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Abstract

Machine learning systems based on deep neural networks, be-
ing able to produce state-of-the-art results on various percep-
tion tasks, have gained mainstream adoption in many applica-
tions. However, they are shown to be vulnerable to adversarial
example attack, which generates malicious output by adding
slight perturbations to the input. Previous adversarial exam-
ple crafting methods, however, use simple metrics to evaluate
the distances between the original examples and the adver-
sarial ones, which could be easily detected by human eyes.
In addition, these attacks are often not robust due to the in-
evitable noises and deviation in the physical world. In this
work, we present a new adversarial example attack crafting
method, which takes the human perceptual system into con-
sideration and maximizes the noise tolerance of the crafted
adversarial example. Experimental results demonstrate the ef-
ficacy of the proposed technique.

Introduction

With the increasing popularity of deep learning technology,
its security problems have attracted a significant amount of
attention from both academia and industry. Among all se-
curity problems, the most severe one is adversarial example
attack first proposed in (Szegedy et al. 2013). It attempts to
modify the legal input with slight perturbations that largely
changes the output given by neural networks. This kind of
attack is really a threat for security-sensitive systems, such
as self-driving systems, disease diagnose systems and mali-
cious email filters (Bojarski et al. 2016; Amato et al. 2013;
Clark, Koprinska, and Poon 2003; Graves, Mohamed, and
Hinton 2013). For example, in self-driving systems, an ad-
versarial example attack can change a stop-road sign to a
turn-left signal. Then the car will make a wrong decision
and cause a serious traffic accident.

Recently, several adversarial example attacks against
image classification systems are proposed in the litera-
ture (Szegedy et al. 2013; Papernot et al. 2016; Goodfel-
low, Shlens, and Szegedy 2014). They target to misclassify
the input image to specific class or just misclassify it by
adding minimum perturbations. However, the perturbations
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imposed on input images by these attacks are usually percep-
tible and not robust. On the one hand, existing attacks do not
consider human perceptual system during perturbation gen-
eration. They all use distance metrics of Lp norms (L0, L2

and L∞ norms) to evaluate the similarity between the origi-
nal samples and the crafted adversarial ones. These metrics
treat perturbations of different pixels in an image equally
important for human eyes. However, according to (Liu et
al. 2010), people are more sensitive to perturbations of pix-
els in low variance regions. For example, perturbations in
the uniform background are easier to be detected than those
in image regions with mussy objects. Without considering
the human perceptual system, previous methods may perturb
highly sensitive pixels in the attack process, which increases
the probability to be detected by human eyes. On the other
hand, previous attacks are not robust enough. The success
rate of attack drops significantly in the physical world due to
the noises and deviation inevitably generated. For instance,
adversarial images may be compressed or suffer from noises
during transmission from the attacker to the classifier. Thus,
the adversarial example which attacks successfully in the
experimental condition may fail in the complex physical
world. Recently, some research efforts have been dedicated
to robust attacks for certain situations, such as face recogni-
tion (Sharif et al. 2016) and road sign recognition (Evtimov
et al. 2017). However, they are rather application-specific
and cannot be generalized for other applications.

To solve the above problems, in this paper, we propose
a new method to craft imperceptible and robust adversarial
examples against neural networks. We first introduce a new
distance metric considering sensitivity of the human percep-
tual system to different pixels. This metric guides us with
how many perturbations can be added without being de-
tected. Then we optimize to maximize the noise tolerance
of adversarial examples to improve the success attack rate in
the physical world, which is generally applicable for a large
amount of applications based on neural networks. By intro-
ducing a new metric to evaluate the effects of perturbations
added to each pixel, we present a greedy algorithm to find
which pixels to perturb and what magnitude to add effec-
tively and efficiently that is applicable for most models as
long as they are differentiable. Our optimization method can
generate adversarial examples with both high imperceptibil-
ity and high robustness, as demonstrated in the experimental
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results.

Related Work

Szegedy et al. first proposed adversarial example attack
against neural networks. It minimizes the distances evalu-
ated with L2-norm between the original examples and the
adversarial ones under the constraint that the adversarial at-
tack is successful. FGSM (Goodfellow, Shlens, and Szegedy
2014) performs the attack by first calculating the gradients
of the loss function to search which directions to change for
each pixels. Then it modifies all pixels simultaneously under
the L∞ constraint. Recently, JSMA (Papernot et al. 2016)
builds a saliency map to model the impact each pixel has on
the resulting classification. It then optimizes with the L0 dis-
tance, where it picks the most important pixel based on the
saliency map and modify the pixel to increase the target class
probability in each iteration. However, these attack methods
all use simple distance metrics (Lp-norms) to evaluate the
similarity between the adversarial example and the original
one without considering the human perceptual system.

