
AdaFlock: Adaptive Feature Discovery for
Human-in-the-Loop Predictive Modeling

Ryusuke Takahama
scouty Inc.∗

r.takahama7591@gmail.com

Yukino Baba
Kyoto University

baba@i.kyoto-u.ac.jp

Nobuyuki Shimizu, Sumio Fujita
Yahoo Japan Corporation

{nobushim, sufujita}@yahoo-corp.jp

Hisashi Kashima
Kyoto University; RIKEN Center for AIP

kashima@i.kyoto-u.ac.jp

Abstract

Feature engineering is the key to successful application of
machine learning algorithms to real-world data. The discov-
ery of informative features often requires domain knowledge
or human inspiration, and data scientists expend a certain
amount of effort into exploring feature spaces. Crowdsourc-
ing is considered a promising approach for allowing many
people to be involved in feature engineering; however, there
is a demand for a sophisticated strategy that enables us to
acquire good features at a reasonable crowdsourcing cost. In
this paper, we present a novel algorithm called AdaFlock to
efficiently obtain informative features through crowdsourc-
ing. AdaFlock is inspired by AdaBoost, which iteratively
trains classifiers by increasing the weights of samples mis-
classified by previous classifiers. AdaFlock iteratively gen-
erates informative features; at each iteration of AdaFlock,
crowdsourcing workers are shown samples selected accord-
ing to the classification errors of the current classifiers and are
asked to generate new features that are helpful for correctly
classifying the given examples. The results of our experi-
ments conducted using real datasets indicate that AdaFlock
successfully discovers informative features with fewer itera-
tions and achieves high classification accuracy.

1 Introduction

Feature engineering is the key to the successful design of
machine learning classifiers for real-world data. The learn-
ing of a good predictive model is difficult if we fail to
determine useful features for classification. The discov-
ery of informative features often requires domain knowl-
edge or human inspiration. Considerable efforts have been
made in machine learning projects to explore feature spaces.
Researchers in several fields have attempted to construct
task-specific features by incorporating heuristics. For in-
stance, in the computer vision area, SIFT (Lowe 2004) and
SURF (Bay, Tuytelaars, and Gool 2006) were designed for
general object recognition tasks, and different features were
proposed for detailed tasks such as face detection (Viola

∗This work has been done while the first author worked at JST,
ERATO, Kawarabayashi Large Graph Project, Grant Number JP-
MJER1201, Japan
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Feature
Definition

0 0 1 1 1 1 0 0 0 1 …

0 1 0 0 1 1 1 0 1 0 …

1 1 0 1 1 0 0 1 0 1 …

Samples shown to crowds Crowd-feature definitions

Feature
Labeling

Crowd-feature labels

…

Update

Filter

Weights

:0.4 :0.7 :0.2

Ensemble
classifier

Weak
classifier

Are clouds illustrated in this painting?
Is the ground illustrated in this painting?
Is this painted with bold brushwork?
Is this painting abstract?

(a) (b)

(c)(d)

Figure 1: Overview of AdaFlock, which iteratively gener-
ates informative features by asking crowdsourcing workers
to provide features that are helpful for correctly classifying
the misclassified examples.

and Jones 2004) or human body detection (Dalal and Triggs
2005).

Although careful feature engineering for a particular task
would be beneficial for improving classification perfor-
mance, the broad exploration of features is quite labori-
ous. The recent expansion of crowdsourcing platforms al-
lows many people to be involved in feature engineering.
Although it is difficult for non-expert crowdsourcing work-
ers to provide correct answers for fine-grained classification
tasks, they may have capabilities to determine informative
features for classification (Branson et al. 2010).

