space. However, TransE requires regularization because the
real vector space is not compact.

4.3 A Torus

We show any Abelian Lie group can be used as an embed-
ding space for the translation-based strategy. We introduce
a torus, which is a compact Abelian Lie group, and define
distance functions on the torus. The definition of a torus is
as follows.

Definition 2 An n-dimensional torus T n is a quotient space,
R

n/ ∼= {[x]|x ∈ Rn} = {{y ∈ Rn|y ∼ x}|x ∈ Rn}, where ∼ is
an equivalence relation and y ∼ x if and only if y − x ∈ Zn.

Through the natural projection π : Rn → T n, x �→ [x], the
topology and the differential structure of a torus is derived
from the vector space. Note that g : T n → S n ⊂ Cn, [x] �→
exp(2πix) is a diffeomorphism and T n is diffeomorphic to
S 1 × S 1 × · · · × S 1︸������������������︷︷������������������︸

n

. The group operation μ is also derived

from the original vector space: μ([x], [y]) = [x] + [y] �
[x + y]. A torus is a compact Abelian Lie group with these
structures and group operation. We define distance functions
in three ways:

• dL1 : A distance function dL1 on T n is derived from
the L1 norm of the original vector space by defining
dL1 ([x], [y]) = min(x′,y′)∈[x]×[y] ||x′ − y′||1.

• dL2 : A distance function dL2 on T n is derived from
the L2 norm of the original vector space by defining
dL2 ([x], [y]) = min(x′,y′)∈[x]×[y] ||x′ − y′||2.

Figure 2: The graphs of scoring functions and their deriva-
tives for TorusE when n = 1. f ′L1

, f ′L2
and f ′eL2

are derivatives
of the scoring functions.

• deL2 : T n can be embedded on Cn by g. A distance func-
tion deL2 on T n is derived from the L2 norm of the Cn by
defining deL2 ([x], [y]) = ||g([x]) − g([y])||2.

These distance functions are used to define scoring functions
for our model shown in the following section.

4.4 TorusE

TransE assumes embeddings of entities and relations on Rn.
If (h, r, t) holds for TransE, embeddings should follow the
principle h+ r = t; otherwise, h+ r should be far away from
t. Our proposed method, TorusE, follows the principle also,
but the embedding space is changed from a vector space to
a torus. To explain the strategy, we define scoring functions
in three ways that exploit the distance functions described in
the previous section:
• fL1 : We define a scoring function fL1 (h, r, t) as 2dL1 ([h] +

[r], [t]).
• fL2 : We define a scoring function fL2 (h, r, t) as 4d2

L2
([h] +

[r], [t]).
• feL2 : We define a scoring function feL2 (h, r, t) as d2

eL2
([h]+

[r], [t])/4.
These scoring functions are normalized so that their maxi-
mum values are n. These scoring functions and their deriva-
tives when n = 1 are illustrated in Figure 2. fL1 , fL2 and feL2

look similar; however their derivatives are surprisingly dif-
ferent. f ′L1

is constant, f ′L2
has a vanishing point at x = 0,

and f ′eL2
has two vanishing points at x = 0 and x = 0.5.

These affect the obtained embeddings through gradient de-
scent learning.

For TorusE, each entity e ∈ E and each relation r ∈ E are
represented by [e] ∈ T n and [r] ∈ T n, respectively. Then, the
principle is rewritten as follows:

[h] + [r] = [t] (2)

and embeddings are obtained by minimizing the following
objective function:

L =
∑

(h,r,t)∈Δ

∑
(h′,r,t′)∈Δ′(h,r,t)

[γ + fd(h, r, t) − fd(h′, r, t′)]+ (3)

where [x]+ denotes the positive part of x, γ > 0 is a mar-
gin hyperparameter and fd ∈ { fL1 , fL2 , feL2 }. TorusE does not
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Table 1: Scoring functions for triple (h, r, t), parameters and complexity of related work.

