
Committee Selection with Intraclass and Interclass Synergies

Rani Izsak
Weizmann Institute of Science

Rehovot, Israel
ran.izsak@weizmann.ac.il

Nimrod Talmon
Weizmann Institute of Science

Rehovot, Israel
nimrodtalmon77@gmail.com

Gerhard J. Woeginger
RWTH Aachen

Aachen, Germany
woeginger@algo.rwth-aachen.de

Abstract

Voting is almost never done in void, as usually there are some
relations between the alternatives on which the voters vote on.
These relations shall be taken into consideration when select-
ing a winning committee of some given multiwinner election.
As taking into account all possible relations between the al-
ternatives is generally computationally intractable, in this pa-
per we consider classes of alternatives; intuitively, the num-
ber of classes is significantly smaller than the number of al-
ternatives, and thus there is some hope in reaching compu-
tational tractability. We model both intraclass relations and
interclass relations by functions, which we refer to as synergy
functions, and study the computational complexity of identi-
fying the best committee, taking into account those synergy
functions. Our model accommodates both positive and neg-
ative relations between alternatives; further, our efficient al-
gorithms can also deal with a rich class of diversity wishes,
which we show how to model using synergy functions.

Introduction

The study of multiwinner elections is quite established by
now, however it is usually assumed that the alternatives (over
which the voters vote) are indistinguishable; the only differ-
ences between them are imposed by the preferences of the
voters. Many times, however, this is not the case; for ex-
ample, consider selecting a committee where it is desired to
have: (1) the same proportion of men and women; and (2) as
many experienced people as possible.

In a case like that, we would like to not only select people
with great support from the electorate, but also to take diver-
sity wishes into account. Notice how the alternatives are no
longer indistinguishable, as there are in fact certain classes
of alternatives (e.g., men and women). Indeed, in many cases
the alternatives can be naturally partitioned into classes, and
some intraclass or interclass synergies are known or are de-
sired: as further examples, consider: (1) selecting different
cutlery items, where the utility gained from selecting one
fork and one knife might be greater than the utility gained
from selecting two forks; (2) selecting cellphones with their
power adapters, where the utility gained from selecting one
cellphone with its matching power adapter might be greater
than the utility gained from selecting two cellphones; or (3)

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

selecting tables with matching chairs, where selecting one
table with 100 chairs might not increase the utility gained
from selecting the same table with, e.g., 8 chairs.

In this paper we consider partitions of the set of alterna-
tives into certain natural classes, and model (positive and
negative) synergistic relations between alternatives of the
same class (intraclass synergies), as well as synergistic re-
lations and diversity wishes between alternatives of differ-
ent classes (interclass synergies). Our main modelling tool is
what we refer to as synergy functions (formal definitions are
given in the Preliminaries section). We concentrate on the
computational complexity of identifying a winning commit-
tee, while taking into account such intraclass and interclass
synergies. Intuitively, we would like each committee mem-
ber to have reasonable support from the electorate while
maximizing (minimizing) the sum of the positive (negative)
synergies.

We show that, while the corresponding optimization prob-
lem is generally intractable (specifically, for general synergy
functions the problem is not even fixed-parameter tractable
for the number of classes; roughly speaking, this means that
even with very few classes no efficient algorithm for select-
ing an optimal committee exists), there are various cases for
which efficient algorithms do exist. Specifically, we describe
efficient algorithms that can identify committees satisfying
certain diversity wishes, as well as committees that optimize
certain non-trivial positive and negative synergies between
the alternatives.

Related Work

The most relevant work is the recent work of Izsak 2017
about committee selection with synergies between the can-
didates. Through set functions, Izsak allows voters to ex-
press their preferences of being represented by several spe-
cific candidates together; e.g., the score a voter gives to two
candidates together can be higher than the sum of their in-
dividual scores (say, if they are known to work extremely
well together). As set functions might be too complex,
Izsak considers preference elicitation and algorithms based
on the supermodular degree (Feige and Izsak 2013) and
showed that existing algorithms (Feldman and Izsak 2014;
2017) can be used to obtain approximation guarantees that
depend on the supermodular degree. The supermodular de-
gree, however, might be too large when some candidates

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1071

have synergy with many other candidates. For example, as-
sume that there are m/2 chairs and m/2 tables, where every
chair is worth more together with every table. Then, the su-
permodular degree depends on m, and the guarantees of al-
gorithms tailored for the supermodular degree might not be
useful. Contrary, in the current paper we have an exact and
efficient algorithm for this case. On the other hand, in an in-
stance where one views the items as an ordered list, where
every two consecutive items in the list have positive synergy,
then, in the model of Izsak 2017, the supermodular degree
is 2, while in our model, we need one class for every single
item.