Recently, a few methods for crowdsourced feature dis-
covery have been proposed. Cheng and Bernstein developed
an interactive platform called Flock (Cheng and Bernstein
2015), which asks crowdsourcing workers to compare paired
examples and describe their differences. The collected de-
scriptions are organized as features, such as “does this paint-
ing contain flowers?”; feature labels (i.e., “yes” or “no”) for
each example are then generated using another set of crowd-
sourcing tasks. The paired examples are randomly chosen
by Flock; however, features may be able to be generated in
a more efficient manner by adaptively selecting the exam-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1619

Table 1: Comparison between existing methods and our method

Visual 20 Flock Adaptive triple
AdaFlockquestions game selection

(Branson et al. 2010) (Cheng and Bernstein 2015) (Zou, Chaudhuri, and Kalai 2015)
Crowdsourced � � �feature-definition
Crowdsourced � � � �feature-labeling

Adaptive � �example selection
Supervised � �learning

ples. Zou et al. proposed an adaptive method for selecting
triples of examples to avoid the generation of overlapping
features (Zou, Chaudhuri, and Kalai 2015). This method
chooses examples based on feature labels of the previously
discovered features. Because the method does not focus on
supervised learning, the performance of a classifier is not
considered during example selection.

In this paper, we propose a new algorithm called
AdaFlock to efficiently generate informative features
through crowdsourcing. Our algorithm aims to obtain fea-
tures helpful for improving the classification performance
through iterations. AdaFlock is inspired by AdaBoost (Fre-
und and Schapire 1997), which iteratively trains weak clas-
sifiers by increasing the weights of examples misclassified
by the current classifiers. Analogously, at each iteration of
AdaFlock, crowdsourcing workers are shown examples se-
lected according to the classification errors of the current
classifiers (Figure 1(a)). The workers are asked to generate
features helpful for correctly classifying the given examples
(Figure 1(b)). AdaFlock then asks crowdsourcing workers
to label each example based on each feature definition (Fig-
ure 1(c)). A weak classifier is trained by using the obtained
labels, and the Filter function (Bradley and Schapire 2007)
is applied for resampling examples according to the classifi-
cation errors of the current classifier (Figure 1(d)). The sam-
pled examples are shown to workers of the next iteration.

Table 1 summarizes the difference between AdaFlock
and the other crowdsourced feature discovery methods. Al-
though the method proposed by Branson et al. (2010) re-
quires predefined feature definitions, AdaFlock uses crowd-
sourcing for defining features. In contrast to Flock (Cheng
and Bernstein 2015), AdaFlock adaptively generates fea-
tures to improve the classification accuracy. While adaptive
triple selection (Zou, Chaudhuri, and Kalai 2015) aims to
obtain diverse features, the goal of AdaFlock is to obtain in-
formative features to improve the classification accuracy.

We conducted experiments on a crowdsourcing platform
by using image and movie classification datasets and ob-
served that AdaFlock discovers various types of features
not covered by Flock. Moreover, a classifier built by using
AdaFlock outperforms the classifier built through Flock.

It would be worth noticing that one of the major draw-
backs of crowdsourced feature discovery is scalability; this
approach is not suitable for classifying a large number of
examples because of the requirement of crowdsourced fea-

ture labeling. Practical situations where crowdsourced fea-
ture discovery is useful are (1) obtained interpretable fea-
tures themselves are important for explaining predictions,
and (2) it is desired to create an accurate classifier regard-
less of crowdsourcing costs.

The contributions of this paper are threefold:

• We address the problem of adaptive crowdsourced feature
generation for supervised learning.

• We propose a novel algorithm called AdaFlock, which ob-
tains informative features by sampling difficult examples
for the current classifier.

• Through experiments conducted using actual crowdsourc-
ing datasets, we confirm that AdaFlock achieves better
classification performance than the existing methods.

2 AdaFlock

2.1 Problem Setting

We first show a formulation of our feature generation prob-
lem for predictive modeling. We focus on binary classifi-
cation in this paper. Assume that there is a training dataset
as D = {(xi, yi)}Ni=1, where yi ∈ {−1,+1}. Given the
training dataset, our goal is to build a classifier H (x). Un-
like typical binary classification problems, a feature vector
of each xi is not given here. Thus, we will concurrently gen-
erate feature vectors and train a classifier.

