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Abstract

Brain-Computer Interface (BCI) is a system empowering hu-
mans to communicate with or control the outside world with
exclusively brain intentions. Electroencephalography (EEG)
based BCIs are promising solutions due to their convenient
and portable instruments. Despite the extensive research of
EEG in recent years, it is still challenging to interpret EEG
signals effectively due to the massive noises in EEG signals
(e.g., low signal-noise ratio and incomplete EEG signals), and
difficulties in capturing the inconspicuous relationships be-
tween EEG signals and certain brain activities. Most existing
works either only consider EEG as chain-like sequences ne-
glecting complex dependencies between adjacent signals or
requiring preprocessing such as transforming EEG waves into
images. In this paper, we introduce both cascade and parallel
convolutional recurrent neural network models for precisely
identifying human intended movements and instructions by
effectively learning the compositional spatio-temporal repre-
sentations of raw EEG streams. Extensive experiments on a
large scale movement intention EEG dataset (108 subjects,
3,145,160 EEG records) have demonstrated that both models
achieve high accuracy near 98.3% and outperform a set of
baseline methods and most recent deep learning based EEG
recognition models, yielding a significant accuracy increase of
18% in the cross-subject validation scenario. The developed
models are further evaluated with a real-world BCI and achieve
a recognition accuracy of 93% over five instruction intentions.
This suggests the proposed models are able to generalize over
different kinds of intentions and BCI systems.

Introduction

Brain-computer interface (BCI) enables users to directly com-
municate with the outside world or to control instruments
using brain intentions alone, thus providing an alternatively
practical way to help people who are suffering from severe
motor disabilities. Recent research has also found its appli-
cations for healthy users, such as BCI games in entertain-
ment industries (Ahn et al. 2014). Scalp-recording electroen-
cephalography (EEG) is considered to be one of the most
practical pathways to realize BCI systems due to its portable
acquisition system and convenient implementation (Wang et
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al. 2014). When a person imagines moving different parts
of his body or different controlling commands for an instru-
ment, the EEG signals from his scalp fluctuates in different
modes. In this way, human intentions can be recognized by
analyzing the EEG signals. It has been attracting increasing
attentions, and various research has attempted to engage EEG
based BCI in real-world applications such as mind controlled
wheelchairs (Wang et al. 2014), prosthetic (Bright et al. 2016)
and exoskeletons (Qiu et al. 2017).

However, real-world EEG based BCI systems are still
immature due to diverse open challenges. First, EEG sig-
nals usually have a mass of noises. Apart from the common
noises of sensory systems, such as power line interference
or inappropriate electrode connections, EEG signals have
some unique inevitable noises. During the recording process,
physiological activities like eye blinks, muscle activity and
heart beat are all harm to collecting high signal-noise ratio
EEG signals. It is hard to make sure that the participants
concentrate on the performing tasks during the whole experi-
ment period. Also, a typical EEG based BCI system usually
has 8 to 128 signal channels resulting in limited signal res-
olution compared to image or video related tasks. Second,
the correlations between the EEG signals and their corre-
sponding brain intentions in deep structures are ambiguous.
Unlike the body actions which can be easily explained by
monitoring accelerometers or gyroscopes, it is not straight-
forward to infer the brain intentions by directly observing
EEG signals. Third, widely utilized brain intention recogni-
tion methods heavily rely on handcrafted features, requiring
extensive preprocessing before making a prediction (Sun
and Zhou 2014). Some methods include signal de-noising
(Heydari and Shahbakhti 2015) or feature selection steps
(Yin et al. 2017) followed by final recognition model. Such a
two-stage model is inconvenient to train and implement, and
the whole process is time-consuming and highly dependent
on professional knowledge in this domain. Finally, current
work mainly targets either intra-subject (test data and train
data are from the same subject) or binary EEG signal clas-
sification scenarios. Little research has been carried out on
both cross-subject and multi-class scenarios. However, the
cross-subject and multi-class scenarios are highly desired
for implementing real-world applications. Furthermore, even
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Figure 1: EEG data acquisition and preprocessing. EEG signals are first captured using a BCI headset with multiple electrodes
and recorded as time series data vectors. These data vectors are then converted to 2D data meshes according to the electrode map
of the BCI headset. The converted 2D meshes are finally segmented to clips using sliding window techniques.

under intra-subject or binary classification scenarios, many
existing works suffer poor performance near 80% accuracy.

