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Abstract

The lack of interpretability remains a key barrier to the adop-
tion of deep models in many applications. In this work,
we explicitly regularize deep models so human users might
step through the process behind their predictions in little
time. Specifically, we train deep time-series models so their
class-probability predictions have high accuracy while being
closely modeled by decision trees with few nodes. Using in-
tuitive toy examples as well as medical tasks for treating sep-
sis and HIV, we demonstrate that this new tree regularization
yields models that are easier for humans to simulate than sim-
pler L1 or L2 penalties without sacrificing predictive power.

Introduction

Deep models have become the de-facto approach for pre-
diction in a variety of applications such as image classifi-
cation (e.g. (Krizhevsky, Sutskever, and Hinton 2012)) and
machine translation (e.g. (Bahdanau, Cho, and Bengio 2014;
Sutskever, Vinyals, and Le 2014)). However, many practi-
tioners are reluctant to adopt deep models because their pre-
dictions are difficult to interpret. In this work, we seek a spe-
cific form of interpretability known as human-simulability.
A human-simulatable model is one in which a human user
can “take in input data together with the parameters of the
model and in reasonable time step through every calculation
required to produce a prediction” (Lipton 2016). For exam-
ple, small decision trees with only a few nodes are easy for
humans to simulate and thus understand. In contrast, even
simple deep models like multi-layer perceptrons with a few
dozen units can have far too many parameters and connec-
tions for a human to easily step through. Deep models for se-
quences are even more challenging. Of course, decision trees
with too many nodes are also hard to simulate. Our key re-
search question is: can we create deep models that are well-
approximated by compact, human-simulatable models?

The question of creating accurate yet human-simulatable
models is an important one, because in many domains sim-
ulatability is paramount. For example, despite advances in
deep learning for clinical decision support (e.g. (Miotto et
al. 2016; Choi et al. 2016; Che et al. 2015)), the clinical
community remains skeptical of machine learning systems
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(Chen and Asch 2017). Simulatability allows clinicians to
audit predictions easily. They can manually inspect changes
to outputs under slightly-perturbed inputs, check substeps
against their expert knowledge, and identify when predic-
tions are made due to systemic bias in the data rather than
real causes. Similar needs for simulatability exist in many
decision-critical domains such as disaster response or recidi-
vism prediction.

To address this need for interpretability, a number of
works have been developed to assist in the interpretation
of already-trained models. Craven and Shavlik (1996) train
decision trees that mimic the predictions of a fixed, pre-
trained neural network, but do not train the network itself
to be simpler. Other post-hoc interpretations typically typ-
ically evaluate the sensitivity of predictions to local per-
turbations of inputs or the input gradient (Ribeiro, Singh,
and Guestrin 2016; Selvaraju et al. 2017; Adler et al. 2016;
Lundberg and Lee 2016; Erhan et al. 2009). In parallel, re-
search efforts have emphasized that simple lists of (perhaps
locally) important features are not sufficient: Singh, Ribeiro,
and Guestrin (2016) provide explanations in the form of pro-
grams; Lakkaraju, Bach, and Leskovec (2016) learn decision
sets and show benefits over other rule-based methods.

These techniques focus on understanding already learned
models, rather than finding models that are more inter-
pretable. However, it is well-known that deep models often
have multiple optima of similar predictive accuracy (Good-
fellow, Bengio, and Courville 2016), and thus one might
hope to find more interpretable models with equal predictive
accuracy. However, the field of optimizing deep models for
interpretability remains nascent. Ross, Hughes, and Doshi-
Velez (2017) penalize input sensitivity to features marked as
less relevant. Lei, Barzilay, and Jaakkola (2016) train deep
models that make predictions from text and simultaneously
highlight contiguous subsets of words, called a “rationale,”
to justify each prediction. While both works optimize their
deep models to expose relevant features, lists of features are
not sufficient to simulate the prediction.

