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Abstract

Stochastic programming is concerned with decision making
under uncertainty, seeking an optimal policy with respect to
a set of possible future scenarios. This paper looks at mul-
tistage decision problems where the uncertainty is revealed
over time. First, decisions are made with respect to all pos-
sible future scenarios. Secondly, after observing the random
variables, a set of scenario specific decisions is taken. Our
goal is to develop algorithms that can be used as a back-end
solver for high-level modeling languages. In this paper we
propose a scenario decomposition method to solve multistage
stochastic combinatorial decision problems recursively. Our
approach is applicable to general problem structures, utilizes
standard solving technology and is highly parallelizable. We
provide experimental results to show how it efficiently solves
benchmarks with hundreds of scenarios.

Introduction

Machine learning and statistical inference methods are in-
creasingly popular to create value from data, for example in
forecasting customer demand, patient flow in healthcare, or
travel times in transport systems. However, to harness the
real value of predictions, one has to understand how to use
this information to improve decision making. Importantly,
predictions are always subject to a certain confidence level.
In order to make realistic decisions, it is thus crucial to take
this inherent uncertainty into account.

Modeling uncertainty when solving real-world decision
problems is crucial for producing robust solutions. Often-
times, a substantial benefit results when describing deci-
sion problems with multiple time stages (Huang and Ahmed
2009). Examples of multistage problems are the man-
agement of inventory over multiple weeks with uncertain
customer demand, or production planning over a longer
time horizon with uncertain processing times or due dates.
Stochastic programming has been widely studied and ap-
plied as a framework to model and solve decision problems
where the uncertainty is independent of the decisions made
(Birge and Louveaux 2011).

Modeling frameworks, such as GAMS (McCarl, Meer-
aus, and Van der Eijk 2012), AIMMS (Bisschop and
Roelofs 2006), AMPL (Fourer, Gay, and Kernighan 1989)
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or MiniZinc (Nethercote et al. 2007), have been developed
to express deterministic decision problems (without pres-
ence of uncertainty). These frameworks enable a user to
simply express a decision problem, irrespective of the solv-
ing approach used to determine a solution. Once modeled,
a wide range of solver technologies (such as Mixed Inte-
ger Linear Programming or Constraint Programming) can be
used to find solutions. As mentioned by Watson, Woodruff,
and Hart (2012), the coherent chain of modeling and solv-
ing used for deterministic decision problems is not yet as
well developed for their stochastic counterparts, hindering
the widespread adoption of stochastic programming.

Over the last years, the mentioned modeling frameworks
have been extended to support decision models that are sub-
ject to uncertainty. The uncertainty is commonly expressed
using scenarios, where each scenario describes the stochas-
tic problem when all the random variables are fixed. Fur-
thermore, each scenario has a given probability of occur-
rence. Given a model of a stochastic problem, two solving
paradigms are generally available to find solutions. First, the
model can be transformed into the extensive form, the so
called deterministic equivalent (DE). The DE expresses all
scenarios together in one large model that can be solved by
standard Mixed Integer (MIP) or Constraint Programming
(CP) solvers. However, the DE does not scale well with
respect to the number of scenarios or decision stages, and
solving the DE is intractable for all but the smallest prob-
lem instances. Secondly, dedicated algorithms for stochas-
tic programs have been developed. These algorithms typi-
cally exploit the model structure of stochastic programs and
iteratively solve the decision problem. The publicly avail-
able solvers DECIS (Infanger 1999) and FortSP (Ellison,
Mitra, and Zverovich 2010) employ the L-Shaped method
(Van Slyke and Wets 1969), a variation of Benders decom-
position for solving stochastic programs. Watson, Woodruff,
and Hart (2012) propose to use Progressive Hedging (PH),
a scenario decomposition algorithm, as a back-end solver
for their modeling framework PySP. Both Progressive Hedg-
ing and the L-Shaped method are designed to solve prob-
lems with continuous variables and convex constraints; ex-
tensions exist that permit discrete variables.