In recent years, deep learning’s revolutionary advances
in audio and visual signals recognition have gained signifi-
cant attentions (LeCun, Bengio, and Hinton 2015). Some re-
cent deep learning based EEG classification approaches have
enhanced the recognition accuracy (Bashivan et al. 2016;
Tabar and Halici 2016). However, these approaches either
focus on complex preprocessing, such as converting raw EEG
signals to images (Bashivan et al. 2016), or neglecting the sub-
tle spatial and temporal information contained within EEG
signals. Hence, current methods still have limited capabilities
in dealing with cross-subject and multi-class scenarios.

To tackle the above obstacles for further developing EEG-
based BCIs, we present in this paper, two kinds of convolu-
tional recurrent neural networks, which we call cascade and
parallel models, to detect human intentions through learning
the effective compositional spatio-temporal dynamics from
raw EEG streaming signals without preprocessing. In partic-
ular, we build a mesh-like raw EEG signal hierarchy from
1D chain-like EEG vectors by mapping the EEG recordings
with the spatial information of EEG acquisition electrodes,
to align the correlations between neighbouring EEG signals
and corresponding brain areas. Next, both cascade and par-
allel convolutional recurrent network models are developed
to decode robust EEG representations from both space and
time dimensions in sequence or in parallel respectively. The
proposed models are unified end-to-end trainable models,
simultaneously learning the robust feature representations
and classifying the EEG raw signals to detect movement or
instruction intentions. The proposed models have good gen-
eralization in more complex and practical scenarios (both
cross-subject and multi-class). Both the cascade and parallel
models achieve high accuracy of near 98.3% for movement
intention recognition, significantly outperforming the state-

of-the-art methods by near 18%. We also evaluate our models
on a real-world BCI system, and obtain a satisfactory accu-
racy of 93% on recognizing five instruction intentions with
limited EEG channels. This reveals that our proposed models
have robust capabilities to recognize diverse kinds of human
intentions using different BCI systems.

The Proposed Method

In this section, we describe the detailed architectures of the
proposed cascade and parallel convolutional recurrent net-
work approaches.

Converting 1D EEG Sequences to 2D EEG Meshes

The overall EEG data acquisition and preprocessing flowchart
of our proposed method is shown in Figure 1. The EEG based
BCI system uses a wearable headset with multiple electrodes
to capture the EEG signals. When a subject imagines per-
forming a certain instruction, the electrodes of the headset
acquire the fluctuations of the voltages from the scalp. The
EEG electrode map in Figure 1 depicts the electrodes place-
ment of an example BCI headset. The electrode map varies
from different BCI systems according to the different number
of recording channels. The sensory readings from the EEG
acquisition system represent time series data at the acquiring
frequency. Typically, the raw data from EEG signal acquisi-
tion system at time index t is a one-dimensional (1D) data
vector rt = [s1t , s2t , sit... , snt ]

T , where sit is the reading
data of the ith electrode channel at time stamp t. The acquisi-
tion system totally contains n channels. For the observation
period [t, t+N ], there are (N + 1) 1D data vectors, each
of which contains n elements corresponding to n electrodes
of the acquisition headset.