Contributions. In this work, we take steps toward op-
timizing deep models for human-simulatability via a new
model complexity penalty function we call tree regular-
ization. Tree regularization favors models whose decision
boundaries can be well-approximated by small decision-
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trees, thus penalizing models that would require many cal-
culations to simulate predictions. We first demonstrate how
this technique can be used to train simple multi-layer per-
ceptrons to have tree-like decision boundaries. We then fo-
cus on time-series applications and show that gated recurrent
unit (GRU) models trained with strong tree-regularization
reach a high-accuracy-at-low-complexity sweet spot that is
not possible with any strength of L1 or L2 regularization.
Prediction quality can be further boosted by training new
hybrid models – GRU-HMMs – which explain the residuals
of interpretable discrete HMMs via tree-regularized GRUs.
We further show that the approximate decision trees for our
tree-regularized deep models are useful for human simula-
tion and interpretability. We demonstrate our approach on a
speech recognition task and two medical treatment predic-
tion tasks for patients with sepsis in the intensive care unit
(ICU) and for patients with human immunodeficiency virus
(HIV). Throughout, we also show that standalone decision
trees as a baseline are noticeably less accurate than our tree-
regularized deep models. We have released an open-source
Python toolbox to allow others to experiment with tree reg-
ularization 1.

Related work. While there is little work (as mentioned
above) on optimizing models for interpretability, there are
some related threads. The first is model compression, which
trains smaller models that perform similarly to large, black-
box models (e.g. (Bucilu, Caruana, and Niculescu-Mizil
2006; Hinton, Vinyals, and Dean 2015; Balan et al. 2015;
Han et al. 2015)). Other efforts specifically train very sparse
networks via L1 penalties (Zhang, Lee, and Jordan 2016) or
even binary neural networks (Tang, Hua, and Wang 2017;
Rastegari et al. 2016) with the goal of faster computa-
tion. Edge and node regularization is commonly used to
improve prediction accuracy (Drucker and Le Cun 1992;
Ochiai et al. 2017), and recently Hu et al. (2016) improve
prediction accuracy by training neural networks so that pre-
dictions match a small list of known domain-specific first-
order logic rules. Sometimes, these regularizations—which
all smooth or simplify decision boundaries—can have the
effect of also improving interpretability. However, there is
no guarantee that these regularizations will improve inter-
pretability; we emphasize that specifically training deep
models to have easily-simulatable decision boundaries is (to
our knowledge) novel.

Background and Notation

We consider supervised learning tasks given datasets of N
labeled examples, where each example (indexed by n) has
an input feature vectors xn and a target output vector yn. We
shall assume the targets yn are binary, though it is simple to
extend to other types. When modeling time series, each ex-
ample sequence n contains Tn timesteps indexed by t which
each have a feature vector xnt and an output ynt. Formally,
we write: xn = [xn1 . . . xnTn

] and yn = [yn1 . . . ynTn ].
Each value ynt could be prediction about the next timestep

1http://github.com/dtak/tree-regularization-public

(e.g. the character at time t + 1) or some other task-related
annotation (e.g. if the patient became septic at time t).

Simple neural networks. A multi-layer perceptron
(MLP) makes predictions ŷn of the target yn via a function
ŷn(xn,W ), where the vector W represents all parameters of
the network. Given a data set {(xn, yn)}, our goal is to learn
the parameters W to minimize the objective

min
W

λΨ(W ) +
N∑

n=1

loss(yn, ŷn(xn,W )) (1)

For binary targets yn, the logistic loss (binary cross entropy)
is an effective choice. The regularization term Ψ(W ) can
represent L1 or L2 penalties (e.g. (Drucker and Le Cun
1992; Goodfellow, Bengio, and Courville 2016; Ochiai et
al. 2017)) or our new regularization.

Recurrent Neural Networks with Gated Recurrent
Units. A recurrent neural network (RNN) takes as in-
put an arbitrary length sequence xn = [xn1 . . . xnTn

] and
produces a “hidden state” sequence hn = [hn1 . . . hnTn ]
of the same length as the input. Each hidden state vec-
tor at timestep t represents a location in a (possibly low-
dimensional) “state space” with K dimensions: hnt ∈ R

K .
RNNs perform sequential nonlinear embedding of the form
hnt = f(xnt, hnt−1) in hope that the state space location
hnt is a useful summary statistic for making predictions of
the target ynt at timestep t.

Many different variants of the transition function archi-
tecture f have been proposed to solve the challenge of cap-
turing long-term dependencies. In this paper, we use gated
recurrent units (GRUs) (Cho et al. 2014), which are simpler
than other alternatives such as long short-term memory units
(LSTMs) (Hochreiter and Schmidhuber 1997). While GRUs
are convenient, any differentiable RNN architecture is com-
patible with our new tree-regularization approach.