The focus of this work is on scenario based multi-
stage stochastic optimization problems with a combinatorial
structure, i.e., discrete variables and nonlinear constraints
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in any stage of the problem. We propose a novel parallel
search algorithm that can solve stochastic multistage prob-
lems, based on two-stage approaches recently published by
Ahmed (2013). Our approach is based on standard solv-
ing technology (such as MIP or CP) and does not require
any specialized model reformulation, making our algorithm
a prime candidate for a back-end to high-level, expressive
modeling languages. Empirically, we demonstrate the effi-
ciency of our algorithm and show how it clearly outperforms
the DE.

Background
This section introduces first an example of a multistage
stochastic problem followed by the basic notation.

Example: Stochastic Facility Location

The classical facility location problem has many applica-
tions, such as deciding on where to open a warehouse in
a supply chain, determining the location of a database in a
computer network, or selecting the most appropriate ven-
dors (Arabani and Farahani 2012). We motivate our work us-
ing a multi-period stochastic facility location problem with
capacity constraints; Farahani et al. (2014) present a com-
prehensive review. The task is to open a number of facili-
ties, assign each customer to a single facility, whilst min-
imizing the combined cost of setting up facilities and dis-
tributing goods. The problem has multiple stages and the
number of customers (including locations) is uncertain and
revealed over time. The uncertainty is characterized using
scenarios, as shown in Fig. 1 for the three-stage case with
four scenarios. Each scenario describes a different set of cus-
tomers, which may have to be served in the future, e.g. the
green (V21) and red (V22) customers in stage 2. In the first
stage, before receiving information about the random vari-
ables (edges leaving V1), a set of facilities is opened (in this
example, only one facility is opened). In the second stage,
depending on the scenario, the customers are assigned to the
facilities already opened in stage one, and additional facil-
ities are opened to cater for extra customers in stage three
(node V21 and V22). Finally, in the third stage all customers
are assigned to the existing facilities, without opening new
ones. The objective is to minimize the expected (average)
cost over all scenarios.

Basic definitions

We build upon the notation we introduced earlier for the
two-stage case (Hemmi, Tack, and Wallace 2017), instead of
the notation used by Tarim, Manandhar, and Walsh (2006),
as it more naturally captures the concept of scenario decom-
position, the basis of the algorithm presented here. To sim-
plify the presentation, we assume equal probability for all
scenarios. This does not restrict the algorithm, as the proba-
bilities are only used to compute the objective function.

Note: Scenarios with non-uniform probabilities can be
unified by duplicating scenarios (e.g. if scenario A is twice
as likely as scenario B, duplicating A yields three equally
probable scenarios A,A′, B). However, an efficient imple-
mentation uses the correct probabilities rather than duplicat-
ing the scenarios.

Figure 1: A three-stage stochastic facility location problem

A stochastic optimization problem can be derived from a
deterministic optimization problem, which is defined as:
Definition 1 A (deterministic) constraint optimization
problem (COP) is a four-tuple P :

P = < V,D,C, f >

where V is a set of decision variables, D is a function map-
ping each element of V to a domain of potential values, and
C is a set of constraints. A constraint c ∈ C acts on vari-
ables xi, . . . , xj , termed scope(c) and specifies mutually-
compatible variable assignments σ from the Cartesian prod-
uct D(xi) × · · · ×D(xj). The quality of a solution is mea-
sured using the objective function f . We write scope(σ) for
the variables that appear in σ; σ(x) for the value of x in
assignment σ; σ|X for σ restricted to the set of variablesX;
and σ ∈ D means ∀x : σ(x) ∈ D(x). We write the union
of two assignments (with disjoint scopes) σ1 ∧ σ2. Further-
more, we define the set of solutions of a COP as the set of
assignments to decision variables from the domain D that
satisfy all constraints in C:

sol(P ) = {σ ∈ D | ∀c ∈ C : σ|scope(c) ∈ c}

Finally, an optimal solution is one that minimizes the objec-
tive function:

argmin
σ∈sol(P )

f(σ)