2.2 Overview

We propose a novel algorithm called AdaFlock to efficiently
generate feature vectors through crowdsourcing and to train
a classifier by using the obtained features. AdaFlock re-
quests crowdsourcing workers to process feature-definition
tasks and feature-labeling tasks. Examples of these two
tasks are illustrated in Figure 3 and 4. In feature-definition
tasks, workers are shown a small number of positive and
negative examples and asked to describe the difference be-
tween the positive and negative examples. This approach is
called analogical encoding, and its advantages for produc-
ing predictive features have been demonstrated in (Cheng
and Bernstein 2015). AdaFlock instructs workers to write a
description as a yes–no question; for example, “is the sky
illustrated in this painting?” or “does this text contain any
hard number?” In feature-labeling tasks, workers are given

1620

Feature
definition

D+ D−

Filter()

D

S+
F S−

F

SF

Filter()

Ft = f1
t , f2

t , f3
t , . . . , fk

t

Feature labeling

f1
t f2

t f3
t . . . fk

t

x1 = (0 1 1 . . . 1)
x2 = (1 0 0 . . . 0)
x3 = (1 1 1 . . . 0)

...
xN = (1 0 1 . . . 0)

• Update strong learner
• Update weights

wt+1
1

wt+1
2

wt+1
3
...

wt+1
N

Go to the
next round

Figure 2: Overview of AdaFlock algorithm. At the t-th iteration, given the weights of examples, AdaFlock first resamples a
small number of positive and negative examples, S+

F ⊆ D+ and S−
F ⊆ D−. AdaFlock shows S+

F and S−
F to crowdsourcing

workers and requests them to process feature-definition tasks to obtain Ft. Feature-labeling tasks are then posted, in which
workers are asked to label each object xi based on each feature definition f j

t ∈ Ft. AdaFlock next trains a weak leaner by using
the obtained labels, and update the current leaner and the weight of each example, wt+1

i .

Group A

Group B

Describe how the examples in Group A and B are differ.
NOTE: write the description as a yes-no question.

Figure 3: Example of a feature-definition task, where work-
ers are shown a small number of positive and negative ex-
amples and asked to describe the difference between them.
Workers are instructed to write a description as a yes-no
question.

an example and asked to choose a “yes” or “no” label for
each question collected in the feature-definition tasks.

AdaFlock iteratively queries feature-definition tasks and
feature-labeling tasks to discover informative features
through crowdsourcing. The design of AdaFlock is moti-
vated by AdaBoost, which iterates the following three steps
to obtain an ensembled classifier: (a) train a weak learner on
the current data distribution; (b) calculate classification er-
rors of the current classifier; and (c) update the data distribu-
tion by increasing the weights of the misclassified examples.
AdaFlock follows these steps by querying the crowdsourc-
ing workers.

Is the sky illustrated in this painting?
YES NO

Is this painting dreamy rather than realistic?
YES NO

Figure 4: Example of a feature-labeling task, in which work-
ers are given an example and asked to provide a binary label
for each question collected in the feature-definition tasks.

In step (a), AdaFlock uses crowdsourcing to obtain new
features based on the given data distribution, and trains a
classifier by using the obtained features. The data distribu-
tion is derived from the weights of the examples accord-
ing to the classification errors in the previous iteration. The
crowdsourcing workers are required to define features help-
ful for correctly classifying the misclassified examples in the
previous iteration. In other words, we intend for the work-
ers to consider data distribution when they define features;
however, data distribution is less interpretable for humans.
We follow the solution proposed by Pareek and Ravikumar
(2013) and apply the filtering approach to resample a small
number of examples. The sampled examples are shown to
the workers.

In step (b), AdaFlock computes the weighted accuracy of
the weak learner and incorporates the learner into the current
classifier. The weights are calculated based on the prediction
accuracies for all the training samples. In the step (c), the
data distribution is updated so that the examples misclassi-
fied by the current classifier are more likely to be sampled
in step (a) of the next iteration. AdaFlock repeats these steps

1621

Algorithm 1 AdaFlock

1: input Crowd oracle O; training dataset D;
termination parameters δt and ε;
number of examples for each iteration m;
number of feature definitions at each iteration k;
number of iterations T

2: Set weights w1
i = 1/N , i = 1, . . . , N

3: D+ = {(x, y) | (x, y) ∈ D, y = +1}
4: D− = {(x, y) | (x, y) ∈ D, y = −1}
5: for t = 1, . . . , T do
6: S+