Below we describe the evolution of a single GRU se-
quence, dropping the sequence index n for readability. The
GRU transition function f produces the state vector ht =
[ht1 . . . htK ] from a previous state ht−1 and an input vector
xt, via the following feed-forward architecture:

output state : htk = (1− ztk)ht−1,k + zt,kh̃tk (2)

candidate state : h̃tk = tanh(V h
k xt + Uh

k (rt � ht−1))

update gate : ztk = σ(V z
k xt + Uz

kht−1)

reset gate : rtk = σ(V r
k xt + Ur

kht−1)

The internal network nodes include candidate state gates h̃,
update gates z and reset gates r which have the same car-
dinalty as the state vector h. Reset gates allow the network
to forget past state vectors when set near zero via the logistic
sigmoid nonlinearity σ(·). Update gates allow the network to
either pass along the previous state vector unchanged or use
the new candidate state vector instead. This architecture is
diagrammed in Figure 1.

The predicted probability of the binary label yt for time t
is a sigmoid transformation of the state at time t:

ŷt = σ(wTht) (3)
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Figure 1: Diagram of gated recurrent unit (GRU) used for
each timestep our neural time-series model. The orange tri-
angle indicates the predicted output ŷt at time t.

Here, weight vector w ∈ R
K represents the parameters

of this output layer. We denote the parameters for the en-
tire GRU-RNN model as W = (w,U, V ), concatenating all
component parameters. We can train GRU-RNN time-series
models (hereafter often just called GRUs) via the following
loss minimization objective:

min
W

λΨ(W ) +
N∑

n=1

Tn∑

n=1

loss(ynt, ŷnt(xn,W )) (4)

where again Ψ(W ) defines a regularization cost.

Tree Regularization for Deep Models

We now propose a novel tree regularization function Ω(W )
for the parameters of a differentiable model which attempts
to penalize models whose predictions are not easily simu-
latable. Of course, it is difficult to measure “simulatability”
directly for an arbitrary network, so we take inspiration from
decision trees. Our chosen method has two stages: first, find
a single binary decision tree which accurately reproduces
the network’s thresholded binary predictions ŷn given input
xn. Second, measure the complexity of this decision tree as
the output of Ω(W ). We measure complexity as the aver-
age decision path length—the average number of decision
nodes that must be touched to make a prediction for an input
example xn. We compute the average with respect to some
designated reference dataset of example inputs D = {xn}
from the training set. While many ways to measure complex-
ity exist, we find average path length is most relevant to our
notion of simulatability. Remember that for us, human sim-
ulation requires stepping through every calculation required
to make a prediction. Average path length exactly counts the
number of true-or-false boolean calculations needed to make
an average prediction, assuming the model is a decision tree.
Total number of nodes could be used as a metric, but might
penalize more accurate trees that have short paths for most
examples but need more involved logic for few outliers.

Our true-average-path-length cost function Ω(W ) is de-
tailed in Alg. 1. It requires two subroutines, TRAINTREE
and PATHLENGTH. TRAINTREE trains a binary decision
tree to accurately reproduce the provided labeled examples
{xn, ŷn}. We use the DecisionTree module distributed

Algorithm 1 Average-Path-Length Cost Function

Require:
ŷ(·,W ) : binary prediction function, with parameters W
D = {xn}Nn=1 : reference dataset with N examples

1: function Ω(W )
2: tree ← TRAINTREE({xn, ŷ(xn,W )})
3: return 1

N

∑
n PATHLENGTH(tree, xn)

in Python’s scikit-learn (Pedregosa et al. 2011) with post-
pruning to simplify the tree. These trees can give probabilis-
tic predictions at each leaf. (Complete decision-tree training
details are in the supplement.) Next, PATHLENGTH counts
how many nodes are needed to make a specific input to an
output node in the provided decision tree. In our evaluations,
we will apply our average-decision-tree-path-length regu-
larization, or simply “tree regularization,” to several neural
models.
Alg. 1 defines our average-path-length cost function Ω(W ),
which can be plugged into the abstract regularization term
Ψ(W ) in the objectives in equations 1 and 4.