On the basis of a COP, we define now a two-stage Stochastic
Constraint Optimization Problem (SCOP). In the two-stage
case, a set of first-stage decisions is taken before the values
of the random variables are revealed, e.g. opening one facil-
ity in V1 in Fig. 1. Once the random variables are fixed, the
second-stage decisions are taken with respect to the realiza-
tion of the random variables. The objective is to find a first-
stage assignment that optimizes the expected value, which is
the average objective over all scenarios. We can define this
formally as:
Definition 2 A two-stage stochastic constraint optimiza-
tion problem (SCOP) is a tuple:

P̂ = < V,P1, . . . , Pk >
with Pi = < Vi, Di, Ci, fi > ∀i ∈ 1 . . . k : V ⊆ Vi
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Figure 2: A four-stage stochastic optimization problem.

with k scenarios where each Pi is a COP, and the set V
is the set of first-stage variables shared by all Pi. The set
of solutions for a two-stage SCOP is defined as the tuples
of Pi solutions that agree on the shared variables V . An
optimal solution to an SCOP minimizes the combined sum
of the individual objectives (and hence the average).
We now generalize the two-stage notation to multistage
SCOPs, where in each stage decisions are made with respect
to all possible future scenarios.
Definition 3 A multistage stochastic constraint optimiza-
tion problem (MSCOP) is a tuple:

P̂ = < V, [P̂1, . . . , P̂n] >
or < V,P >

where each P̂1 . . . P̂n is an MSCOP and V represents the
shared variables in the first (or root)-stage.
As the definition suggests, an MSCOP has a tree structure,
defined by the set of decision variables in each stage. The left
part of Fig. 2 displays the tree of a four-stage MSCOP. The
illustration consists of six scenarios, where each scenario de-
notes a path from the root to a leaf node. Note that a subset of
scenarios share parts of a path. For example, the paths of sce-
narios P1 and P2 only diverge after stage 3, but differ from
scenario P3–P6 already after stage 1. This implies that the
decisions taken in stage 1 are the same for all scenarios, yet
decisions taken in stage 2 and 3 are only consistent for sce-
narios P1 and P2, and likewise for the scenarios P3–P6. We
can therefore say that the four-stage problem is composed
of two three-stage problems and so on. We call this repre-
sentation the scenario tree of the problem. Vi,j represents
the shared variables of each stage. The arcs leaving the V
nodes describe a concrete instantiation of the random vari-
ables. For example, the random variables of the first stage
take on different sets of values, e.g. a different set of avail-
able customers in the facility location problem in Fig. 1.

A solution to a stochastic problem is a policy tree (Tarim,
Manandhar, and Walsh 2006), which specifies the decisions
to take in each stage depending on the preceding realization
of random variables.

Definition 4 A policy tree T is defined as

T =< σ, [T1, . . . , Tn] >

and contains an assignment of the root-stage variables σ
and a list of policy trees [T1, . . . , Tn], one for each branch
in the scenario tree. A policy tree T matches an MSCOP P̂ ,
if and only if the scope of each assignment σ matches the
variables of the corresponding scenario and stage:
T =< σ, [T1, . . . , Tn] > matches P̂ =< V, [P̂1, . . . , P̂m] >
iff scope(σ) = V with n = m, and for all i ∈ 1 . . . n, Ti

matches P̂i.
A path of a policy tree T and a matching P̂ is a tuple

< [σ1, . . . , σd], P >, collecting all the assignments σi from
the root to a leaf of T , and the COP P at the corresponding
leaf of P̂ . We write paths(T , P ) for this set of paths.