Another related model is the well-studied model of
Marginal Contribution nets (MC-nets) (Ieong and Shoham
2005). MC-nets, which are vastly studied for cooperative
game theory, are general and flexible; in particular, they can
also capture synergies. We stress, however, that our model is
different than that of MC-nets.

Other works within computational social choice consider
relations between the alternatives. Among these, perhaps
the most relevant are works related to voting in social net-
works, such as work studying the influence of social net-
works on election outcomes (Conitzer 2012; Doucette et al.
2015; Procaccia, Shah, and Sodomka 2015; Salehi-Abari
and Boutilier 2014; Sina et al. 2015) and the effect of so-
cial networks on manipulative actions performed by exter-
nal agents (Bredereck et al. 2015b; Bulteau et al. 2015;
Chen et al. 2015).

Preliminaries

Below we briefly discuss parameterized complexity and
treewidth. We denote the set {1, . . . , n} by [n].

Parameterized Complexity

While the number m of alternatives in a given election might
be huge, the number z of classes of alternatives might be
significantly smaller than m. Therefore, considering z as a
parameter, and studying our optimization problem from a
parameterized complexity point of view is useful. Parame-
terized complexity is a very active research field; here we
only briefly discuss it, and point the reader to the textbooks
of Downey and Fellows 2013, Flum and Grohe 2006, or Nie-
dermeier 2006.

An instance (I, k) of a parameterized problem consists of
an instance I of a non-parameterized problem and an inte-
ger k, referred to as the parameter. A parameterized prob-
lem is called fixed-parameter tractable (or, is said to be in
FPT) if there is an algorithm solving it in f(k) · |I|O(1)

time, where f is some computable function. In contrast, an
algorithm with running-time |I|f(k) only shows membership
in the class XP . Trivially, it holds that FPT ⊆ XP .

One can show that a parameterized problem L is (pre-
sumably) not fixed-parameter tractable by devising an FPT
reduction from a W [1]-hard problem to L. An FPT reduc-
tion from a parameterized problem L to another parameter-
ized problem L′ is a function that, given an instance (I, k),
computes in f(k) · |I|O(1) time an instance (I ′, k′), such

that k′ ≤ g(k) and (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L′, where g
can be any computable function.

Treewidth

Treewidth (see, e.g., (Downey and Fellows 2013)) is a mea-
sure of similarity of graphs to trees, where graphs which
are similar to trees (in some specific sense) have small
treewidth.

Let G be an undirected graph, let T be a tree and let
B : V (T) → 2V (G). The pair (T,B) is a valid tree decom-
position of G if T is a tree in which every vertex x ∈ V (T)
has an assigned set of vertices Bx ⊆ V (G) (called a bag)
such that the following properties are satisfied:
• (P1):

⋃
x∈V (T) Bx = V (G).

• (P2): For each {u, v} ∈ E(G), there exists an x ∈ V (T)
such that u, v ∈ Bx.

• (P3): For each v ∈ V (G), the set of vertices of T whose
bags contain v induces a connected subtree of T .

The width of the tree decomposition (T,B) is
maxx∈V (T) |Bx| − 1. The treewidth of a graph G,
usually denoted by ω(G), is the minimum width over all the
valid tree decompositions of G.

The CSC Problem and its Modeling Power

We are ready to describe our formal model and the specific
combinatorial problem we aim at solving. First, we present
our model. Then, we provide examples to demonstrate its
power: (1) its applicability to situations where the winning
committee shall adhere to some diversity requirements; (2)
its ability to incorporate both positive and negative syner-
gies; and (3) its ability to model both interclass and intra-
class synergies.

Formal Model and Problem Definition

We are given an integer k, a set A = {a1, . . . , am} of alter-
natives, and a partition of A into z subsets: A = C1 ∪ · · · ∪
Cz , and Ci ∩ Cj = ∅ for every i �= j. For every i ∈ [z], we
refer to Ci as the ith class (of alternatives).