Making the Decision-Tree Loss Differentiable Training
decision trees is not differentiable, and thus Ω(W ) as de-
fined in Alg. 1 is not differentiable with respect to the net-
work parameters W (unlike standard regularizers such as
the L1 or L2 norm). While one could resort to derivative-
free optimization techniques (Audet and Kokkolaras 2016),
gradient descent has been an extremely fast and robust way
of training networks (Goodfellow, Bengio, and Courville
2016).

A key technical contribution of our work is introducing
and training a surrogate regularization function Ω̂(W ) :
supp(W ) → R+ to map each candidate neural model pa-
rameter vector W to an estimate of the average-path-length.
Our approximate function Ω̂ is implemented as a standalone
multi-layer perceptron network and is thus differentiable.
Let vector ξ of size k denote the parameters of this chosen
MLP approximator. We can train Ω̂ to be a good estimator
by minimizing a squared error loss function:

min
ξ

∑J
j=1(Ω(Wj)− Ω̂(Wj , ξ))

2 + ε||ξ||22 (5)

where Wj are the entire set of parameters for our model,
ε > 0 is a regularization strength, and we assume we have
a dataset of J known parameter vectors and their associated
true path-lengths: {Wj ,Ω(Wj)}Jj=1. This dataset can be as-
sembled using the candidate W vectors obtained while train-
ing our target neural model ŷ(·,W ), as well as by evaluating
Ω(W ) for randomly generated W . Importantly, one can train
the surrogate function Ω̂ in parallel with our network. In the
supplement, we show evidence that our surrogate predictor
Ω̂(·) tracks the true average path length as we train the target
predictor ŷ(·,W ).

Training the Surrogate Loss Even moderately-sized
GRUs can have parameter vectors W with thousands of
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dimensions. Our labeled dataset for surrogate training –
{Wj ,Ω(Wj)}Jj=1—will only have one Wj example from
each target network training iteration. Thus, in early itera-
tions, we will have only few examples from which to learn
a good surrogate function Ω̂(W ). We resolve this challenge
via augmenting our training set with additional examples:
We randomly sample weight vectors W and calculate the
true average path length Ω(W ), and we also perform sev-
eral random restarts on the unregularized GRU and use those
weights in our training set.

A second challenge occurs later in training: as the model
parameters W shift away from their initial values, those
early parameters may not be as relevant in characterizing the
current decision function of the GRU. To address this, for
each epoch, we use examples only from the past E epochs
(in addition to augmentation), where in practice, E is em-
pirically chosen. Using examples from a fixed window of
epochs also speeds up training. The supplement shows a
comparison of the importance of these heuristics for effi-
cient and accurate training—empirically, data augmentation
for stabilizing surrogate training allows us to scale to GRUs
with 100s of nodes. GRUs of this size are sufficient for many
real problems, such as those we encounter in healthcare do-
mains.

Typically, we use J = 50 labeled pairs for surrogate train-
ing for toy datasets and J = 100 for real world datasets.
Optimization of our surrogate objective is done via gradient
descent. We use Autograd to compute gradients of the loss
in Eq. (5) with respect to ξ, then use Adam to compute de-
scent directions with step sizes set to 0.01 for toy datasets
and 0.001 for real world datasets.

Tree-Regularized MLPs: A Demonstration

While time-series models are the main focus of this work,
we first demonstrate tree regularization on a simple binary
classification task to build intuition. We call this task the 2D
Parabola problem, because as Fig. 2(a) shows, the training
data consists of 2D input points whose two-class decision
boundary is roughly shaped like a parabola. The true deci-
sion function is defined by y = 5∗(x−0.5)2+0.4. We sam-
pled 500 input points xn uniformly within the unit square
[0, 1] × [0, 1] and labeled those above the decision function
as positive. To make it easy for models to overfit, we flipped
10% of the points in a region near the boundary. A random
30% were held out for testing.

For the classifier ŷ, we train a 3-layer MLP with 100
first layer nodes, 100 second layer nodes, and 10 third
layer nodes. This MLP is intentionally overly expressive
to encourage overfitting and expose the impact of differ-
ent forms of regularization: our proposed tree regularization
Ψ(W ) = Ω̂(W ) and two baselines: an L2 penalty on the
weights Ψ(W ) = ||W ||2, and an L1 penalty on the weights
Ψ(W ) = ||W ||1. For each regularization function, we train
models at many different regularization strengths λ chosen
to explore the full range of decision boundary complexities
possible under each technique.