Finally, the set of solutions of an MSCOP P̂ is defined as
the matching policy trees for which each path is a solution
to the underlying COP P :

sol(P̂ ) = { T | T matches P̂ ,
∀ paths p = < [σ1, . . . , σd], P >

∈ paths(T , P̂ ) : σ1 ∧ · · · ∧ σd ∈ sol(P )}
An optimal solution to an MSCOP minimizes the sum of the
individual objectives:

argmin
T ∈sol(P̂ )

∑
<[σ1,...,σd],<V,D,C,f>>∈paths(T ,P̂ )

f(σ1 ∧ · · · ∧ σd)
Multiple methods for solving stochastic optimization prob-
lems have been developed in the past. The most straightfor-
ward approach is to transform the MSCOP into the Deter-
ministic Equivalent and use a standard MIP or CP solver to
find solutions. However, as mentioned before the DE lacks
scalability with regard to the number of scenarios and de-
cision stages. Alternatively, the SCOP can be decomposed
in one of two ways, see the work of Aldasoro et al. (2017)
for a more comprehensive summary. Firstly, the problem
can be relaxed by time stages and solved in a Benders de-
composition fashion. A master problem describes the stage
before the random variables are fixed and contains an ap-
proximation of the subsequent stages. The stage after the
random variables are fixed denotes the sub-problems, one
per scenario. Complete assignments to the master problem
are evaluated against the sub-problems to obtain feasible so-
lutions. This scheme is called L-shaped method (Birge and
Louveaux 2011). Secondly, the problem can be decomposed
by scenarios instead of time stages. This scenario decompo-
sition, which is introduced in the next section, is the basis
for the rest of this paper.

Recursive Evaluate and Cut

This section introduces the basic idea of scenario decompo-
sition before explaining our main contribution, a recursive
algorithm for solving stochastic multistage problems.

Scenario decomposition

In our definition of an SCOP or MSCOP, each scenario is
represented as a COP, and a solution to the overall problem
is a policy tree that consists of solutions to the individual sce-
nario COPs that agree on the values of the shared variables
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(consistency). Scenario decomposition algorithms relax the
requirement for all COPs to agree on the shared variables.
That way, each scenario COP can be solved independently of
the others. The solutions to the individual COPs potentially
violate the consistency conditions for the shared variables –
the optimal first-stage decision for one scenario might yield
a poor objective for another scenario. Scenario decomposi-
tion algorithms such as Progressive Hedging (Rockafellar
and Wets 1991), or indeed Ahmed’s algorithm (described
below), iteratively enforce convergence (i.e., consistency)
over the shared variables to obtain a feasible solution to the
MSCOP. Furthermore, the sum of the scenario objective val-
ues of the individual COPs yields a lower bound on the ob-
jective of the MSCOP, which can be used as a termination
condition.

Two-stage algorithm

Ahmed (2013) proposes a scenario decomposition algorithm
for two-stage SCOPs with binary first-stage variables and
arbitrary sub-problems (i.e., not restricted to linear con-
straints). The consistency constraints are relaxed, and the
scenario sub-problems are solved independently. The algo-
rithm comprises three main steps: obtain and evaluate candi-
dates solutions, then add cuts. In a previous paper (Hemmi,
Tack, and Wallace 2017), which improves Ahmed’s original
two-stage algorithm, we call this method Evaluate and Cut
(E&C). In the following, we present the two-stage algorithm
again and then extend it to support multiple stages.

Algorithm 1 explains in pseudo code how E&C works for
two-stage problems. First, the individual scenario COPs are
retrieved from the scenario tree (line 3). Each COP is solved
individually using a standard MIP or CP solver (line 8). The
solution σ denotes an assignment to the first- and second-
stage variables and the sum of the scenario objectives (obj)
yields a lower bound on the SCOP. The first-stage assign-
ments σV of each scenario COP, called candidates, are eval-
uated against all other scenarios by projecting their variable
assignment onto the first-stage variables of the other sce-
narios (line 16). Adding up the objectives that result from
the candidate evaluation yields an upper bound. Finally, the
evaluated first-stage assignment σV is cut (pruned) from the
search by adding a nogood constraint to each of the sce-
nario COPs (line 18). By iteratively repeating the three steps
– obtaining, evaluating and cutting candidates – the proce-
dure is guaranteed to find an optimal solution, as long as
the first-stage variables have finite domains. Completeness
holds because the lower bound is monotonically increas-
ing as a result of cutting off the evaluated solutions. Op-
timality is proven once the lower bound meets the upper
bound. The scenarios can be evaluated independently, allow-
ing highly parallelized implementations. Experiments con-
ducted by Ahmed (2013), Ryan, Rajan, and Ahmed (2016)
and ourselves (Hemmi, Tack, and Wallace 2017) confirm the
effectiveness of E&C.