F = φ, S−
F = φ

7: while |S+
F | ≤ m

2 and |S−
F | ≤ m

2 do

8: Sample an object (x, y) using FILTER(wt, δt)
9: if y = +1 and |S+

F | ≤ m
2 then

10: Add (x, y) to S+
F

11: else if y = −1 and |S−
F | ≤ m

2 then

12: Add (x, y) to S−
F

13: SF = S+
F + S−

F

14: Use O to get features Ft = f1
t , . . . , f

k
t for SF

� feature-definition task
15: Use O to label D based on features Ft

� feature-labeling task
16: Train a classifier ht

by using labels for D based on Ft

17: Set edge
γt ←

∑
i∈D 1 [yi = ht (xi)]w

t
i/

∑
i∈D wt

i − 0.5
18: Set weight αt ← 0.5 log (0.5 + γt) / (0.5− γt)
19: Update Ht (x) ← Ht−1 (x) + αtht (x)
20: Update wt+1

i ← 1/ (1 + exp (yiHt (xi)))

21: return strong learner HT (x) = sign (
∑

t αtht (x))
22:
23: function FILTER(wt, δt)
24: r ← Number of calls to FILTER so far on round t
25: δ′t ← δt

r(r+1)

26: (D′, w′) ← Permutation of (D,wt)
27: for i = 0; i < 2

ε ln (1/δ
′
t) ; i = i+ 1 do

28: (x, y) ← the i-th element of D′
29: return (x, y) with propability w′

i

30: return Ht (x)

several times to output the final classifier.

2.3 Algorithm

Algorithm 1 shows the detailed procedure of AdaFlock,
which is illustrated in Figure 2. We first divide the training
dataset into the positive examples D+ = {(x, y) | (x, y) ∈
D, y = +1} and the negative examples D− =
{(x, y) | (x, y) ∈ D, y = −1}. At each round t, for step
(a), AdaFlock resamples a small number of positive and neg-
ative examples, S+

F ⊆ D+ and S−
F ⊆ D−, respectively. The

Filter function is called to collect examples until the number
of examples in both S+

F and S−
F exceed m

2 , where m is the
parameter given to AdaFlock. The Filter function performs
random sampling without replacement and obtains a sample,
(x, y), and its assigned weight, w. With the probability of w,

the Filter function returns the sample which is then added to
S+
F or S−

F . Otherwise the sample is rejected and the Filter
function draws another sample.

Next, AdaFlock requests crowdsourcing workers to pro-
cess feature-definition tasks. In these tasks, the examples in
S+
F and S−

F are shown to the workers, who are then asked
to define the features of round Ft = f1

t , . . . , f
k
t , where k is

the number of features of each round. AdaFlock then gen-
erates feature-labeling tasks, in which the workers are asked
to provide binary labels xit = x1

it, . . . , x
k
it for each object

xi ∈ X and features Ft. By using {(xit, yi)}Ni=1, AdaFlock
trains a weak learner ht.

In step (b), similar to the HumanBoost algorithm (Pareek
and Ravikumar 2013), AdaFlock computes γt, which is the
weighted accuracy of the weak learner ht:

γt =

∑
i∈D 1 [yi = ht (xi)]w

t
i∑

i∈D wt
i

− 0.5, (1)

where 1 [·] returns 1 if the condition is true and 0 otherwise.
The weighted accuracy γt is then used for determining αt,
which is the ensemble weight of ht:

αt =
0.5 log (0.5 + γt)

0.5− γt
. (2)

Furthermore, step (c) is also performed similar to that in the
HumanBoost algorithm. Here, AdaFlock updates the ensem-
ble classifier Ht by using αt and ht:

Ht (x) = Ht−1 (x) + αtht (x) . (3)

A new weight wt+1
i is then assigned to each example

(xi, yi) ∈ D by using the outputs of Ht:

wt+1
i =

1

1 + exp (yiHt (xi))
. (4)

The assigned weight wt+1
i is less than 1/2 if Ht correctly

classifies the example and greater than 1/2 otherwise. When
yiHt (xi) decreases, wt+1

i becomes closer to one so that this
example is more likely to be selected for feature-definition
tasks in the next iteration.