For our tree regularization, we model our surrogate Ω̂(W )
with a 1-hidden layer MLP with 25 units. We find this simple

architecture works well, but certainly more complex MLPs
could could be used on more complex problems. The objec-
tive in equation 1 was optimized via Adam gradient descent
(Kingma and Ba 2014) using a batch size of 100 and a learn-
ing rate of 1e-3 for 250 epochs, and hyperparameters were
set via cross validation using grid search (see supplement for
full experimental details).

Fig. 2 (b) shows the each trained model as a single point
in a 2D fitness space: the x-axis measures model complexity
via our average-path-length metric, and the y-axis measures
AUC prediction performance. These results show that sim-
ple L1 or L2 regularization does not produce models with
both small node count and good predictions at any value of
the regularization strength λ. As expected, large λ values
for L1 and L2 only produce far-too-simple linear decision
boundaries with poor accuracies. In contrast, our proposed
tree regularization directly optimizes the MLP to have sim-
ple tree-like boundaries at high λ values which can still yield
good predictions.

The lower panes of Fig. 2 shows these boundaries. Our
tree regularization is uniquely able to create axis-aligned
functions, because decision trees prefer functions that are
axis-aligned splits. These axis-aligned functions require
very few nodes but are more effective than L1 and L2 coun-
terparts. The L1 boundary is more sharp, whereas the L2 is
more round.

Tree-Regularized Time-Series Models

We now evaluate our tree-regularization approach on time-
series models. We focus on GRU-RNN models, with some
later experiments on new hybrid GRU-HMM models. As
with the MLP, each regularization technique (tree, L2, L1)
can be applied to the output node of the GRU across a range
of strength parameters λ. Importantly, Algorithm 1 can
compute the average-decision-tree-path-length for any fixed
deep model given its parameters, and can hence be used to
measure decision boundary complexity under any regular-
ization, including L1 or L2. This means that when training
any model, we can track both the predictive performance (as
measured by area-under-the-ROC-curve (AUC); higher val-
ues mean better predictions), as well as the complexity of
the decision tree required to explain each model (as mea-
sured by our average path length metric; lower values mean
more interpretable models). We also show results for a base-
line standalone decision tree classifier without any associ-
ated deep model, sweeping a range of parameters controlling
leaf size to explore how this baseline trades off path length
and prediction quality. Further details of our experimental
protocol are in the supplement, as well as more extensive
results with additional baselines.

Tasks

Synthetic Task: Signal-and-noise HMM We generated
a toy dataset of N = 100 sequences, each with T = 50
timesteps. Each timestep has a data vector xnt of 14 binary
features and a single binary output label ynt. The data comes
from two separate HMM processes. First, a “signal” HMM
generates the first 7 data dimensions from 5 well-separated
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Figure 2: 2D Parabola task: (a) Each training data point
in 2D space, overlaid with true parabolic class boundary.
(b): Each method’s prediction quality (AUC) and complexity
(path length) metrics, across range of regularization strength
λ. In the small path length regime between 0 and 5, tree
regularization produces models with higher AUC than L1
or L2. (c-e): Decision boundaries (black lines) have qualita-
tively different shapes for different regularization schemes,
as regularization strength λ increases. We color predictions
as true positive (red), true negative (yellow), false negative
(green), and false positive (blue).

states. Second, an independent “noise” HMM generates the
remaining 7 data dimensions from a different set of 5 states.
Each timestep’s output label ynt is produced by a rule in-
volving both the signal data and the signal hidden state: the
target is 1 at timestep t only if both the first signal state is
active and the first observation is turned on. We deliberately
designed the generation process so that neither logistic re-
gression with x as features nor an RNN model that makes

predictions from hidden states alone can perfectly separate
this data.

Real-World Tasks: We tested our approach on several
real tasks: predicting medical outcomes of hospitalized sep-
tic patients, predicting HIV therapy outcomes, and identi-
fying stop phonemes in English speech recordings. To nor-
malize scales, we independently standardized features x via
z-scoring.