Algorithm 1 Evaluate and Cut for Two-Stage Problems

1: procedure SOLVESCOP(P̂ )
2: Initialize: UB = ∞, LB = -∞, sol = null
3: [P1,. . . ,Pk] = GET SCENARIOS(P̂ )
4: while LB < UB do
5: LB = 0, S= ∅

6: % Find first-stage candidates
7: for i in 1..k do
8: < σ,obj> = SOLVE(Pi)
9: LB += obj

10: S ∪ = {σ|V }
11: % Evaluate first-stage candidates
12: % to obtain an upper bound
13: for σV ∈ S do
14: tUB = 0
15: for i in 1..k do
16: < ,obj> = SOLVE(Pi[C ∪ = {σV }])
17: tUB += obj
18: ADDNOGOOD(Pk,σV )
19: if tub < UB then
20: sol = σV
21: UB = tUB

22: return sol

Recursive multistage E&C

We will now extend the two-stage E&C algorithm into a re-
cursive multistage version, the main contribution of this pa-
per. Just like for two-stage problems, the MSCOP is decom-
posed into its individual scenario COPs. In contrast to the
two-stage case where each COP was composed of first- and
second-stage variables, the multistage COPs are composed
of d variables Vd, one for each stage. Since the scenarios
now form a tree, each scenario COP contains variables that
need to be consistent with some other scenarios. This is il-
lustrated in Fig. 2 on the right side, where for example the
COP for scenario 6 has variables V1, V22, V33 and V46; V1
needs to be consistent with all other scenarios; V22 with sce-
narios 3–6; V33 with scenarios 4–6; and V46 only exists in
scenario 6.

The main steps of the multistage algorithm are conceptu-
ally coherent with the two-stage algorithm. First, each sce-
nario COP is solved individually. The solution is an assign-
ment to all variables along the scenario path V1 − Vd. Sec-
ondly, the sum of all the scenario objectives yields a lower
bound. Thirdly, candidates are evaluated against all other
scenarios by invoking the algorithm recursively. Finally, as
in the two-stage case, each evaluated candidate is cut off
from the search by adding a nogood.

Algorithm 2 implements the recursive E&C procedure
and Fig. 3 supports the explanation. First, the MSCOP is un-
packed into scenario COPs (line 8). The decomposed COPs
are solved individually (line 13). This provides a set of root-
stage candidates. By root stage we refer to the uppermost
stage with non-fixed variables V, as specified in Fig. 3. The
sum of the COP objectives is a lower bound for the root
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Figure 3: Recursive multistage Evaluate and Cut.

stage. Then the candidates are evaluated against all child
MSCOPs, e.g. the initial 4-stage MSCOP is composed of
two 3-stage children (Fig. 3 top row). The child MSCOPs
are evaluated by recursively calling the solving procure with
each child P̂i (line 26). The root-stage candidates are passed
on to the children (as σV ∧ σP ), to fix the variables V of the
previous stages.

The recursive call returns the optimal solution Ti for each
child with respect to the current candidate (Fig. 3 bottom left
solid fill). After the recursion is finished, an upper bound for
the first stage with a resulting policy tree T is constructed.
The nogoods generated during the recursive call are valid
globally and stay active after the recursion has finished (line
32).

Implementation and Improvements

Memorization: At every recursion level, a candidate is
evaluated against all the scenarios that belong to the MSCOP
(Algorithm 2, line 13). At least one, and possibly many sce-
nario COPs already explored a solution that matches that
candidate, which results in redundant computations. This re-
dundancy can be avoided by memorizing and mapping solu-
tions appropriately.