AdaFlock repeats these steps T times and outputs the final
classifier HT (x) = sign (

∑
t αtht (x)).

AdaFlock has one termination condition; if the Filter
function rejects an example several times, AdaFlock termi-
nates the process and returns the current classifier Ht. This
condition is derived from a theoretical guarantee of classifi-
cation errors. By following HumanBoost, AdaFlock ensures
that the error rate becomes sufficiently small after rejecting
several samples. Let us define the error rate of Ht over tar-
get distribution D as errt = Pr(x,y)←D [Ht (x) �= y] and
denote ε a desired error rate. It is guaranteed that errt < ε
with probability at least 1 − δ′t when the Filter function re-
jects n ≥ 2

ε ln
(

1
δ′t

)
samples.

In addition, based on a proposition regarding the number
of iterations and the error rate for AdaBoost (Freund and
Schapire 1997), we gets the number of iterations T that is
sufficient to achieve errt < ε as T = 1

2γ2∗
ln 1

ε where the

1622

error rate of each weak learner ht is ensured to be less than
1/2 and γ∗ = mint |γt|.

When we apply the final classifier for a new object x∗,
we must query feature-labeling tasks for the example by us-
ing {Ft}t to create {x∗

t }t. The output ht (x
∗) of each weak

learner is used to compute the output of the final classifier
HT (x∗) = sign (

∑
t αtht (x

∗)).

3 Experiments

3.1 Experimental Setup

Datasets We prepared two datasets for conducting our ex-
periments: Paintings and Smiles. The paintings dataset con-
tains paintings by two impressionist painters: Claude Monet
and Alfred Sisley. We obtained 200 paintings by Monet1 and
200 paintings by Sisley2. Each picture was cropped from
each side by 30 pixels to remove signatures. The smiles
dataset contains videos of spontaneous or posed smiles of
enjoyment. We randomly selected 200 spontaneous smile
videos and 200 posed smile videos from the UvA-NEMO
Smile Database (Dibeklioğlu, Salah, and Gevers 2012).3

Both datasets have 400 examples each. We used 200 ex-
amples for training, from which 100 were positive and the
others were negative; the remaining 200 examples were used
for testing. We prepared two different training-testing splits
for each dataset and the methods were performed on each
split (i.e., trial).

Procedure We fix the number of iterations to a rather large
value (i.e., T = 10) to investigate the change of the accura-
cies according to the number of iterations. We set the num-
ber of selected examples at each iteration to m = 20 and the
number of feature definitions at each iteration to k = 10 be-
cause we consider these settings are convenient for workers.
We assumed that δt and ε are sufficiently small values. We
employed a decision tree as a weak learner.

We used Lancers,4 a commercial crowdsourcing platform
in Japan, for processing our experiments. In each AdaFlock
iteration, feature-definition and feature-labeling tasks were
posted to the crowdsourcing platform. We hired k work-
ers for the feature-definition tasks of each iteration. Each
worker was shown three positive and three negative exam-
ples randomly selected from S+

F and S−
F , respectively, and

was asked to provide one feature definition; thus, we col-
lected k definitions in each round. We obtained a total of kT
feature definitions. In the feature-labeling tasks, we asked
three crowdsourcing workers to label each object–feature
pair, and used the majority voting rule to decide the la-
bel. We paid 0.30 USD for defining one feature and 0.05
USD for providing one label for a object–feature pair. For
each trial, we spent 630 USD for completing both feature-
definition and feature-labeling tasks of T = 10 iterations in
total.

1http://www.claudemonetgallery.org/
2http://www.alfredsisley.org/
3http://www.uva-nemo.org
4http://www.lancers.jp/

Baselines We prepared three baseline methods to investi-
gate the efficiency of AdaFlock:
• Crowd prediction: This method directly asked crowd-

sourcing workers to classify the samples. Specifically,
three crowdsourcing workers were assigned to each of the
samples, and their majority voting results were used as the
final label.