There are some research efforts about robust adversarial
example attacks in the literature. The authors in (Kurakin,
Goodfellow, and Bengio 2016) first discussed the idea when
they found some adversarial examples survived in the phys-
ical world. However, they did not present a solution to im-
prove the success attack rate. Recently, two papers studied
adversarial examples for certain applications in the physi-
cal world. (Sharif et al. 2016) proposed a physical realizable
adversarial example attack against the face recognition sys-
tem through wearing malicious eye-glasses. (Evtimov et al.
2017) discussed a practical attack on the road sign recogni-
tion in self-driving systems. They generate adversarial road
signs which can successfully deceive the recognizer in vari-
ous directions and angles. However, these two methods are
rather application-specific and are not generally applicable.

Apart from adversarial example attacks against neural
networks in computer vision systems, many other machine
learning applications are suffering from adversarial example
attacks. (Carlini et al. 2016) proposed an attack against the
speech recognition system, where they show how to craft
sounds that are difficult for human to understand, but can
be interpreted to specific commands such as “Call 911” and
“Turn on airplane mode”. In (Grosse et al. 2016), they intro-
duce adversarial example attacks against malware detecting
systems. In these attacks, they disguise a malware into a be-
nign one and successfully fool the detector.

Adversarial Example Attacks

Adversarial example attacks target to change the output of
machine learning systems by adding slight perturbations to
the input. In the literature, there are two categories of ad-
versarial example attacks: target attack and un-target attack.
For the target attack, it attempts to misclassify a sample to
a specific class, while un-target attack only tries to misclas-
sify the input. As a result, the target attack is more difficult
than the un-target one. In this paper, we focus on the target
adversarial example attack.

Generally speaking, adversarial example attacks should
not only fool machine learning systems but also consider
two important factors: imperceptibility and robustness.

Imperceptibility: The imperceptibility of an adversarial
example means that it should look similar to the original one
in order not to be detected by human eyes. So in the attack, it
is important to use an appropriate distance metric to evaluate
the visual similarity between an adversarial example and the
original one. A good distance metric should clearly reflect
the characteristic of the human perceptual system.

Robustness: Adversarial examples are firstly crafted by
the attackers and then transmitted to the machine learning
systems. They may fail to attack after the transmissions with
inevitable noises or deviation. The robustness of adversarial
examples reflects its ability to stay misclassified to the tar-
get class after the transformations in the physical world. The
definition is as follows:

F (X∗) = T,

F (Tran(X∗)) = T,
(1)

where X∗ is the adversarial example crafted by the attacker,
T is the target class specified, and Tran(∗) is the transfor-
mation in the physical world. Previous methods do not con-
sider the robustness and thus adversarial examples crafted
by them may be largely destroyed and fail to attack in the
physical world.

In this paper, we propose a new crafting method to gener-
ate adversarial examples with both high imperceptibility and
high robustness, as detailed in the following sections.

The Proposed Method

In this section, we first present a new distance metric consid-
ering the effects of different pixels on human eyes, then we
propose to maximize the gap between the probability of tar-
get class and the max probability of left classes to increase
the noise tolerance of adversarial examples. Lastly, an effi-
cient greedy algorithm is introduced which can craft adver-
sarial examples with high imperceptibility and high robust-
ness.

Imperceptibility of Adversarial Example Attacks

According to contrast masking theory in image process-
ing (Legge and Foley 1980; Lin, Dong, and Xue 2005;
Liu et al. 2010), human eyes are more sensitive to pertur-
bations on pixels in low variance regions than those in high
variance regions. For example, in Figure 1, the left image
is the original sample. The middle and right images are per-
turbed with the same magnitude on ten pixels but at different
positions. The positions of perturbations on the middle im-
age are all at high variance region (the mussy desk) while
the right image is perturbed at the low variance region (the
black bag on the floor). We can see that it is hardly to detect
the perturbations on the middle image, however, people with
normal visual capability can notice the perturbations on the
black bag.