From the EEG electrode map, it is observed that each elec-
trode is physically neighboring multiple electrodes which
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measures the EEG signals in a certain area of brain, while
the elements of the chain-like 1D EEG data vectors are re-
stricted to two neighbors. Furthermore, different brain regions
correspond to different brain activities. From this conceptual-
ization, we convert the 1D EEG data vectors to 2D EEG data
meshes according to the spatial information of the electrode
distribution of the acquisition system. The transformation
function of the 1D data vector rt at time stamp t for its corre-
sponding 2D data mesh mt is denoted as follows:

T(rt) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 s22t s23t s24t 0 0 0 0

0 0 0 s25t s26t s27t s28t s28t 0 0 0

0 s30t s31t s32t s33t s34t s35t s36t s37t s38t 0

0 s39t s1t s2t s3t s4t s5t s6t s7t s40t 0

s43t s41t s8t s9t s10t s11t s12t s13t s14t s42t s44t
0 s45t s15t s16t s17t s18t s19t s20t s21t s46t 0

0 s47t s48t s49t s50t s51t s52t s53t s54t s55t 0

0 0 0 s56t s57t s58t s59t s60t 0 0 0

0 0 0 0 s61t s62t s63t 0 0 0 0

0 0 0 0 0 s64t 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where the positions of the null electrodes are padding with
zeros. Through this transformation, the raw 1D data vector
series [rt, rt+1 ... rt+N ] is converted to the 2D data mesh
series [mt, mt+1 ... mt+N ]. During observation duration
[t, t+N ], the number of 2D data meshes is still (N+1). Af-
ter 2D data mesh transformation, the data mesh is normalized
across the non-zero elements using Z-score normalization.
Each of the resulted 2D data meshes contains the spatial
information of the brain activity at its recording time. Dur-
ing the recording process, some EEG readings are variably
missing largely due to issues of electrical conductivity and
subjects movement, resulting in all channels recording ze-
ros. This issue is unavoidable in sensor-based systems, and it
might not be tolerated by BCIs. From the application point
of view, smooth manipulation of the BCI system provides im-
proved user experience. For this reason, a BCI system should
preferably translate brain activities to the output information
continuously without interruption. As missing information
is a clinical reality, in this work we preserve the incomplete
recordings which are discarded in previous work (Kim et al.
2016) to maintain the integrity of EEG signals. The exper-
imental results show our 2D EEG meshes perform well in
dealing with the “missing readings”.

Up to this point, we apply the sliding window approach to
divide the streaming 2D meshes to individual clips as shown
in the last step of Figure 1. Each clip has fixed length of
time series 2D data meshes with 50% overlapping between
continuous neighbors. The data meshes segment Sj is created
as follows:

Sj = [mt, mt+1 ... mt+S−1]

where S is the window size and j = 1, 2, ..., q with q seg-
ments during the observation period. Our goal is to develop
an effective model to recognize a set of human intentions
A = [a1, a2 ... aK ]T from each windowed data meshes
segment Sj . The recognition approach tries to predict the
human intention Yt ∈ A performed during this windowed
period.

Figure 2: Cascade convolutional recurrent neural network
architecture.

Cascade Convolutional Recurrent Network

We first design a cascade deep convolutional recurrent neural
network framework illustrated in Figure 2, capturing the
spatial and temporal features in EEG sequences. The input
to the model is the preprocessed segment of 2D data meshes
(e.g., Sj), creating a 3D data architecture containing both
spatial and temporal information. We first extract the spatial
features of each data mesh, and then feed the sequence of the
extracted spatial features into the RNN to extract temporal
features. One fully connected layer receives the output of the
last time step of the RNN layers, and feeds the softmax layer
for final intention prediction.

To extract the spatial features of each data mesh, we apply
a mesh-wise deep 2D-CNN as shown in Figure 2. The jth in-
put segment is defined as Sj = [mt, mt+1 ... mt+S−1] ∈
R

S×h×w, where there are S data meshes denoted as
mk (k = t, t+ 1 ... t+ S − 1), and each data mesh is of
size h × w. The data meshes are input to a 2D-CNN indi-
vidually, and each resolves to a spatial feature representation
fk (k = t, t+ 1 ... t+ S − 1):

CasCNN: fk = C2D(mk), fk ∈ R
l.