• Off-the-shelf features: We prepared computed features
that were not specially designed for a given classification
task and trained an AdaBoost classifier by using the fea-
tures. For the painting dataset, we applied the pre-trained
Inception-v3 model (Szegedy et al. 2015) for the images
to obtain feature vectors with 1,008 dimensions. We did
not prepare off-the-shelf-features for the Smiles dataset
because it is not straight forward to extract reasonable fea-
tures for videos.

• StandardFlock: We collected features by using the Flock
algorithm (Cheng and Bernstein 2015). We first posted
feature-definition tasks to generate kT features. In the
feature-definition tasks, each worker was shown three
positive and three negative examples randomly selected
from the training datasets and was asked to provide a fea-
ture definition. We then requested feature-labeling tasks
for all the examples and the feature definitions. Unlike
the original Flock, we did not apply clustering to orga-
nize the obtained feature definitions. Therefore, AdaFlock
and this implementation of Flock (called StandardFlock)
differ only in adaptive selection of examples for feature-
definition tasks. An AdaBoost classifier was trained by
using the obtained feature labels.
For each trial of each dataset, StandardFlock and

AdaFlock require 630 USD for crowdsourcing. We spent 12
USD for crowd prediction tasks, and Off-the-shelf-features
does not require crowdsourcing costs.

3.2 Results

Figures 5a and 5b show the training and testing accuracies at
each iteration of AdaFlock, respectively. It is observed that
the training accuracies successfully improve with increas-
ing iterations in both the datasets. The testing accuracies in-
crease with increasing iterations as well. It is remarkable that
the testing accuracy of the first trial of the paintings dataset
at the fifth iteration achieves a 10% improvement over that
at the previous iteration. At the fifth iteration, AdaFlock dis-
covered a feature of “is the ground illustrated in this paint-
ing?” which was strongly correlated with the true labels and
contributed to improve the testing accuracy of AdaFlock. A
similar result is observed in the smiles dataset; a feature of
“Is the duration of the smile short?” was discovered at an it-
eration by AdaFlock, which contributed to an 8% improve-
ment in the testing accuracies.

Table 2 shows the testing accuracy of AdaFlock at the
end of all iterations in each trial, and those of the baseline
methods. AdaFlock outperforms all the baseline methods in
most cases. On the paintings dataset, as the performance
of the crowd prediction indicates, although crowdsourcing
workers did not demonstrate high performances for classify-
ing the pictures, they generated informative features through

1623

Table 2: Comparison of the testing accuracies for each trial of each dataset. AdaFlock outperforms the baseline methods in
most cases.

Dataset Trial Crowd prediction Off-the-shelf features StandardFlock AdaFlock
Paintings 1 0.560 0.755 0.755 0.820
Paintings 2 0.580 0.735 0.745 0.705
Smiles 1 0.720 - 0.715 0.780
Smiles 2 0.715 - 0.720 0.740

a Paintings b Smiles

Figure 5: Training and testing accuracies at each AdaFlock iteration for each trial of each dataset. The number after each dataset
name indicates the trial number. Both the training and the testing accuracies increase with increasing iterations.

AdaFlock. In contrast, on the smiles dataset, whereas the
crowd prediction reaches a high level of accuracy, the accu-
racies of the classifier with StandardFlock are on a similar
level. Even in such a case, AdaFlock performs better then
both baseline methods.

Additionally, AdaFlock achieves the same level of accu-
racy as that of StandardFlock in less than or equal to five
iterations in three out of the four cases. This indicates that
AdaFlock successfully generated more informative features
than the baselines at reasonable crowdsourcing costs.

AdaFlock shows a lower accuracy than StandardFlock
only in the second trial of the painting dataset. As Fig-
ure 5a shows, in this trial, the training accuracy reached
to high level in the first few iterations; this indicates that
AdaFlock discovered appropriate features for the training
samples at these iterations but they slightly overfitted. In
such a case, showing more examples in the feature-definition
tasks would be efficient to let the crowdsourcing workers
generate more general features.

We next investigate the features discovered by AdaFlock
and StandardFlock. Table 3 lists the representative features
discovered by AdaFlock. It is observed that AdaFlock suc-
cessfully discovered several informative features that were
not discovered by StandardFlock. It is remarkable that
AdaFlock generated features related to the ground (e.g., “is
the ground illustrated in this painting?”) for the paintings
dataset, which were strongly correlated with the true labels

but were not discovered by StandardFlock. As this finding
indicates, AdaFlock successfully discovers informative fea-
tures through adaptive selection of difficult examples.