Up-front candidate elimination: Before starting a recur-
sion, it is possible to compute a lower bound for each of
the candidates (Algorithm 2, line 19). If the lower bound of
a candidate exceeds the incumbent objective, a nogood ex-
cluding the assignment is directly added to all relevant sce-
narios without entering the recursion. Otherwise, the algo-
rithm proceeds as described earlier. Note that in the two-
stage case this optimization is in fact equivalent to the can-
didate evaluation, but for multistage problems it can lead to
significant time savings. Algorithm 2 is slightly simplified,
the actual implementation makes sure that the same candi-
date COP is not solved multiple times using memorization
as mentioned before.

Algorithm 2 Recursive Multistage Evaluate and Cut

1: procedure SOLVEMSCOP(P̂ , σp)
2: if <V,P> = P̂ then
3: < σ, obj > = SOLVE(P[C ∪ = {σp}])
4: T = < σ|V , [] >
5: return < T , obj >
6: else <V,[P̂1,. . . ,P̂n]> = P̂
7: Initialize: UB = ∞, LB = 0, S= ∅

8: [P1,. . . ,Pk] = GET SCENARIOS(P̂ )
9: while LB < UB do

10: % Obtain a lower bound
11: % and find candidate solutions
12: for i in 1..k do
13: < σ,obj> = SOLVE(Pi[C ∪ = {σp}])
14: LB += obj
15: S ∪ = {σ|V }
16: % IMPROVEMENT:
17: % Obtain candidate lower bound
18: % for up-front candidate elimination
19: CLB = GETCNDLB(S,[P1,. . . ,Pk],σp)
20: % Evaluate candidates
21: for σV ∈ S do
22: if CLB[σV ] < UB then
23: tUB = 0
24: for i in 1..n do
25: < Ti, obj > =
26: SOLVEMSCOP(P̂i, σV ∧ σp)
27: tUB += obj
28: if tub < UB then
29: UB = tUB

30: sol = < σV , [T1, .., Tn] >

31: for i in 1..k do
32: ADDNOGOOD(Pi,σV ∧ σp)
33: return sol< sol,UB >
34:
35: procedure GETCNDLB(S,[P1,. . . ,Pk],σp)
36: Initialize: CLB = new map from assignments to int
37: for σV ∈ S do
38: CLB[σV ] = 0
39: for i in 1..k do
40: < , obj > = SOLVE(Pi[C ∪ = {σV ∧ σp}])
41: CLB[σV ] += obj
42: return CLB

Experiments

To evaluate the performance of the proposed algorithm we
are using two variations of the stochastic facility location
problem introduced earlier. Equation 1 contains the model
for a single scenario. The goal is to minimize the combined
cost of setting up facilities and delivering goods to cus-
tomers, where fit denotes the cost of setting up facility yi
in stage t and ctij is the cost of delivering goods from facil-
ity i to customer j. Each customer is assigned to exactly one
facility that might be different in each stage. Ci is the total
capacity of facility i and dj the demand of customer j. The
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second variant of the problem contains an additional “bal-
ancing” constraint that enforces a similar customer count for
each facility. The stochastic problem takes on a form similar
to the scenario tree displayed in Fig. 2, yet with all MSCOPs
being fully balanced (the number of scenarios for each sub-
MSCOP is equal). Overall, the aim is to minimize the ex-
pected cost while satisfying the consistency constraints.

For the experiments we generated 15 four-stage instances
with 7 scenarios in stages 1 to 3, to end up with a total of 343
scenarios. For the 15 instances, we extracted further 9 prob-
lems, each containing a subset of the 343 scenarios, chosen
such that a balanced tree would result, e.g. 3 scenarios in
each stage would yield 27 scenarios. A total count of a 150
problems ranging from 27 to 343 scenarios was used for
each of the problem classes. The instance parameters are:
6 facilities, 150 customers, the total warehouse capacity is
60% higher that the maximal customer demand,K3 is set to
15 and K1 and K2 are set to 150. The balancing constraint
is only enforced in stage 4, as preliminary studies revealed
that the balancing constraint poses significant difficulties for
the solver (CPLEX) to solve the DE, even if enforced only
in one stage.