The final spatial feature representation fk is a feature vector
with l elements. Through the 2D-CNN spatial feature extrac-
tion step, the input segments are transformed to sequences of
spatial feature representations:

CasCNN: Sj ⇒ Fj ,where Fj = [ft ... ft+S−1] ∈ R
S×l.

Concretely, there are three 2D convolutional layers with the
same kernel size of 3×3 for spatial feature extraction. In each

1705



convolutional operation we use zero-padding techniques to
prevent missing the information at the edge of the input data
mesh. This creates feature maps with the same size as the raw
input EEG data mesh of h×w. We start the first convolutional
layer with 32 feature maps, and double the feature maps in
each of the following convolutional layers. As a result, there
are 128 feature maps in the last convolutional layer. After
these three convolutional layers, a fully connected layer with
1024 neurons is applied to convert the 128 feature maps to
the final spatial feature representation fk ∈ R

1024. This fully
connected layer is optional for feeding the 2D-CNN results
to RNN. However, we observe that this layer is essential in
helping with convergence and marginally improvement of
the performance of the whole framework.

The spatial feature representation sequence Fj is input to a
RNN to computes the temporal features. We use Long Short-
Term Memory (LSTM) units to construct two stacked RNN
layers. LSTM is a modified RNN cell addressing the gradient
vanishing and exploding problem. There are S LSTM units
in each layer, and the input to the second RNN layer is the
output time sequence of the previous RNN layer. The hidden
state of the LSTM unit of the first RNN layer at current time
step t is denoted as ht, and the ht−1 is the hidden state of the
previous time step t− 1. The information from the previous
time step is conveyed to the current step, and influence the
final output. We use the hidden state of the LSTM unit as
the output of the LSTM unit. Therefore, the input sequence
of the second LSTM layer, is the hidden state sequence of
the first LSTM layer [ht, ht+1 ... ht+S−1]. Since we are
interested in what the brain is directing during the whole
segment period, the extracted features when the LSTM has
observed the entire samples of the sliding window are used
for further analysis. Only the output of the last time step
LSTM, h′tS−1, is fed into the next fully connected layer as
shown in the final stage of Figure 2. The temporal feature
representation h′t+S−1 of the segment Sj is:

CasRNN: h′t+S−1 = Rlstm(Fj), h′t+S−1 ∈ R
d,

where d is the size of the hidden state of an LSTM unit. On
top of the fully connected layer is the final softmax layer
yielding final probability prediction of each class:

FC-softmax: Pj = Sm(h′t+S−1), Pj ∈ R
K ,

where the framework aims to classify K categories. We in-
duce dropout operations as a form of regularization after the
fully connected layers in both the 2D-CNN stage and the
final classification stage.

Overall, the framework converts and splits the EEG record-
ing streams to segments of 2D data meshes, and classifies
each segment to one of the K categories. Each segment Sj

contains S EEG data recordings, which have been converted
to S 2D meshes [mt, mt+1 ... mt+S−1]. A 2D-CNN is
applied mesh-wise in a segment to extract spatial features
[ft, ft+1 ... ft+S−1], and a RNN is consequently applied to
extract the temporal features h′t+S−1 across the data meshes.
Softmax classifier finally computes the classification proba-
bilities over K brain intentions for each individual segment.

Figure 3: Parallel recurrent convolutional neural network
architecture. The concatenation operation in the final spatio-
temporal fusion part is used for an example.

Parallel Convolutional Recurrent Network

We also propose a parallel convolutional recurrent network.
It is illustrated in Figure 3. It also contains two parts, CNN
and RNN, for spatial and temporal feature extraction respec-
tively. However, different from the cascade model, the paral-
lel model extracts the spatial and temporal features of EEG
signals in parallel and fuses the extracted features at last for
final intention recognition. Particularly, the RNN part of the
parallel model receives the data from the same segments to
that feed the corresponding CNN part. The jth input win-
dowed segment to the RNN part is:

Rj = [rt, rt+1 ... rt+S−1],

where rt is the data vector at time step t, and S denotes
the window size. The RNN part of the parallel model also
has two LSTM layers, each containing the same number of
LSTM units with that of the cascade model due to the same
window size we use. The hidden state of the last time step in
one segment is used for further analysis as well:

h′t+S−1 = Rlstm(Rj), h′t+S−1 ∈ R
v,

where v is the hidden state size of the LSTM unit. A fully
connected layer is applied both before and after LSTM layers
to enhance the temporal information representation capabili-
ties. Thus the final temporal features from the parallel RNN
part is denoted as:

ParaRNN:Oj = FC(h′t+S−1), Oj ∈ R
l,
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where l is the size of the finally fully connected layer of the
parallel RNN part. The parallel CNN part which is responsi-
ble for extracting spatial features, receives the segment of 2D
data meshes Sj as input, and applies mesh-wise convolutional
operations as the CNN part of the cascade model does. The
CNN structure of the parallel model is the same with that of
the cascade model as well. To be comparable to the temporal
features in terms of size, the extracted spatial features fk at
each time step in one segment are added up to a single feature
vector Lj :

ParaCNN: Lj =
t+S−1∑
k=t

fk (Lj , fk ∈ R
l),

where l is the size of the fully connected layer in the CNN
part, which is the same with that of the RNN part.

The concurrently extracted spatial and temporal features
are fused to a joint spatio-temporal feature vector. Various
fusion approaches are developed, and the detailed results are
shown in the following experiment section. A softmax layer
receives the fused spatio-temporal features to finally predict
the human intentions:

softmax: Pj = Sm([Lj , Oj ]), Pj ∈ R
K .

In the 2D-CNN part of both the cascade and parallel mod-
els, convolutional layers are not followed by a pooling opera-
tion. Although in a typical CNN architecture a convolutional
operation is often coupled with a pooling operation, it is not
mandated. The pooling operation is usually used for reduc-
ing data dimensions at the cost of missing some information.
However, in this EEG data analysis problem, the data di-
mension is much smaller than that used in computer vision
research, so in order to keep all information, we concatenate
three CNN layers directly without pooling operations.

Experiments and Result Summary

We focus on the PhysioNet EEG Dataset (Goldberger et al.
2000) of the cross-subject, multi-class scenario to evaluate the
proposed cascade and parallel models for movement intention
recognition. The developed models are compared against
those previous reported to show the superior performance.
Meanwhile, we also systematically investigate the influence
of the spatial and temporal information, and the performance
of different variants of both cascade and parallel models. At
last a case study using a real-world BCI system is conducted
to evaluate the proposed models.

Dataset and Model Implementation

The movement intention EEG data is collected using
BCI2000 instrumentation (Schalk et al. 2004) with 64 elec-
trode channels and 160Hz sampling rate. To the best of our
knowledge, this dataset is so far the largest EEG-based move-
ment intention dataset with 109 subjects. But in the data
preprocessing stage, we found that the labels of the #89 sub-
ject were severely damaged, so this participant’s record was
removed from further analysis. We used the EEG data from
108 subjects to build the cross-subject dataset. The dataset
contains five brain activities with eye closed (baseline), imag-
ining moving both feet, both fists, left fist and right fist.

All neural networks were implemented with the Tensor-
Flow framework and trained on a Nvidia Titan X pascal GPU
from scratch in a fully-supervised manner. The stochastic
gradient descent with Adam update rule (Kingma and Ba
2015) is used to minimize the cross-entropy loss function.
The network parameters are optimized with a learning rate
of 10−4. The keep probability of the dropout operation is 0.5.
According to the EEG data recording process of the evalua-
tion dataset, the 2D data meshes are transformed with the size
of 10× 11 as shown in Figure 1. The length of the window S
is set to 10. The hidden states of the LSTM cell for cascade
model d and parallel model v are 64 and 16 respectively. All
fully connected layers have the same size of 1024.

Comparison Models

State-of-the-arts We will give a brief introduction of the
compared state-of-the-art models. All the models are based
on the same dataset with our work.