Additionally, we examine the number of redundant fea-
tures generated by AdaFlock. Considering a feature is re-
dundant if the feature has the same meaning with one of the
previously discovered features, we find that 23.5% and 44%
of the AdaFlock features are redundant in the painting and
smiles dataset, respectively. We can reduce costs for crowd-
sourced feature generation by avoiding such redundant fea-
tures and incorporating a procedure for addressing this issue
into AdaFlock would be our future work; for example, as
AdaFlock is an iterative approach, we can show the features
obtained in the previous iterations to workers and ask them
to provide features that are not yet collected.

4 Related Work
There have been a few studies addressing crowdsourcing
feature discovery. Branson et al. proposed a method for
crowdsourced feature labeling (Branson et al. 2010). Al-
though ordinary crowdsourcing workers are not able to rec-
ognize detailed categories, such as “Myrtle Warbler” or
“Thruxton Jackaroo,” which are species of birds, the workers
may be able to identify some attributes of examples. Based
on this assumption, the authors proposed a framework in
which each worker was asked to answer predefined ques-
tions, such as “is the belly white?” The answers for each ex-

1624

Table 3: List of generated features for the paintings dataset and the smiles dataset . Features assigned with a high positive or
negative correlation coefficient with the true labels of the test samples are shown. Correlation coefficient values are given in
brackets. The features not discovered by StandardFlock are bold-faced.

Dataset Features
Paintings Is the vast sky illustrated in this painting?; Are clouds illustrated in this painting?; Is the ground illustrated

in this painting?; Are people in this painting drawn from a distance?; Are any flowers illustrated in this
painting?; Is this painting dreamy rather than realistic?; Is this painted with bold brushwork?; Is this
painting abstract?

Smiles Does the person keep smiling for more than three seconds?; Does the person shake slightly?; Is the person’s
shoulder shaking while they are laughing? ; Does the person shake their faces while the corners of their mouths
turning up?; Is the duration of smile short?; Does the person suddenly stop smiling?; Does the person turn
serious shortly after they stop smiling?; Does the person lean back in a seat while they are laughing?

ample were used as feature labels. It was demonstrated that
the combination of these feature labels and computed visual
features was helpful for improving the image classification
accuracies.

The above-mentioned framework requires pre-defined
questions (i.e., feature definitions). A method of utilizing
crowdsourcing for both feature definition and feature label-
ing was proposed (Cheng and Bernstein 2015). This system,
named Flock, shows a pair of positive and negative examples
to workers and asks them to describe how the examples dif-
fer. The collected descriptions are organized as features, and
then feature labels for each example are generated by an-
other set of crowdsourcing tasks. The features are used for
learning a decision tree, and Flock has a function of detect-
ing weak parts of the tree and asking crowdsourcing workers
to generate new features for examples at the nodes.

After collecting the feature descriptions, Flock performs
clustering and selects a representative feature of each clus-
ter to remove redundant features. Zou, Chaudhuri, and Kalai
proposed an algorithm called adaptive triple selection, which
adaptively selects examples that are helpful for obtaining
diverse features (Zou, Chaudhuri, and Kalai 2015). This
method asks crowdsourcing workers to define a feature that
is common to two out of three given examples. Feature-
labeling tasks based on this feature are then requested. Us-
ing the collected labels, the algorithm selects examples for
the next feature-definition task. The examples are chosen be-
cause they have the same feature labels, so that we can avoid
obtaining the same feature again.

Like AdaFlock, Flock and the adaptive triple selection use
crowdsourcing for both feature definition and feature label-
ing; however, Flock does not apply any adaptive method
to select examples. Although the adaptive triple selection
chooses examples that are suitable for generating diverse
features, this method is not limited to applying for super-
vised learning, so the ground truth labels are not incorpo-
rated into the selection. AdaFlock calculates the classifica-
tion errors at each iteration by using the ground truth labels
to select the examples that are difficult for the current classi-
fier and to obtain informative features that improve the clas-
sification accuracy.