Our aim is to select a (winning) committee S ⊆ A that
consists of exactly k alternatives. We would like our win-
ning committee to consist of alternatives with reasonable
support from the given electorate, which we model by in-
dividual weight functions, and, importantly, to maximize
the additional weight gained by synergies between alter-
natives within the classes of alternatives or between dif-
ferent classes of alternatives, which we model by synergy
functions. Formally speaking, we associate an individual
weight/score w(ai) for every alternative ai ∈ A. We men-
tion that these weights are sufficient to incorporate any sep-
arable committee scoring function, such as SNTV, k-Borda,
and Bloc. (Intuitively, a separable committee scoring func-
tion is a multiwinner voting rule where the score given to
a committee by a voter is the sum of the individual scores
this voter gives to each committee member; see, e.g., (Fal-
iszewski et al. 2016).)

Additionally, we associate a synergy function for every set
of classes of alternatives. Formally, let C ⊆ {C1, . . . , Cz} be

1072

a set of classes containing exactly d classes. Then, we asso-
ciate with C a synergy function wC : [m]d → N of dimension
d. Intuitively, the value of wC(x1, . . . , xd) is the amount of
additional weight (i.e., score) gained by selecting the given
numbers of alternatives of each corresponding classes con-
tained in C (when, without loss of generality, we assume
some canonical ordering over the classes contained in C). In-
deed, there are at most m items at each of the classes and not
exactly m, but for clarity, we neglect that, and allow one to
give a value of 0 for every non relevant combination. Further,
sometimes we list the members of a set of classes without
using set notation. For example, consider the 2-dimensional
synergy function wC1,C4 : the value wC1,C4(2, 4) measures
the additional weight gained to a committee that includes
exactly 2 alternatives of the class C1 and exactly 4 alterna-
tives of the class C4.

The main problem we study in this paper is the following.

COMMITTEE SELECTION WITH CLASSES (CSC)
Input: A set of alternatives A = {a1, . . . , am} parti-
tioned into z classes C1, . . . , Cz , integer weights w(ai)
for the alternatives (i ∈ [m]), synergy functions of di-
mension d, and committee size k ∈ [m].
Question: Output a committee S ⊆ A of size k
that maximizes the committee score:

∑
ai∈S w(ai) +∑

j1,...,jd∈[z] wCj1
,...,Cjd

(|S ∩ Cj1 |, . . . , |S ∩ Cjd |).

Note that a synergy function of dimension d can easily
model a synergy function of a lower dimension, by giving
strictly positive values only for tuples containing zeros for a
fixed subset of the coordinates.

Example 1. Consider the alternatives {a1, a2, b1, b2}, par-
titioned into C1 = {a1, a2} and C2 = {b1, b2}. Let
w(a1) = w(b1) = 1, w(a2) = 2 and w(b2) = 3. Let the 2-
dimensional synergy function wC1,C2

be wC1,C2
(x1, x2) =

2x1 and set k = 2. Then, two committees tie as winners,
both with committee score 7: {a1, a2} and {a2, b2}.

Modeling Power and Examples

Here we demonstrate some aspects of our model’s modeling
power. The following examples are meant to be toy exam-
ples to point to different modeling possibilities.

Example 2 (Positive and negative synergies). Assume se-
lecting a small committee from a given set of alternatives
{a, b, c, d, e, f}. The committee members shall work to-
gether towards a certain goal. Therefore, it is desirable to
satisfy both the following goals: (1) the committee members
shall be well respected (say, very professional); and (2) the
committee members should be able to work well together
as a team. For the first goal, one may ask an assumed elec-
torate for alternatives’ approvals and count the number of
approvals for each alternative separately; for the sake of the
example, assume that a, b, and c receive 3 approvals each,
while d, e, and f receive 5 approvals each. For the second
goal, one may try to assess how well different alternatives
work well together; for the sake of the example, assume that
both a and b work well with c, while both d and e do not
work well with f .

We can model the problem of choosing the best com-
mittee as a CSC instance as follows. The set of alterna-
tives is A = {a, b, c, d, f, e} with the following weights:
w(a) = w(b) = w(c) = 3 and w(d) = w(e) = w(f) = 5.
To model the positive and negative synergies, it is useful to
first partition the set of alternatives into 4 classes, as follows:
A = C1 ∪ C2 ∪ C3 ∪ C4, where, C1 = {a, b}, C2 = {c},
C3 = {d, e}, and C4 = {f}. Then, the synergy functions
might be as follows: wC1,C2(1, 1) = 10, wC1,C2(2, 1) = 20,
wC3,C4(1, 1) = −10, wC3,C4(2, 1) = −20. Notice how the
positive synergies correspond to positive values while the
negative synergies correspond to negative values.