• (Major and Conrad 2017) researches independent compo-
nent analysis (ICA) to reduce noises and feed the result
to a neural network for final prediction on intra-subject
binary MI-EEG classification;

• (Shenoy, Vinod, and Guan 2015) uses shrinkage regular-
ized filter bank common spatial patterns (SR-FBCSP) for
intra-subject binary MI-EEG classification;

• (Pinheiro et al. 2016) focuses on one-against-all EEG clas-
sification using SVM, nearest neighbour and C4.5 algo-
rithms;

• (Kim et al. 2016) extracts EEG features with strong un-
correlating transform complex common spatial patterns
(SUTCCSP) algorithm, and make final predictions with
random forest classifier for the cross-subject binary classi-
fication;

• (Zhang et al. 2017) uses autoencoder for EEG feature
extraction and XGboost for final classification on five-
category, cross-subject motor imagery scenario;

• (Bashivan et al. 2016) extracts the frequency features of
EEG data, and converts the extracted features to images to
feed into recurrent-convolutional network. We reproduce
their method on the same MI-EEG dataset with this work
using their open access code.

Baseline models Apart from a set of state-of-the-arts, we
also compare our model with the variants of CNN- and RNN-
based models. We use 1D-CNN (without spatial or temporal
information), 2D-CNN (only with spatial information) and
3D-CNN (with both spatial and temporal information) mod-
els for comparison and investigating the influence of spatial
and temporal information on brain intention recognition. The
1D-CNN model just uses the raw EEG vectors as input. The
2D-CNN model is fed with the data meshes transformed by
equation (1), but without sliding window segmentation. The
3D-CNN model uses the same input data with that fed into
the cascade model. Each of the three CNN models has three
convolutional layers without subsampling layers, one fully
connected layer with 1024 neurons and one softmax output
layer. The kernel size of the models are 3, 3×3 and 3×3×3
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for 1D, 2D and 3D, respectively, and the stride keeps constant
of 1. There are 32, 64 and 128 feature maps in CNN for all
baseline models. For comparison purpose, we keep all the
hyper-parameters of the baseline CNN models the same with
the CNN part of our proposed method. To make a fair com-
parison with both the cascade model and the parallel model,
we use two RNN baseline models both with two LSTM layers
between two fully connected layers, and choose 64 and 16 as
the hidden state size of LSTM cells respectively.

Experimental Results

In this section, we will present the overall performance of
our proposed models and the comparison results. The influ-
ence of spatial and temporal information, and variants of the
proposed models will also be systematically analyzed.

Table 1: Comparison with the state-of-the-art methods and
baseline methods. All the methods are based on the same
dataset. RNN(64) and RNN(16) denote RNN models with
hidden state size of 64 and 16 respectively. Cross-Sub (108)
refers to the number of subjects included in the experiments.

Method Multi-class Validation Accuracy

(Major and Conrad 2017) Binary Intra-Sub 0.72
(Shenoy, Vinod, and Guan

2015)
Binary Intra-Sub 0.8206

(Pinheiro et al. 2016) Binary Cross-Sub(10) 0.8505
(Kim et al. 2016) Binary Cross-Sub(105) 0.805

(Zhang et al. 2017) Multi(5) Cross-Sub(20) 0.794
(Bashivan et al. 2016)1 Multi(5) Cross-Sub(108) 0.6731

1D-CNN Multi(5) Cross-Sub(108) 0.8622
2D-CNN Multi(5) Cross-Sub(108) 0.8841
3D-CNN Multi(5) Cross-Sub(108) 0.9238