Model Scoring Function Parameters Otime Ospace

TransE ||h + r − t||i h, r, t ∈ Rn O(n) O(n)
TransH ||(h − wT

r hwr) + r − (t − wT
r twr)||i h, r, t,wr ∈ Rn O(n) O(n)

TransR ||Wr h + r −Wr t||i h, t ∈ Rn, r ∈ Rk,Wr ∈ Rk×n O(kn) O(kn)
RESCAL hTWr t h, t ∈ Rn,Wr ∈ Rn×n O(n2) O(n2)
DistMult hTdiag(r)t h, t, r ∈ Rn O(n) O(n)
ComplEx Re(hTdiag(r)t) h, t, r ∈ Cn O(n) O(n)

NTN uT
r tanh(hTW[1:k]

r t + Vr,hh + Vr,t t + br)
h, t ∈ Rn,ur, br ∈ Rk,

W[1:k]
r ∈ Rk×n×n,Vr,h,Vr,t ∈ Rk×n O(kn2) O(kn2)

TorusE min(x,y)∈([h]+[r])×[t]||x − y||i [h], [r], [t] ∈ T n O(n) O(n)

Figure 3: The image of embeddings on 2-dimensional torus
obtained by TorusE. Embeddings of the triples (A, r, A′) and
(B, r, B′) are illustrated. Note that [A′] − [A] and [B′] − [B]
are similar on the torus.

require any regularization and calculation time for regular-
ization, so it is expected to be more scalable than TransE.
The image of embeddings obtained by TorusE are shown in
Figure 3.

The scoring functions and the complexity of related mod-
els are listed in Table 1. Although ComplEx is a bilinear
model and TorusE is a translation-based model, they have
strong similarity. By mapping [h], [r] and [t] on Cn by
g and identifying g([r]) as a corresponding diagonal ma-
trix, −2 feL2 (h, r, t) + 1 = fComplEx(h, r, t) holds. Bilinear
models are trained to maximize the scores of triples while
translation-based models are trained to minimize them.
Hence, TorusE with feL2 can be considered as a more re-
stricted and less redundant version of ComplEx on T n ⊂ Cn.

Note that some extensions of TransE, such as TransG and
pTransE, can be applied directly to TorusE by changing the
embedding space from a real vector space to a torus.

Calculation Technique of a Torus Each embedding is
represented by a point on a torus [x]. Note that x itself is an
n-dimensional vector and we use it to represent a point of the
torus on a computer. By taking a fractional part of a vector,
an embedding becomes one to one with a point of the torus
and we can calculate the scoring functions. For example, we
show the calculation procedure of dL1 . Let π f rac : R→ [0, 1)
be the function taking a fractional part. Then, the distance is

calculated as follows:

dL1 ([x], [y]) =
n∑

i=1

min(|π f rac(xi) − π f rac(yi)|, 1 − |π f rac(xi) − π f rac(yi)|)

For example, let x and y be 3.01 and 0.99 ∈ R1. Then
|π f rac(x1) − π f rac(y1)| = 0.98 and 1 − |π f rac(xi) − π f rac(yi)| =
0.02 hold. Hence we obtain dL1 ([x], [y]) = 0.02 Other dis-
tance functions are calculated in a similar way.

5 Experiments

We evaluated TorusE from two perspectives: one is its scal-
ability and the other is the accuracies of the link prediction
tasks.

5.1 Datasets

The experiments are conducted on two benchmark datasets:
WN18 and FB15K (Bordes et al. 2013). These datasets are
respectively extracted from real knowledge graphs: Word-
Net (Miller 1995) and Freebase (Bollacker et al. 2008).
Many researchers use these datasets to evaluate models for
knowledge graph completion. The details of the datasets are
shown in Table 2.

Table 2: Statistics of the datasets.
Dataset # Ent # Rel # Train # Valid # Test
WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071

5.2 Experimental Setup

Evaluation Protocol To evaluate the scalability of
TorusE, we measured the time it took to train TorusE for
one epoch by changing the dimensions of the model.

We also conduct the link prediction task in the same way
reported in the paper of TransE(Bordes et al. 2013). For each
test triple, the head (or tail) is replaced by each entity. Then
the score of each corrupted triple is calculated by the mod-
els, and the rankings of entities are obtained according to
the scores. We refer to these as “raw” rankings. However,
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Figure 4: Calculation time of TorusE and TransE on WN18 and FB15K

these rankings can be flawed when the relation and the tail
have many correct entities. In this case, the entity of the test
triple might be ranked lower unfairly by other correct enti-
ties above it. To avoid such situations as much as possible,
Bordes et al. employ another ranking method, referred to as
“filtered” ranking. A filtered ranking is obtained by eliminat-
ing entities whose corresponding triple (except the target test
triple) is contained in the training, validation or test datasets.

Models are evaluated by the Mean Reciprocal Rank
(MRR) and HITS@n of these rankings. HITS@n is the pro-
portion of test triples whose entity is ranked in the top n in
corresponding rankings.