Example 3 (d-dimensional synergy functions). Consider se-
lecting cutlery, such as forks, knives and spoons: assume the
alternatives A = {f1, f2, k1, k2, s1, s2}, where, fi are forks,
ki are knives, and si are spoons. Indeed, the set of alterna-
tives can be naturally partitioned into A = {C1, C2, C3},
where, C1 = {f1, f2}, C2 = {k1, k2} and C3 = {s1, s2}.
Furthermore, one might prefer to select sets consisting of
one fork, one knife, and one spoon (as compared to, say,
two forks and one spoon).

As a CSC instance, one shall first assign weights to
the individual cutlery items. Then, to account for the rela-
tions between the cutlery types, one may define the synergy
functions to be, say, as follows: wC1,C2,C3

(1, 1, 1) = 10,
wC1,C2,C3(2, 2, 2) = 20, while all other values are 0.

In the previous examples we demonstrated modeling in-
terclass synergies, such as the utility added by selecting one
fork together with one knife and one spoon. One can model
intraclass synergies using CSC, as we show next.

Example 4 (Intraclass synergies). Assume selecting a na-
tional soccer team, where the available athletes are A =
{a1, a2, b1, c1, c2, c3}. Further, a1 and a2 currently play in
the same soccer club, while c1, c2, c3 are in a different club.
The set of alternatives can be naturally partitioned as fol-
lows: A = C1∪C2∪C3, where C1 = {a1, a2}, C2 = {b1},
and C3 = {c1, c2, c3}. As athletes from the same club play
well together, we do not only want to select the best athletes
to the team, but take this aspect into account, as well. As a
CSC instance, one might define the following synergy func-
tions: wC1

(2) = 20, wC3
(2) = 20, wC3

(3) = 40. Notice
how, e.g., selecting all three athletes form C3 increases the
committee score by 40. Further, notice how intraclass syn-
ergies are modeled using 1-dimensional synergy functions,
while, in other examples, interclass synergies are modeled
using d-dimensional (d > 1) synergy functions.

In many cases diversity in the elected committee is re-
quired, or at least desired to some extent. Later we discuss
general ways to model diversity goals using CSC; specifi-
cally, Theorem 2 and Theorem 3 describe an efficient algo-
rithm for that task. Here we provide a simple example.

Example 5 (Diversity requirements). Consider selecting a
committee to include 4 committee members out of the set of
alternatives A = {m1,m2,m3, w1, w2, w3}, where mi are
men, wi are women, and it is required to have the same num-
ber of men and women in the committee. First we may as-
sign weights to the alternatives based on their support from

1073

the electorate. Then, after naturally partitioning the set of
alternatives to A = {C1, C2}, where C1 = {m1,m2,m3}
and C2 = {w1, w2, w3}, we can define the synergy func-
tions to be, say: wC1,C2

(2, 2) = 100, while all other values
of the synergy functions are 0, and the individual weights
are much smaller than 100.

CSC is Computationally Intractable

As examplified in the previous section, many scenarios can
be modeled as CSC instances. Therefore, a natural question
to ask is whether solutions to CSC instances can be found
efficiently. In this section, we start our computational jour-
ney by investigating the computational complexity of CSC.
First, perhaps not surprisingly, we face intractability; inter-
estingly, we even face parameterized hardness with respect
to the number of classes.

Theorem 1. CSC is NP-hard and W [1]-hard with respect
to the number z of classes.

Proof. We reduce from the W[1]-hard problem MULTICOL-
ORED CLIQUE (MCC) (Downey and Fellows 2013): given a
graph G = (V,E) whose vertices are partitioned into h dis-
joint color classes V =

⋃
l∈[h] Vl, where for every j ∈ [h],

|Vj | = n and Vj is an independent set by G, the goal is to de-
cide whether a set of h pairwise adjacent vertices v1, . . . , vh
with vi ∈ Vi for every i ∈ [h], exists.

Let n and h be integers. Given an instance of MCC with h
color classes V1, . . . , Vh, where Vj = {v1j , . . . vnj }, for every
j ∈ [h], we show how to reduce it to an instance of CSC.