• Sepsis Critical Care: We study time-series data for 11 786
septic ICU patients from the public MIMIC III dataset
(Johnson et al. 2016). We observe at each hour t a data
vector xnt of 35 vital signs and lab results as well as
a label vector ynt of 5 binary outcomes. Hourly data
xnt measures continuous features such as respiration rate
(RR), blood oxygen levels (paO2), fluid levels, and more.
Hourly binary labels ynt include whether the patient died
in hospital and if mechanical ventilation was applied.
Models are trained to predict all 5 output dimensions con-
currently from one shared embedding. The average se-
quence length is 15 hours. 7 070 patients are used in train-
ing, 1 769 for validation, and 294 for test.

• HIV Therapy Outcome (HIV): We use the EuResist Inte-
grated Database (Zazzi et al. 2012) for 53 236 patients di-
agnosed with HIV. We consider 4-6 month intervals (cor-
responding to hospital visits) as time steps. Each data vec-
tor xnt has 40 features, including blood counts, viral load
measurements and lab results. Each output vector ynt has
15 binary labels, including whether a therapy was suc-
cessful in reducing viral load to below detection limits,
if therapy caused CD4 blood cell counts to drop to dan-
gerous levels (indicating AIDS), or if the patient suffered
adherence issues to medication. The average sequence
length is 14 steps. 37 618 patients are used for training;
7 986 for testing, and 7 632 for validation.

• Phonetic Speech (TIMIT): We have recordings of 630
speakers of eight major dialects of American English
reading ten phonetically rich sentences (Garofolo and oth-
ers 1993). Each sentence contains time-aligned transcrip-
tions of 60 phonemes. We focus on distinguishing stop
phonemes (those that stop the flow of air, such as “b” or
“g”) from non-stops. Each timestep has one binary label
ynt indicating if a stop phoneme occurs or not. Each input
xnt has 26 continuous features: the acoustic signal’s Mel-
frequency cepstral coefficients and derivatives. There are
6 303 sequences, split into 3 697 for training, 925 for val-
idation, and 1 681 for testing. The average length is 614.

Results

The major conclusions of our experiments comparing GRUs
with various regularizations are outlined below.

Tree-regularized models have fewer nodes than other
forms of regularization. Across tasks, we see that in
the target regime of small decision trees (low average-path
lengths), our proposed tree-regularization achieves higher
prediction quality (higher AUCs). In the signal-and-noise
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Figure 3: Toy Signal-and-Noise HMM Task: (a)-(c) Decision trees trained to mimic predictions of GRU models with 25 hidden
states at different regularization strengths λ; as expected, increasing λ decreases the size of the learned trees (see supplement
for more trees). Decision tree (c) suggests the model learns to predict positive output (blue) if and only if “x[0] == 1 and x[3] ==
1 and x[4] == 0”, which is consistent with the true rule we used to generate labels: assign positive label only if first dimension is
on (x[0] == 1) and first state is active (emission probabilities for this state: [.5 .5 .5 .5 0 . . .]). (d) Tree-regularized GRU models
reach a sweet spot of small path lengths yet high AUC predictions that alternatives cannot reach at any tested value of λ.
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Figure 4: Sepsis task: Study of different regularizations for GRU model with 100 states, trained to jointly predict 5 binary
outcomes for ICU patients. Panels (a) and (c) show AUC vs. path length for 2 of the 5 outcomes (remainder in the supplement);
in both cases, tree-regularization provides higher AUC in the target regime of low-complexity decision trees. Panels (b) and (d)
show proxy trees for the tree-regularized GRU (λ = 2000); these were found interpretable by an ICU clinician (see main text).
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(c) HIV Therapy Adherence
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Figure 5: TIMIT and HIV tasks: Study of different regularization techniques for GRU model with 75 states. Panels (a)-(c) are
tradeoff curves showing how AUC predictive power and decision-tree complexity evolve with increasing regularization strength
under L1, L2 or tree regularization on both TIMIT and HIV tasks. The GRU is trained to jointly predict 15 binary outcomes for
HIV, of which 2 are shown here in Panels (b) - (c). The GRU’s decision tree proxy for HIV Adherence is shown in (d).
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HMM task, tree regularization (green line in Fig. 3(d))
achieves AUC values near 0.9 when its trees have an average
path length of 10. Similar models with L1 or L2 regulariza-
tion reach this AUC only with trees that are nearly double in
complexity (path length over 25). On the Sepsis task (Fig. 4)
we see AUC gains of 0.05-0.1 at path lengths of 2-10. On the
TIMIT task (Fig. 5a), we see AUC gains of 0.05-0.1 at path
lengths of 20-30. Finally, on the HIV CD4 blood cell count
task in Fig. 5b, we see AUC differences of between 0.03 and
0.15 for path lengths of 10-15. The HIV adherence task in
Fig. 5d has AUC gains of between 0.03 and 0.05 in the path
length range of 19 to 25 while at smaller paths all methods
are quite poor, indicating the problem’s difficulty. Overall,
these AUC gains are particularly useful in determining how
to administer subsequent HIV therapies.