Optimization and Implementation Details In our imple-
mentation, TorusE was optimized by stochastic gradient de-
scent, as for TransE. For each epoch, we randomly sepa-
rated training triples into one-hundred groups, and embed-
ding parameters were updated for each group. Because the
datasets contained only positive triples, we employed the
”Bern” method (Wang et al. 2014) for negative sampling.
Regularization is not required, in contrast with the other em-
bedding methods.

We conducted a grid search to find suitable hyperpa-
rameters for each dataset. The dimension was fixed to
10000, because a model with a higher dimension yields a
better result in practice. We selected the margin γ from
{2000, 1000, 500, 200, 100} and the learning rate α from
{0.002, 0.001, 0.0005, 0.0002, 0.0001}. Scoring functions fd
were selected from { fL1 , fL2 , feL2 }. The best models were se-
lected by the MRR with “filtered” rankings on the validation
set.

The optimal configurations were as follows: γ =
2000, α = 0.0005 and fd = fL1 for WN18; γ = 500, α =
0.001 and fd = feL2 for FB15K. The results in the following
section are from the models with these configurations.

5.3 Results

Scalability of TorusE The calculation times of TorusE
and TransE are shown in Figure 4. They are measured by us-
ing a single GPU (NVIDIA Titan X). The scoring functions
of TorusE were fL1 for WN18 and feL2 for FB15K, and the
scoring functions of TransE were L2 norm for both datasets
in this experiment. The complexities of TorusE and TransE

are theoretically the same and the lowest among all models
at O(n). For both models, the calculation time is considered
a first-order equation of the dimension. However, a large gap
exists between the empirical calculation times of these mod-
els.

For the WN18 dataset, TransE takes 55.6 seconds to com-
plete one epoch when the dimension is 10,000. On the
other hand, TorusE takes 4.0 seconds when the dimension
is 10,000, and so TorusE is eleven times faster than TransE.
This is mainly due to the regularization of TransE, because
the normalizing calculations of all entity embeddings are
time-consuming.

For FB15K, TransE takes 29.4 seconds to complete one
epoch and TorusE takes 16.8 seconds when the dimension is
10,000, and so TorusE is faster than TransE. FB15K contains
more triples than WN18 does. Hence, TorusE takes more
time for FB15K than WN18. However, TransE takes less
time. This is because of the number of entities contained in
the datasets. The number of entities of WN18 is much more
than the number of entities of FB15K.

These models were trained for 500 epochs in an ex-
periment. So, the total time was about 30 minutes and 2
hours 30 minutes for TorusE to finish training on WN18
and FB15K respectively. We also measured the calculation
times of ComplEx with the implementation by Trouilon et
al(2017). The calculation times of ComplEx were 1 hour 15
minutes and 3 hours 50 minutes on each dataset with 150 and
200 dimensions on the same GPU, and TorusE was faster
than it.

Accuracies of the Link Prediction Tasks The results of
the link prediction tasks are shown in Table 3. Our method,
TorusE, outperforms all other models on all metrics except
HITS@10 on FB15K. TorusE is second even on FB15K and
the difference between TorusE and the best model, Com-
plEx, is only 0.8%.

As is shown, TransE and extended models of TransE
do not yield good results on HITS@1, although they per-
form well on HITS@10. We believe that this phenomenon
is caused by regularization of the models, even though the
principle of TransE has the potential to represent real knowl-
edge and to achieve knowledge graph completion. We took
this approach to change the embedding space in order to
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Table 3: Results of the link prediction tasks by Mean Reciprocal Rank (MRR) and HITS@n on WN18 and FB15K datasets.
MRRs are calculated by using the raw and filtered ranking and HITS@n are calculated by using the filtered ranking. The
dimension of TransE was set to 10,000, and the best hyperparameters were chosen by using the validation set. The results of
TransR and RESCAL were reported by Nickel et al. (2016), the results of DistMult and ComplEx were reported by Trouillon
et al. (2016)

WN18 FB15K

MRR HITS@ MRR HITS@

Model Filtered Raw 1 3 10 Filtered Raw 1 3 10
TransE 0.397 0.306 0.040 0.745 0.923 0.414 0.235 0.247 0.534 0.688
TransR 0.605 0.427 0.335 0.876 0.940 0.346 0.198 0.218 0.404 0.582

RESCAL 0.890 0.603 0.842 0.904 0.928 0.354 0.189 0.235 0.409 0.587
DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

TorusE 0.947 0.619 0.943 0.950 0.954 0.733 0.256 0.674 0.771 0.832

Table 4: Details of “filtered” MRR on WN18. The results are
listed separately for each relation contained in the dataset.