We introduce z = h + 1 classes of alternatives,
C1, . . . , Ch and D, where, for every j ∈ [h], Cj =
{a1j , . . . , anj } and D = {d1, . . . , dnh} (thus, we have m =
2nh alternatives in total). We set all the individual weights
to zero: w(aij) = 0 (j ∈ [h], i ∈ [n]) and w(di) = 0
(i ∈ [nh]). We set k to nh. For every pair of classes Ci

and Cj (i �= j ∈ [h]), we define a synergy function of di-
mension 2, such that fCi,Cj

(x, y) = 1, if the edge {vxi , v
y
j }

is present in the graph G, and fCi,Cj (x, y) = 0, otherwise.
This finishes the reduction.

We associate with each committee (of the reduced CSC
instance), a set of at most h vertices (of the given MCC in-
stance): with a committee S we associate the set of vertices
VS = {v|S∩Cj |

j : j ∈ [h]}; that is, as S has |S∩Cj |members
of the j-th class, VS has the |S∩Cj |-th vertex of color j. No-
tice that we do not consider the class D. The crucial obser-
vation now is that the committee score of S equals the num-
ber of edges between the vertices of VS ; this is so since all
individual weights are set to zero, and every synergy func-
tion that corresponds to two classes Ci and Cj adds 1 to the
committee score, if and only if there is an edge between the
corresponding vertices of the ith and jth color. It follows
that the committee score of S is maximum when VS is a
multicolored clique.

The negative result above means that (as long as W [1] �⊆
FPT , which is widely believed), CSC is not fixed-
parameter tractable with respect to the number z of classes.

Breaking CSC’s Computational Intractability

As in practice we might still want to find solutions to CSC
instances, we continue our computational journey by consid-
ering possible ways of overcoming the intractability shown
in the last section. First, we observe that if the number z of
classes is a constant, then there is a polynomial-time algo-
rithm for CSC.

Observation 1. CSC is XP wrt. the number z of classes.

Proof. Consider the following brute-force algorithm: For
every class Cj (j ∈ [z]), guess (i.e., do exhaustive search
for) a number kj ∈ [k] which stands for the number of com-
mittee members to be selected from the jth class, and make
sure that

∑
j∈[z] kj = k. Then, for every class Cj (j ∈ [z]),

choose the kj heaviest alternatives from that class. Since the
highest number we should guess is k, the number of possibil-
ities we check is upper bounded by kz , which is polynomial
in k, by our assumption that z is a constant.

Next we consider certain kinds of synergy func-
tions; specifically, we consider separable functions, mono-
tone functions, piece-wise linear functions, and so-called
constant-bounded functions (formally defined below). We
show that CSC instances with synergy functions that are sep-
arable can be solved in polynomial time. We also show that
CSC instances with synergy functions that are piece-wise
linear concave or constant-bounded can be solved in FPT
time with respect to the number of classes.

Separable Synergies and Diversity Wishes

A function f : Nd → N is separable if there are functions
f1, . . . , fd such that f(x1, . . . , xd) =

∑
i∈[d] fi(xi). Below

we describe an efficient algorithm that solves CSC instances
with only separable functions, and later we show how to
model diversity wishes using such CSC instances. Note that
if all the synergy functions are separable, then we can ac-
tually model the problem with only intraclass synergy func-
tions (i.e. synergy functions of dimension 1). So, in fact we
show how to compute exactly an optimal solution in the case
of only intraclass synergies. Interestingly, such functions can
model also diversity wishes between different classes.

Theorem 2. Any instance of CSC containing only separable
synergy functions is polynomial-time solvable.

Proof. We describe an algorithm based on dynamic pro-
gramming. We use the fact that, as all synergy functions
are separable, it is sufficient to decide the number of com-
mittee members from each class individually. Informally
speaking, our algorithm is as follows: we arbitrarily sort the
classes and then apply dynamic programming according to
that order, while remembering only the number of commit-
tee members that remain to be selected to the committee.

Formally, let C1, . . . , Cz be the alternative classes, and
consider them in this (arbitrary) order. We define Rec(j, k′)
to be a committee with the maximum score possible
when selecting k′ alternatives from the the first j classes,
C1, . . . , Cj . We show how to compute the values of the table

1074

Rec(j, k′), for every j ≤ z, k′ ≤ k. At the end, we will re-
turn the committee stored at Rec(z, k). Note that the scores
of the committees in Rec can be stored as well.