Therefore, to make adversarial examples imperceptible,
we should perturb pixels at high variance zones rather than
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Figure 1: Perturbations added in different pixels raise vary-
ing human perceptual attention. The red line box marks the
perturbation in each perturbed image.

low variance ones. In this paper, we compute the variance of
a pixel xi based on the standard deviation SD(xi) among
an n × n neighborhood of pixel xi as shown in Equation 2,
where Si is the set consisting of pixels in the n×n region, μ
is the average value of pixels in the region. Specifically, for
n = 3, the variance is calculated as the standard deviation
of the pixel and its 8 neighbors.

SD(xi) =

√√√√
∑

xk∈Si

(xk − μ)2

n2
. (2)

Accordingly, we introduce perturbation sensitivity to
measure how much “attention” will be drawn by adding per
“unit” perturbation on a pixel. It is defined as follows:

Sen(xi) = 1/SD(xi). (3)

When the pixel is in a low variance region, the perturbation
sensitivity is high. Therefore, adding perturbations on this
pixel is easily detected by human eyes.

To evaluate the human perceptual effect of a perturbation
added to a pixel, we can multiply the magnitude of the per-
turbation by its sensitivity. When crafting an adversarial ex-
ample, we usually perturb more than one pixel. As a result,
we sum up all the effects of perturbations and use it as the
distance between the original example and the adversarial
one, as shown in the following equation:

D(X∗, X) =
N∑
i=1

δi ∗ Sen(xi), (4)

where D(X∗, X) denotes the distance between the adversar-
ial example X∗ and the original one X . δi is the perturbation
added to the pixel xi and N is the total number of pixels.

Robustness of Adversarial Example Attacks

Another limitation of existing methods for adversarial ex-
ample attack is that they have very low success rates in the
physical world due to deviation caused by regular trans-
formations of images such as compressing, resizing and
smoothing. The challenge of the problem is that transforma-
tions in the physical world are usually uncertain and hard to
model, and thus we cannot enhance robustness of attacks for
specific situations. In this paper, we give a general solution
for robust attacks by maximizing noise tolerance of adver-
sarial examples. The noise tolerance reflects the amount of
noises that adversarial examples can tolerate with the mis-
classified target label unchanged.

Neural-network-based classifiers output the probabilities
for all classes, and select the highest one as the result label
for the given input. The probability for one class denotes the
confidence of classifying the input to this category. Previ-
ous adversarial example attacks only maximize the proba-
bility of the target class, however, we find for robust attack,
it is necessary to reduce the probability of left classes as
well. Naturally, we dedicate to maximize the gap between
the probability of the target class and the maximal probabil-
ity of all other classes. It can be formulated as follows:

Gap(X∗) = Pt −max(Pi) (i �= t), (5)
where Pt denotes the target class probability and Pi refers
to probabilities of other classes. Intuitively, the higher the
probability gap, the more robust the adversarial example at-
tacks.

Figure 2 is a simple example to illustrate this idea. In this
figure, there are two adversarial examples against the same
original sample. They are all misclassified as a ship with
0.6 probability, but with different probability gap. Adversar-
ial example 1 has a higher probability gap than adversarial
example 2. Now, after JPEG compression (quality is 60), ad-
versarial example 1 still is classified as ship with 0.5 prob-
ability while adversarial example 2 is classified as dog with
0.52 probability and the probability of ship now decreases to
0.36. Only the first two classes with the highest probability
are listed in the figure.

Ship=0.6, Dog=0.12 Dog=0.34Ship=0.6,

Adversarial 1 Adversarial 2

JPEG Compression(Quality=60) 

Ship=0.50,  Dog=0.28 Dog=0.52Ship=0.36,

Figure 2: Adversarial example with higher probability gap is
more robust when suffering the same image transformation.

Imperceptible and Robust Attacks

In this work, we target to achieve both imperceptible and
robust adversarial example attacks against neural networks.
In order to obtain imperceptibility, the distance D(X∗, X)
between the original example X and the adversarial one X∗
should be constrained. Then we can increase the robustness
of adversarial example attacks whenever possible under this
constraint. Overall, we formulate the problem as follows:

argmax
X∗

Gap(X∗)

s.t. D(X∗, X) ≤ Dmax

(6)
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where Dmax is the largest distance allowed in order not to
be detected by human eyes. In practice, users need to deter-
mine this value based on the input images. There are two
difficulties in solving this optimization problem. Firstly, the
objection function is not differentiable as it contains a max
function so that gradient descent, a common technique to
solve optimization problem, is not applicable. Secondly, op-
timization problems are usually solved in an iterative man-
ner and in each iteration, we should determine which pixels
to perturb and how many perturbations to add. The search
space in each iteration is tremendously large so that an effi-
cient algorithm is desired.