Relation name TorusE ComplEx TransE
hypernym 0.957 0.953 0.376
hyponym 0.956 0.946 0.379

member meronym 0.931 0.921 0.433
member holonym 0.942 0.946 0.438
instance hypernym 0.961 0.965 0.680
instance hyponym 0.961 0.945 0.626

has part 0.944 0.933 0.417
part of 0.947 0.940 0.415

member of domain topic 0.944 0.924 0.502
synset domain topic of 0.921 0.930 0.536

member of domain usage 0.917 0.917 0.270
synset domain usage of 0.940 1.000 0.182

member of domain region 0.885 0.865 0.358
synset domain region of 0.919 0.919 0.197

derivationally related form 0.951 0.946 0.362
similar to 1.000 1.000 0.242

verb group 0.974 0.936 0.283
also see 0.626 0.603 0.257

avoid regularization. Therefore, TorusE can perform well on
HITS@1. The differences between TorusE and TransE for
HITS@1 are 90.3% on WN18 and 42.7% on FB15K.

Recently, bilinear models such as DistMult and ComplEx
have performed far better on HITS@1. TorusE outperforms
them also. The accuracy of ComplEx on WN18 is already
very high at 93.6%, but the accuracy of TorusE is higher at
94.3%. The difference is more noticeable on FB15K. TorusE
largely outperforms on HITS@1 and yields the score of
67.4%. As mentioned in the section of related work, TorusE
can be viewed as the restricted version of ComplEx. Hence,
TorusE has less redundancy than ComplEx. We think this
lesser redundancy accounts for the difference of accuracy.

The details of the MRR for each relation on WN18 are
shown in Table 4. For many relations, TorusE performs equal
to or better than ComplEx. As noted, the problem of the prin-
ciple of TransE is that it cannot deal with 1-N, N-1 or N-N
relations. However, it seems TorusE can predict entities cor-

rectly for such relations, even though it employs the same
principle as TransE. We think this is because the principle
itself is not actually problematic. It is definitely impossible
to follow the principle completely on such relations, but to
follow the principle completely is not necessary to deal with
the link prediction task. Because the task employs rankings
of entities, a model for the task is adequate when the correct
entities are located in higher ranks than the incorrect entities
are, even if the correct entities are not at the top ranks.

We did not conduct a grid search with changing dimen-
sions of TorusE. Because a preparatory experiment showed
that a higher dimension seemed to yield a better result for
the TorusE model. We think these results occur because the
principle is enough restricted and the model is hard to over-
fit to a dataset, and the high-dimensional embedding space
allows the model to represent embeddings more richly. This
gives us a good guideline to set the hyperparameters. We set
the dimension as high as possible and then find the optimal
margin and the optimal learning rate.

6 Conclusions and Future Work

Our contributions in this paper are as follows.
• We pointed out the problem of TransE: regularization.

Regularization conflicts with the principle and makes the
accuracy of the link prediction task lower.
• To solve this problem, we aimed to change the embed-

ding space by using the same principle as TransE. By em-
bedding on a compact space, regularization is no longer
required. The required condition for an embedding space
was clarified by finding a suitable space.
• We showed that a Lie group fills all conditions required.

Then, we introduced a torus, which is a compact Lie
group that can be easily realized.
• We proposed the novel model, TorusE, which is a model

that embeds entities and relations on a torus. Unlike other
models, it does not employ any regularization for embed-
dings. TorusE outperformed state-of-the-art models for
link prediction tasks on the WN18 and FB15K datasets
and it was experimentally shown to be faster than TransE.
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In future work, we will consider other embedding spaces,
because we only employed a torus, even though we showed
all Lie groups can be used as an embedding space. As an-
other approach, we will try to combine TorusE with other
extended models of TransE. Some of these models can be
directly applied to TorusE by changing an embedding space
from a vector space to a torus.

Moreover, we have to consider more general models to
complete a knowledge graph which can retrieve informa-
tion from other materials than triples, because sometimes
information is not included training triples to predict a re-
quired triple. There are models extracting triples from text
such as OpenIE models (Fader, Soderland, and Etzioni 2011;
Mausam et al. 2012; Angeli, Premkumar, and Manning
2015) and word embedding-based model (Ebisu and Ichise
2017). We think we can develop a more general model com-
bining with these methods.
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