Pareek and Ravikumar proposed a boosting algorithm
called HumanBoost, which considers a crowdsourcing
worker as a weak learner and iteratively trains the work-

ers (Pareek and Ravikumar 2013). HumanBoost uses the
sampling method of FilterBoost to select important exam-
ples, and the sampled examples are shown to the work-
ers when they learn classification rules. In contrast to Hu-
manBoost, AdaFlock does not consider a worker as a weak
learner; AdaFlock uses crowdsourcing workers for feature
definition and labeling, and the classifiers are trained by us-
ing ordinary machine learning methods.

5 Conclusion

In this paper, we proposed AdaFlock, an algorithm for
generating informative features through crowdsourcing.
AdaFlock iteratively obtains helpful features for improv-
ing the classification performance. Inspired by AdaBoost,
at each iteration of AdaFlock, crowdsourcing workers are
shown examples selected according to the classification er-
rors of previous classifiers. They are then asked to generate
features useful for correctly classifying the given examples.
We apply the FilterBoost approach to sample the examples
based on the classification errors. We conducted experiments
on a commercial crowdsourcing platform, and the results in-
dicate that AdaFlock successfully discovers informative and
interpretable features.

At each iteration of AdaFlock, the positive and negative
examples are independently selected based on the classifi-
cation error of each example; however, the combination of
examples would be an important factor for eliciting infor-
mative features from crowdsourcing workers. Incorporating
such a mutual influence into the algorithm would be the fo-
cus of our future work. Combination of AdaFlock and ma-
chine learning methods is an interesting research direction
that should be pursued. We will consider to replace human
labeling process with machine learning methods which use
raw image features. If the labeling for a feature is difficult
for machines, we can perform additional run of AdaFlock
for the sub-classification task. This is another promising fu-
ture work.

References

Bay, H.; Tuytelaars, T.; and Gool, L. V. 2006. SURF:
Speeded Up Robust Features. In Proceedings of the 9th Eu-
ropean Conference on Computer Vision (ECCV), 404–417.
Springer.

1625

Bradley, J. K., and Schapire, R. E. 2007. FilterBoost: Re-
gression and Classification on Large Datasets. In Advances
in Neural Information Processing Systems 20 (NIPS), 185–
192.
Branson, S.; Wah, C.; Schroff, F.; Babenko, B.; Welinder,
P.; Perona, P.; and Belongie, S. 2010. Visual Recognition
with Humans in the Loop. In Proceedings of the 11th Eu-
ropean Conference on Computer Vision (ECCV), 438–451.
Springer.
Cheng, J., and Bernstein, M. S. 2015. Flock: Hybrid
Crowd-Machine Learning Classifiers. In Proceedings of the
18th ACM Conference on Computer-Supported Cooperative
Work and Social Computing (CSCW), 600–611.
Dalal, N., and Triggs, B. 2005. Histograms of Oriented
Gradients for Human Detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition (CVPR), 886–893.
Dibeklioğlu, H.; Salah, A. A.; and Gevers, T. 2012. Are
You Really Smiling at Me? Spontaneous Versus Posed En-
joyment Smiles. In Proceedings of the 12th European Con-
ference on Computer Vision (ECCV), 525–538. Springer.
Freund, Y., and Schapire, R. E. 1997. A decision-
theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of Computer and System Sciences
55(1):119–139.
Lowe, D. G. 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vi-
sion 60(2):91–110.
Pareek, H., and Ravikumar, P. 2013. Human Boosting. In
Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), 338–346.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2015. Rethinking the inception architecture for computer
vision. CoRR abs/1512.00567.
Viola, P., and Jones, M. J. 2004. Robust Real-Time
Face Detection. International Journal of Computer Vision
57(2):137–154.
Zou, J. Y.; Chaudhuri, K.; and Kalai, A. 2015. Crowdsourc-
ing Feature Discovery via Adaptively Chosen Comparisons.
In Proceedings of the Third AAAI Conference on Human
Computation and Crowdsourcing (HCOMP), 198–205.

1626