The instances were modeled using MiniZinc, both for the
DE and for the individual scenario COPs in E&C. The DE
was solved using CPLEX (12.6.3) parallel optimizer and
the recursive E&C was implemented in Python 2.7 with
CPLEX (12.6.3) as the sub-problem solver. The experiments
where carried out on a single computer that is part of the
MonARCH HPC Cluster provided by Monash eResearch
Centre with 16 physical cores (32 hyper threaded cores) at
3.20 GHz, with a time out of 1800 seconds per instance.

Basic model

min
{ ∑

t∈T,i∈I

fti ∗ yti +
∑
t∈T

∑
i∈I,j∈J

ctij ∗ xtij
}

s.t.
∑
i∈I

xtij = 1 ∀j ∈ J, t ∈ T

∑
j∈J

xtij ∗ dj ≤ Ci ∀i ∈ I, t ∈ T

xtij ≥ 0, yti = {0, 1} ∀t ∈ T, i ∈ I, j ∈ J
Balancing constraint∣∣∣
∑
j∈J

xti1j −
∑
j∈J

xti2j

∣∣∣ < Kt ∀i1, i2 ∈ I, t ∈ T

(1)

Results

Basic Model: Fig. 4 shows the time to solve the basic fa-
cility location problem using E&C and CPLEX on the DE.
As expected, CPLEX is able to solve the DE for small in-
stances in a reasonable time but does not scale well with the
number of scenarios, as witnessed by the large number of
instances that did not finish the search within the time out.
For example, when looking at the instances with 343 sce-
narios, 11 out of 15 problems did not finish within the given
1800 seconds. In contrast, the E&C algorithm always fin-

Average run time of 15 instances for each number of scenarios.
(*) number of instanced that either reach the time out of 1800 sec-
onds (top) or find and proof the optimal solution (bottom).
E&C never times out.

Figure 4: Time vs. number of scenarios (basic model)

ishes within the time out. The run time of E&C increases
close to linearly with the number of scenarios per instance.

Model with extra constraint: Fig. 5 shows the time to
solve the facility location problem with balancing con-
straints using E&C and CPLEX on the DE. The additional
constraints make it substantially harder for CPLEX to solve
the DE, with only few instances solved to optimality within
the time out. For most DE instances CPLEX cannot even de-
termine an initial feasible solution (number in square brack-
ets in Fig. 5). Proving optimality is a great challenge for
CPLEX. This can even be observed when solving individual
scenarios. For E&C, we do not require a full proof of opti-
mality for each scenario COP – all we need is a lower bound.
Therefore, setting the relative optimality gap in CPLEX to
10−3 (instead of the default value of 10−4) makes each sce-
nario COP terminate much faster, without compromising on
the completeness of the overall algorithm. The results in
Fig. 5 clearly demonstrate the effectiveness of E&C. While
CPLEX cannot cope with the DE formulation except in 13
out of 150 instances, recursive multistage E&C can find the
optimal solution for all 150 instances within the time out.

Related Work

Challenges in solving multistage stochastic optimization
problems with integer variables are well documented
(Schultz 2003). Various research directions have been ex-
plored, however a substantial amount of work has focused on
decomposition algorithms. One line of work has developed
algorithms to decompose the problems by stages. An exam-
ple of this decomposition is the L-shaped method (Van Slyke
and Wets 1969) inspired by the well known Benders de-
composition. Solver systems such as DECIS (Infanger 1999)
and FortSP (Ellison, Mitra, and Zverovich 2010) implement
the nested L-Shaped method to solve multistage problems.
However, those solvers are restricted to solve problems with
linear constraints and continuous variables. In contrast, re-
cursive E&C can be used to solve problems with combina-
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(*) number of instanced that either reach the time out of 1800 sec-
onds (top) or find and proof the optimal solution (bottom).
[*] number of instances that did not find an initial solution.
E&C never reaches time out. For each scenario group, 15 instances
where solved and displayed is the average time.