To deal with these problems, we first smooth the objec-
tive function to make it differentiable and then propose an
efficient greedy algorithm to simplify computations in each
iteration, as detailed in the following subsections.

Smoothing the Objective Function We smooth the max
function to the differentiable one based on the following
equation:

max(x, y) ≈ log(ekx + eky)/k. (7)

It achieves the approximation by amplifying the differ-
ence between kx and ky using the exponential function.
When kx is quite bigger than ky, ekx will be much larger
than eky . Then ekx + eky will approximately equal to ekx

and log(ekx)/k is essentially equal to x. When x and y are
not significantly different, k is used to improve the accuracy
of approximation. Given an example with x = 0.2, y = 0.1,
if k = 1, then log(ekx + eky)/k ≈ 0.84. However, it ap-
proximates to 0.2000005 when k = 100. We can make the
approximation as close to the max function as we want by
setting large enough k.

Now the objective function is transformed in the follow-
ing format and can be differentiated for further optimization:

Gap(X∗) ≈ Pt − log(
∑

ekPi)/k i �= t (8)

A Greedy Algorithm for Optimization After smoothing
the objective function, we can solve the problem using the
traditional gradient descent method. However, in each iter-
ation, we have to choose which pixels to modify and what
magnitudes to add. Even though we assume each pixel is
perturbed with the same magnitude, the time taken for solv-
ing the problem is still prohibitively long. For example, if
each image contains 100 pixels and we choose to perturb 10
pixels at each iteration, then we have to search

(
100
10

)
times

to find the best 10 pixels to modify.
Considering that we have to choose pixels with less per-

turbation sensitivity to human eyes and at the same time in-
crease the objective function in Equation 8, we define a new
metric called perturbation priority to estimate the effect of
perturbing a pixel:

PerturbPriority(xi) =
�xiGap(X∗)

Sen(xi)
, (9)

where �xi
Gap(X∗) is the gradient of the probability gap

for pixel xi. Perturbation priority indicates how much prob-
ability gap increased by adding one “unit” of perturbation to
the current pixel xi, and therefore it reflects the priority of

pixels to perturb in the adversarial example generating pro-
cess.

Algorithm 1: The proposed algorithm to generate
adversarial examples.

Input: The legitimate sample X , the max allowed
human perceptual distance Dmax, the number
of pixels perturbed in each iteration m and the
perturbation magnitude δ.

Output: Adversarial example X∗.
1 while D(X,X∗) < Dmax do
2 PerturbPriority ← Calculate perturbation

priority for each pixel;
3 SortedPerturbPriority ← Sort perturbation

priority in PerturbPriority;
4 SelectedP ixels ← Choose m pixels with largest

perturbation priority;
5 X∗ ← Perturb selected pixels with magnitude δ;
6 D(X∗, X) =

∑N
i Δi ∗ Sen(xi);

7 end

Based on the perturbation priority, we propose a greedy
algorithm to efficiently achieve imperceptible and robust ad-
versarial example attacks. The detailed crafting process is
shown in Algorithm 1, in which it first calculates each pix-
els’ perturbation priority based on the gradients of the prob-
ability gap and perturbation sensitivity in line 2. Then we
sort pixels according to perturbation priority in line 3. Next,
we perturb the first m pixels with a small magnitude δ and
calculate the human perceptual distance of the updated ad-
versarial examples in line 4-6, where Δi is the total pertur-
bations added to xi. The whole process is repeated until the
constraint on D(X∗, X) is violated.

Experimental Evaluations

Dataset. All the experiments are performed on MNIST
and CIFAR10 datasets. The MNIST dataset (LeCun, Cortes,
and Burges 2010) includes 70000 gray scale hand-written
digit images with the size of 28*28. The classification goal
is to map the images to the corresponding digits from 0
to 9. The CIFAR10 dataset (Krizhevsky, Nair, and Hinton
2014) contains 6000 color images. Each image has the size
of 32*32*3. There are 10 classes in the dataset, which are
airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. The intensity values of pixels in all these images
are scaled to a real number in [0, 1].

DNN Model. For each dataset, we trained a model. The
architectures of these two models are commonly used in cor-
responding classification tasks detailed in Table 1. They are
all 8 layers DNN with ReLU as the activation function. The
MNIST and CIFAR10 model achieve 99.18% and 84.21%
classification rate respectively.