RNN(64) Multi(5) Cross-Sub(108) 0.8493
RNN(16) Multi(5) Cross-Sub(108) 0.7468

Cascade model Multi(5) Cross-Sub(108) 0.9831

Parallel model Multi(5) Cross-Sub(108) 0.9828

Overall Performance The overall performance of our pro-
posed models and the comparison models are summarized
in Table 1. It is observed that both our cascade and paral-
lel models achieve high accuracy near 98.3%, consistently
outperforming the state-of-the-art methods and the baseline
models. Even though some work is focused on simple scenar-
ios, such as intra-subject or binary classification, our method
surpasses their methods significantly. Furthermore, our 3D-
CNN baseline model also achieves competitive results to
the state-of-the-art work. Bashivan et al. also proposed to
use CNN and RNN for EEG signal analysis (Bashivan et
al. 2016). However, they used complex preprocessing steps
extracting the spectral features of EEG signals and converting
to 2D images instead of using the raw signal data. To make
a comparison, we reproduced their method on our dataset
using their open access code on Github, and the results are
also shown in Table 1. Our approach outperforms Basha-
van’s models by some 30%. This is probably because their

1We reproduce the approach on our dataset using the open access
code on github https://github.com/pbashivan/EEGLearn

Table 2: Comparison of different variants of cascade convo-
lutional recurrent network model

Cascade structure Accuracy F1 score

1-layer CNN+FC+2-layer RNN+FC 0.9310 0.9207
2-layer CNN+FC+2-layer RNN+FC 0.9712 0.9676

3-layer CNN+FC+2-layer RNN+FC 0.9831 0.9804

3-layer CNN+2-layer RNN+FC 0.9217 0.9117
3-layer CNN+FC+2-layer RNN 0.9801 0.9783

3-layer CNN+FC+1-layer RNN+FC 0.9813 0.9791

spectral feature extraction steps include a data compression
process over a large continuous sampling period, while the
movement intention tasks are periodic short duration brain
activities. So extracting the spectral features may lose critical
informative messages within the raw signals. What’s more,
they also use the interpolation approach to extend the raw
64-channel data to a 32× 32 matrix, which brings in lots of
noises. Compared with previous studies, our models directly
utilize the raw EEG data, with no need for domain knowledge
to select related frequency bands or complicated preprocess
steps at the risk of missing critical information or introducing
a mass of noises. In addition, less preprocess making it more
favourable for real-time applications, such as BCI.

Impact of Temporal and Spatial Information To inves-
tigate the influence of spatial and temporal information on
movement intention recognition, we build up CNN and RNN
baseline models as as depicted above, and their performance
is also summarized in Table 1. It is noted that increasing
the CNN model’s dimension, which means adding spatial or
temporal information, obviously enhances the model’s perfor-
mance. What’s more, sole CNN or RNN models are not able
to achieve comparative performance with both the cascade
and parallel models. It is also observed that the 3D-CNN
model, which just represents the local temporal information,
is not as powerful as the proposed models that involve the
global temporal information by the RNN parts. These com-
parison results imply that it is crucial to use both the spa-
tial and temporal information to boost EEG-based intention
recognition and analysis.

Variants of Cascade and Parallel models Since it is im-
possible to exhaustively investigate the neural network archi-
tectures, here we study the effects of the key components of
the proposed models. The results are summarized in Table 2
and Table 3 for the cascade model and the parallel model re-
spectively. It is shown that more CNN or RNN layers would
result better accuracy for both frameworks. However this
performance improvement is at the cost of computational
resources, thus we choose three CNN layers and two RNN
layers by the trade-off between performance and efficiency.
Fully connected layers are also critical components for the
cascade model to create robust spatio-temporal representa-
tions, especially the layer linking the CNN part and the RNN
part. In the parallel model, the data flows through the CNN
and RNN concurrently, and there are diverse methods to
fuse the parallel features. Here two basic fusion approaches
(concatenation and summation) as well as two improved fu-
sion approaches (concatenation joint fully connected layer
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Table 3: Comparison of different structures of parallel convo-
lutional recurrent network model. Conv is short for point-wise
convolutional operation.