We emphasize that our tree-regularization usually
achieves a sweet spot of high AUCs at short path lengths
not possible with standalone decision trees (orange lines),
L1-regularized deep models (red lines) or L2-regularized
deep models (blue lines). In unshown experiments, we also
tested elastic net regularization (Zou and Hastie 2005), a lin-
ear combination of L1 and L2 penalities. We found elastic
nets to follow the same trend lines as L1 and L2, with no
visible differences. In domains where human-simulatability
is required, increases in prediction accuracy in the small-
complexity regime can mean the difference between models
that provide value on a task and models that are unusable,
either because performance is too poor or predictions are
uninterpretable.

Our learned decision tree proxies are interpretable.
Across all tasks, the decision trees which mimic the predic-
tions of tree-regularized deep models are small enough to
simulate by hand (path length ≤ 25) and help users grasp
the model’s nonlinear prediction logic. Intuitively, the trees
for our synthetic task in Fig. 3(a)-(c) decrease in size as the
strength λ increases. The logic of these trees also matches
the true labeling process: even the simplest tree (c) checks a
relevant subset of input dimensions necessary to verify that
both the first state and the first output dimension are active.

In Fig. 4, we show decision tree proxies for our deep mod-
els on two sepsis prediction tasks: mortality and need for
ventilation. We consulted a clinical expert on sepsis treat-
ment, who noted that the trees helped him understand what
the models might be doing and thus determine if he would
trust the deep model. For example, he said that using FiO2,
RR, CO2 and paO2 to predict need for mechanical ventila-
tion (Fig. 4d) was sensible, as these all measure breathing
quality. In contrast, the in-hospital mortality tree (Fig. 4b)
predicts that some young patients with no organ failure have
high mortality rates while other young patients with organ
failure have low mortality. These counter-intuitive results
led to hypotheses about how uncaptured variables impact the
training process. Such reasoning would not be possible from
simple sensitivity analyses of the deep model.

Finally, we have verified that the decision tree proxies of
our tree-regularized deep models of the HIV task in Fig. 5d
are interpretable for understanding why a patient has trou-

ble adhering to a prescription; that is, taking drugs regularly
as directed. Our clinical collaborators confirm that the base-
line viral load and number of prior treatment lines, which are
prominent attributes for the decisions in Fig. 5d, are useful
predictors of a patient with adherence issues. Several med-
ical studies (Langford, Ananworanich, and Cooper 2007;
Socas and others 2011) suggest that patients with higher
baseline viral loads tend to have faster disease progression,
and hence have to take several drug cocktails to combat re-
sistance. Juggling many drugs typically makes it difficult for
these patients to adhere as directed. We hope interpretable
predictive models for adherence could help assess a patient’s
overall prognosis (Paterson, Swindells, and others 2000)
and offer opportunities for intervention (e.g. with alternative
single-tablet regimens).

Decision trees trained to mimic deep models make faith-
ful predictions. Across datasets, we find that each tree-
regularized deep time-series model has predictions that
agree with its corresponding decision tree proxy in about
85-90% of test examples. Table 1 shows exact fidelty scores
for each dataset. Thus, the simulatable paths of the decision
tree will be trustworthy in a majority of cases.