Baselines. The baselines used in these experiments are
three widely-used adversarial example attacks, Jacobian-
based Saliency Map Approach (JSMA) (Papernot et al.
2016), iterative Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2014) and box-constrained L-
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Our Method 

L-BFGS
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Figure 3: Adversarial examples generated by different crafting methods in MNIST and CIFAR10. Adversarial examples in the
second row crafted by our method are much more imperceptible than others from the following rows. While JSMA method in
the last row performs the worst.

Table 1: Model architectures.
Layer MNIST CIFAR
Input layer 28, 28 32, 32, 3
Convolution layer 1 3, 3, 32 3, 3, 64
Convolution layer 2 3, 3, 32 3, 3, 64
Max pooling layer 1 2, 2 2, 2
Convolution layer 3 3, 3, 64 3, 3, 128
Convolution layer 4 3, 3, 64 3, 3, 128
Max pooling layer 2 2, 2 2, 2
Fully connected layer 1 128 512
Fully connected layer 2 10 10

Softmax

BFGS method (Szegedy et al. 2013). For detailed experi-
mental setups of these methods please refer to the original
papers. In our method, we select 20 pixels to add perturba-
tions with a magnitude of 0.01 in each iteration.

Evaluate Imperceptibility

In this experiment, we evaluate the imperceptibility of ad-
versarial examples crafted by our method and the baseline
methods. We perform adversarial example attacks against
the testing set (10000 test images) in MNIST and CIFAR10
respectively. These adversarial examples are just success-
fully misclassified to the target classes which were randomly

assigned. That is to say, we stop adding perturbations once
the target class attack is successful. Then for each attack
method, we get two groups of adversarial examples for the
two datasets.

Evaluate with Human Perception: We randomly choose
several groups of images to present in Figure 3. Each group
images include an original sample and its corresponding
adversarial examples crafted by different attack methods.
The left four columns are from MNIST and the right four
columns are from CIFAR10. Images in the first row are orig-
inal samples in the testing set. The second row are adver-
sarial examples crafted by our method. The following rows
are adversarial examples from L-BFGS, FGSM and JSMA
attack methods, respectively. The target adversarial classes
are listed at the bottom.

From Figure 3, we can see that adversarial examples
crafted by our method in the second row are the most im-
perceptible, which is nearly the same as the original one.
While JSMA method in the last row performs the worst and
the perturbed pixels are easily detected by human eyes. The
reason is that JSMA method perturbs pixels to the maxi-
mum value without considering pixels’ human perceptual
sensitivity. As a result, the perturbed pixels may be in the
high sensitive region and thus raise human attentions. For L-
BFGS and FGSM methods, they perform better than JSMA.
This is because these two methods use L2 norm and L∞
norm which tend to perturb more pixels with smaller pertur-
bations. Although the pixels perturbed may be in the sensi-
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tive region, they raise relatively low attentions with smaller
perturbations. These experimental results show that consid-
ering human perceptual system, our method can generate
much more imperceptible adversarial examples comparing
with baseline methods.

Evaluate Distance Metric: To evaluate the effective-
ness of our human perceptual distance metric, we calculate
the distances between the adversarial examples and original
samples. The results are listed in Figure 5.

We can see that the distances of adversarial examples
crafted by our method are the smallest (44.78 for MNIST
and 51.98 for CIFAR10), while the distances of JSMA
method are the largest (80.34 for MNIST and 92.25 for CI-
FAR10). This coincides with the results in the previous hu-
man perception experiments. Therefore, we can believe the
distance metric proposed in this work can appropriately re-
flect the visual similarity between original samples and ad-
versarial examples.

Discussions: From the above results, we know that hu-
man perceptual distances in MNIST are larger than those
in CIFAR10, so adversarial example attacks against MNIST
dataset are more difficult than CIFAR10 dataset. We an-
alyze the reasons from two aspects. One is that the im-
ages in MNIST have a large uniform background, while for
CIFAR10, the backgrounds of natural images only occupy
small regions. As a result, in MNIST images, pixels have a
higher human perceptual sensitivity than those in CIFAR10.
The other reason is that the classification rate in MNIST
dataset is about 15% higher than CIFAR10. So the model
trained in MNIST has higher confidence with the classifying
results, thus it is more difficult to attack the model trained
with MNIST dataset.