Figure 5: Time vs. number of scenarios (extended model)

torial structure.
Another line of work is based on the scenario decomposi-

tion. Watson, Woodruff, and Hart (2012) propose to use Pro-
gressive Hedging (PH) as a back-end solver for their mod-
eling framework PySP. Rockafellar and Wets (1991) origi-
nally proposed the PH methodology to solve convex prob-
lems. The drawback using PH is twofold; first, optimality is
only guaranteed for continuous convex problems; secondly,
PH is not as flexible as recursive E&C, as it requires param-
eter tuning that can be expensive in practice. Alonso-Ayuso,
Escudero, and Ortuno (2003) introduce an algorithm that
relaxes the integrality requirements in addition to the con-
sistency constraints, named Branch-and-Fix (BF). The sce-
narios are solved using a linear programming based branch-
and-bound (b&b) procedure. To enforce consistency, a com-
mon branching tree is used to fix nodes in the scenario b&b
tree. Aldasoro et al. (2017) have introduced a parallel BF co-
ordination scheme that increases performance but does not
remain complete. To the best of our knowledge, BF is not
publicly available, its implementation is not trivial and it is
not clear how to implement it in a generic fashion to solve
combinatorial problems.

Scenario clustering, a line of research orthogonal to sce-
nario decomposition, aims to tighten the bounds by bundling
multiple scenarios into a DE. Clustering reduces the number
of sub-problems by strategically enforcing a subset of the
consistency constraints throughout the entire search proce-
dure. It capitalizes on the fact that the DE can be solved
reasonably fast for a small number of scenarios. The ef-
fectiveness of scenario clustering has been demonstrated in
Sandikci and Özaltın (2014), Aldasoro et al. (2017), Es-
cudero, Garı́n, and Unzueta (2016), amongst others. To in-
corporate scenario clustering into the E&C methodology is
straightforward, however has not been done for this paper as
the focus shall be on the newly introduced algorithm.

Ahmed (2013) originally introduced E&C to solve two-
stage problems. Ryan, Rajan, and Ahmed (2015) proposed

an asynchronous, distributed implementation of the algo-
rithm and various improvements, such as optimality cuts (us-
ing duality) and a lower bound on the candidate evaluation
based on the linear programming relaxation of the problem.
These improvements, while proposed for two-stage prob-
lems, can be incorporated into our recursive algorithm. In
a previous paper (Hemmi, Tack, and Wallace 2017) we ex-
tended two-stage E&C by “diving”, a strategic approach to
generate partial nogoods that perform stronger pruning than
the candidate nogoods used in standard E&C. The idea is
to partially enforce consistency over the first-stage variables
when generating candidates. If the resulting bound is not
better than the incumbent, it is guaranteed that none of the
resulting candidates will improve the incumbent objective
and therefore all candidates that extend on the enforced par-
tial consistency can be pruned from the search. The up-front
candidate elimination used in recursive E&C, where a lower
bound on each candidate is computed prior to starting a new
recursion also yields partial candidate nogoods, as a candi-
date might be eliminated from the search before reaching the
bottom of the recursion. However, in contrast to diving we
have not reasoned over partial assignments to a time-stage,
an extension that would be interesting to consider.

Conclusion and Future Work

The main contribution of this paper is the introduction of
a search algorithm to solve stochastic combinatorial mul-
tistage problems. Unlike other algorithms, our method can
be applied to solve problems with complex structure such
as non-linear constraints over integer variables. No compli-
cated problem reformulation is required making our method
a prime candidate to be used as back-end solver for modeling
frameworks such as GAMS, AMPL, AIMMS or Stochastic
MiniZinc (Rendl, Tack, and Stuckey 2014). We have demon-
strated the effectiveness of recursive E&C on two sets of
benchmarks, by comparing E&C with the DE formulation,
the only available and applicable solver option. For future
work, it will be interesting to investigate how information
learned in one scenario, e.g. feasibility cuts, can be gen-
eralized and used in other scenarios, to improve the lower
bound computations. Furthermore, ideas from logic-based
benders decomposition (Hooker and Ottosson 2003) and
branch-and-check (Thorsteinsson 2001) might lend them-
selves well to combine scenario decomposition with stage
wise decomposition.
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