Practical runtimes for tree regularization are less than
twice that of simpler L2. While our tree-regularized GRU
with 10 states takes 3977 seconds per epoch on TIMIT, a
similar L2-regularized GRU takes 2116 seconds per epoch.
Thus, our new method has cost less than twice the baseline
even when the surrogate is serially computed. Because the
surrogate Ω̂(W ) will in general be a much smaller model
than the predictor ŷ(x,W ), we expect one could get faster
per-epoch times by parallelizing the creation of (W,Ω(W ))

training pairs and the training of the surrogate Ω̂(W ). Addi-
tionally, 3977 seconds includes the time needed to train the
surrogate. In practice, we do this sparingly, only once ev-
ery 25 epochs, yielding an amortized per-epoch cost of 2191
seconds (more runtime results are in the supplement).

Decision trees are stable over multiple optimization runs.
When tree regularization is strong (high λ), the decision
trees trained to match the predictions of deep models are
stable. For both signal-and-noise and sepsis tasks, multiple
runs from different random restarts have nearly identical tree
shape and size, perhaps differing by a few nodes. This stabil-
ity is crucial to building trust in our method. On the signal-
and-noise task (λ = 7000), 7 of 10 independent runs with
random initializations resulted in trees of exactly the same
structure, and the others closely resembled those sharing the
same subtrees and features (more details in supplement).

The deep residual GRU-HMM achieves high AUC with
less complexity. So far, we have focused on regularizing
standard deep models, such as MLPs or GRUs. Another op-
tion is to use a deep model as a residual on another model
that is already interpretable: for example, discrete HMMs
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Dataset Fidelity
signal-and-noise HMM 0.88
SEPSIS (In-Hospital Mortality) 0.81
SEPSIS (90-Day Mortality) 0.88
SEPSIS (Mech. Vent.) 0.90
SEPSIS (Median Vaso.) 0.92
SEPSIS (Max Vaso.) 0.93
HIV (CD4+ below 200) 0.84
HIV (Therapy Success) 0.88
HIV (Mortality) 0.93
HIV (Poor Adherence) 0.90
HIV (AIDS Onset) 0.93
TIMIT 0.85

Table 1: Fidelity of predictions from our trained deep GRU-
RNN and its corresponding decision tree. Fidelity is defined
as the percentage of test examples on which the prediction
made by a tree agrees with the deep model (Craven and
Shavlik 1996). We used 20 hidden GRU states for signal-
and-noise task, 50 states for all others.

partition timesteps into clusters, each of which can be in-
spected, but its predictions might have limited accuracy. In
Fig. 6, we show the performance of jointly training a GRU-
HMM, a new model which combines an HMM with a tree-
regularized GRU to improve its predictions (details and fur-
ther results in the supplement). Here, the ideal path length is
zero, indicating only the HMM makes predictions. For small
average-path-lengths, the GRU-HMM improves the original
HMM’s predictions and has simulatability gains over earlier
GRUs. On the mechanical ventilation task, the GRU-HMM
requires an average path length of only 28 to reach AUC of
0.88, while the GRU alone with the same number of states
requires a path length of 60 to reach the same AUC. This
suggests that jointly-trained deep residual models may pro-
vide even better interpretability.

Discussion and Conclusion

We have introduced a novel tree-regularization technique
that encourages the complex decision boundaries of any
differentiable model to be well-approximated by human-
simulatable functions, allowing domain experts to quickly
understand and approximately compute what the more com-
plex model is doing. Overall, our training procedure is robust
and efficient; future work could continue to explore and in-
crease the stability of the learned models as well as identify
ways to apply our approach to situations in which the inputs
are not inherently interpretable (e.g. pixels in an image).

Across three complex, real-world domains – HIV treat-
ment, sepsis treatment, and human speech processing – our
tree-regularized models provide gains in prediction accuracy
in the regime of simpler, approximately human-simulatable
models. Future work could apply tree regularization to lo-
cal, example-specific approximations of a loss (Ribeiro,
Singh, and Guestrin 2016) or to representation learning tasks
(encouraging embeddings with simple boundaries). More
broadly, our general training procedure could apply tree-
regularization or other procedure-regularization to a wide
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Figure 6: Prediction quality (AUC) vs. complexity (path
length) for the GRU-HMM over a range of regularization
strengths λ. Subtitles show the number of HMM states and
GRU states. See earlier figures to compare these GRU-
HMM numbers to simpler GRU and decision tree baselines.

class of popular models, helping us move beyond sparsity
toward models humans can easily simulate and thus trust.
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