Evaluate Robustness

In this experiment, we evaluate the robustness of adversarial
examples crafted with our method and the baseline methods.
We compare all the attack methods under the same max hu-
man perceptual distance, Dmax = 70. This is determined
empirically that the distance less than 70 would not raise
much human attention. In this part we only present the re-
sults for dataset CIFAR10, because the results for MNIST
are quite similar.

Robustness Definition: The robustness can be described
as the fraction of adversarial examples which are still mis-
classified as the target class after the natural transformations.
It is also called the success attack rate in the physical world.
The definition is as follows:

R =

m∑
i=1

C(Xi, labeli)C(X∗
i , Ti)C(Tran(X∗

i ), Ti)

m∑
i=1

C(Xi, labeli)C(X∗
i , Ti)

(10)

where m is the number of testing samples used to compute
the robustness. Xi is a test image and labeli is the true la-
bel of this image, and X∗

i is the adversarial example. Ti is
the target class for Xi sample assigned by the attacker. The
function Tran(∗) is an image transformation operation in

the physical world. We study several transformations in this
experiment, including adding gaussian noises, JPEG com-
pressing, image blurring, changing contrast and brightness.
The function C(X, label) is used to check whether the im-
age was classified correctly or not:

C(X, label) =

{
1, If image X is classified as label;
0, otherwise.

Evaluate Robustness with Gaussian Noises and Trans-
formations: We test the physical success rate using four im-
age transformations: JPEG compressing, gaussian blurring,
contrast and brightness adjusting. The experimental results
are showed in Figure 4. We also test the robustness with
gaussian noises which have five intensities with standard de-
viation changed from 0.05 to 0.25 with a step of 0.05 (The
gaussian mean is 0). The experimental results are listed in
Table 2.

Table 2: Comparison of robustness for various adversarial
methods adding gaussian noises.

Noises Our JSMA L-BFGS FGSM

Std=0.05 98.5% 98.25% 86.8% 82.5%

Std=0.1 94.0% 88.5% 82.0% 79.5%

Std=0.15 77.8% 68.8% 62.6% 64%

Std=0.2 68.5% 55.12% 50.8% 42.5%

Std=0.25 62% 33.2% 28.6% 21.5%

It is clearly shown that our method performs the best
among all the four transformations. For example, in JPEG
compressing, our method performs 76% success attack rate
while for FGSM method, the success rate is only 52.3%.
Experimental results in adding gaussian noises show that
our method also achieves higher robustness than other ones.
Moreover, the benefit is more obvious with stronger noises.
For example, in the fifth intensity with standard deviation
(0.25), our method achieves 62% success rate while the av-
erage success rate of the baseline methods is just about 26%.

Apart from these observations, there are other observa-
tions drawn based on the results. Firstly, we can see that
JSMA method performs the second best in these experi-
ments though it achieves the worst results in previous hu-
man perception experiments. It can be explained that JSMA
method perturbs less pixels with larger perturbations, and
these large perturbations can tolerant more noises added on
them. While for the FGSM method, it has the worst robust-
ness in these experiments, because it tends to make small
perturbations on the whole image. The effects of these small
perturbations on pixels are more easily changed with noises.
Our method, however, tries to maximize the noise tolerance
and at the same time consider imperceptibility, therefore, it
achieves great results for both imperceptibility and robust-
ness.
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Figure 4: Comparison of robustness for various adversarial methods for image transformations.
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Figure 5: Human perceptual distances of adversarial exam-
pels crafted by varying adversarial methods in MNIST and
CIFAR10. Adversarial examples crafted by our method has
the smallest human perceptual distances.

Conclusions

Adversarial example attacks against neural networks have
become one of the most severe security problems in artifi-
cial intelligence. Traditional adversarial example attacks do
not consider human perceptual systems and thus are eas-
ily detected. Moreover, the success attack rate drops largely
due to inevitable noises in the physical world. In this pa-
per, we introduce a new adversarial example attack, which
can achieve both high imperceptibility and robustness in the
physical world. Specifically, we propose a new distance met-
ric considering human perceptual systems. The metric eval-
uates the sensitivity of image pixel to human eyes, and thus
it can guide us to add perturbations with less chances of be-
ing detected. To improve the successful attack rate in prac-

tice, we try to maximize the probability gap between the
adversarial target class and other classes. A simple yet ef-
fective greedy algorithm is introduced to achieve the op-
timization goal under the constraint of not being detected.
Experimental results show that adversarial examples crafted
by our method is more imperceptible and robust than those
produced by previous methods.
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