Parallel structure Fusion method Accuracy F1 score

1-layer CNN+FC
Concatenation 0.9487 0.9432

FC+2-layer RNN+FC
2-layer CNN+FC

Concatenation 0.9727 0.9697
FC+2-layer RNN+FC

3-layer CNN+FC
Concatenation 0.9828 0.9810

FC+2-layer RNN+FC

3-layer CNN+FC
Concatenation 0.9821 0.9793

FC+1-layer RNN+FC
3-layer CNN+FC

Summation 0.9813 0.9792
FC+2-layer RNN+FC

3-layer CNN+FC
Concatenation+FC 0.9696 0.9661

FC+2-layer RNN+FC
3-layer CNN+FC

Concatenation+Conv 0.9666 0.9626
FC+2-layer RNN+FC

and concatenation joint pointwise convolutional operation
(Chollet 2017)) are studied. It is interesting to find that the
basic fusion methods perform better results with accuracy
higher than 98%. Complex or advanced neural network needs
careful training and parameter tuning to achieve better per-
formance, thus it is redundant to add more operations when
basic approaches are capable to achieve satisfactory results.

Figure 4: EEG signal recording process (a) A participant
performing the prompted intention task (b) Raw EEG signal
recording interface

Case Study

We evaluate the proposed models on our experimental dataset
for instruction intention recognition. The 14-channel wire-
less EMOTIV Epoc+ EEG acquisition system was used to
record raw EEG signals with sampling rate of 128Hz. The
recording process is shown in Figure 4. Each participant ex-
ecuted five kinds of instruction intentions according to the
prompts on the indicator in front of him. Arrows of four di-
rections prompt the participants to perform intending to move
the arrows to the corresponding directions, namely forward,
backward, left and right. A circle prompts the participant
to think nothing but to stare at the screen, representing null
intentions. In one recording trial, the participants perform an
intention task for 10 seconds followed by a 10-second rest.
Every volunteer performs 30 trials, and there are totally 9
volunteers including 3 females and 6 males. Finally we got
270 trials, 54 trials for each intention. All the recordings are

mixed up to form a cross-subject multi-class dataset for fur-
ther evaluating. During the experimental process, it is found
that physiological activities such as eye blinks have signif-
icant affect on the quality of the recorded signals (Figure
4), which makes intention recognition difficult. The instruc-

RNN 1D-CNN 2D-CNN 3D-CNN Cascade Parallel
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Figure 5: Instruction intention recognition results (a) Confu-
sion matrix of cascade model (b) Confusion matrix of parallel
model (c) Performance comparison

tion intention recognition is of more practical significance
for general BCI applications. Figure 5 shows the evaluating
results on the case study dataset. Both the cascade and par-
allel models achieve excellent recognition accuracy higher
than 90%. The parallel model obtains the highest accuracy of
93.1%, surpassing the best baseline model by more than 20%.
It is also noticed that the 2D-CNN model outperforms the
1D-CNN model, emphasizing the importance of spatial infor-
mation for recognizing human intentions. Unexpectedly, the
3D-CNN model performs almost the same as the 2D-CNN
model. This is probably due to the local temporal represen-
tations are of less effect on EEG signal analysis. However
the global temporal information induced by the cascade and
parallel models enhance the recognition performance consid-
erably. We notice that the resulting performance is marginally
lower than that using the PhysioNet dataset. This is due to
the limited recording resolution of 14 EEG channels in our
case study experiments compared with 64 recording channels
in the PhysioNet dataset.

Demonstration The proposed framework was finally de-
ployed on a customized BCI typing system. The alphabet is
divided into clusters and instruction intentions of different
directions are used to select different clusters. When one
cluster is selected, its contained letters will be further divided
until there is only one letter left in one cluster. 2

Conclusions
In this paper, we propose the use of spatio-temporal repre-
sentations to enhance EEG-based intention recognition in
a more practical scenario of cross-subject and multi-class,
and develop two unified end-to-end trainable deep learning
models for both movement intention and instruction inten-
tion recognition. Experiments on both the public dataset and
the real-world BCI dataset demonstrate the effectiveness and
feasibility of our models over diverse human intentions and
various EEG resolutions. The variants of the proposed models
and the influence of the spatio-temporal information are also
systematically investigated. This work makes an important
developing step toward accurate human intention recognition
for practical BCI system research.
2https://youtu.be/A9oqzNXejkg
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