We start by computing committees for Rec for j = 1,
for every k′ ≤ k. This can be done as follows: one needs
to choose k′ alternatives from C1 of maximum individual
weights. Given the values of Rec(j’, k’) for every k′ ≤ k and
j′ < j, in order to compute the committee for Rec(j, k′),
we check all the possibilities of selecting a committee that
contains k′′ ≤ k (heaviest) alternatives from Cj , and the
rest from C1, . . . , Cj−1, and choose the best. Observe that
the number of possibilities is polynomial in k and the size
of the table Rec is polynomial, thus the claimed complexity
follows.

To see how separable functions help to select committees
with diversity desires, consider the following example.

Example 6. Consider selecting a committee of 6 members,
given an election containing 6 men and 6 women. One nat-
ural diversity desire would be to have, if possible, the same
number of men and women (i.e., 3) in the selected commit-
tee. We emphasize that this is not a “requirement”, as one
shall be aware of the inherent tradeoff between the support
each alternative has from the electorate, and the degree of
diversity achieved.

One possible way to incorporate such diversity desire into
an instance of CSC is to consider two classes, of men and
of women, and to define one synergy function of dimension
two fmen,women where fmen,women(x1, x2) = fmen(x1)+
fwomen(x2); then,

fmen(0) = fwomen(0) = 0,

fmen(1) = fwomen(1) = 1,

fmen(2) = fwomen(2) = 2,

fmen(3) = fwomen(3) = 3,

fmen(4) = fwomen(4) = 3,

fmen(5) = fwomen(5) = 3,

fmen(6) = fwomen(6) = 3.

Notice how the maximum of fmen,women is achieved at
fmen,women(3, 3) = 6, and how the value of fmen,women

decreases for less diverse committees.

Interestingly, we can generalize the above example to in-
corporate various kinds of diversity desires from a winning
committee, even for an arbitrary dimension.

Theorem 3. Consider an election with z classes of alter-
natives and diversity preferences of the form “at least xi

elected members are from class i”, where
∑

i xi ≤ k. Then,
finding an optimal winning committee can be done in poly-
nomial time.

Proof. We formulate the problem as an instance of CSC
with separable functions and generalize the idea shown in
Example 6. Specifically, for every class i, we define the syn-
ergy function:

fi(t) = max{t, xi} .

Then, the maximum possible value of
∑

i fi(ti) is
∑

i xi

and this value is achieved if and only if ∀iti ≥ xi. More-
over, for every i, if ti < xi, then

∑
i fi(ti) is less than the

optimum by at least xi − ti, which is the distance of ti from
the objective for the class i.

Monotone Synergies

Here we consider monotone functions: a function f : Nd →
N is monotone if, fixing any d − 1 values, the residual one-
dimensional function is monotone. This means that adding
candidates to a subset can never decrease its value (intu-
itively, a candidate cannot interrupt to the rest of the com-
mittee). The next result, which follows by modifying the
construction given in the proof of Theorem 1, shows that
CSC remains intractable even if all the synergy functions
are monotone.

Theorem 4. CSC is NP-hard and W [1]-hard with respect
to the number z of classes even if all the synergy functions
are monotone.

Proof. The result follows by modifying the reduction con-
structed in the proof of Theorem 1. Specifically, recall that
in the proof of Theorem 1, we defined the synergy functions
fCi,Cj (i �= j ∈ [h]) to be fCi,Cj (x, y) = 1 if the edge
{vxi , v

y
j } is present in the graph G, and 0 otherwise; here, we

define the synergy functions to be fCi,Cj (x, y) = 2x+2y+1
if the edge {vxi , v

y
j } is present in the graph G, and 2x + 2y

otherwise. Further, instead of defining w(di) = 0 (i ∈ [nz];
as done in the proof of Theorem 1), here we define w(di) =
2(h− 1)i (i ∈ [nz]).

The proof of correctness follows similar lines as the proof
of theorem 1 when observing that all synergy functions are
monotone, and the committee score of a committee S with
k candidates is equal to 2(h− 1)k plus the number of edges
between the vertices of VS .

Piece-wise Linear Synergies

While the last section shows that CSC remains intractable
even if all the synergy functions are monotone, in this sec-
tion we consider concave functions over linear combina-
tions (defined within the next proof), and achieve (fixed-
parameter) tractability.

We mention that the following theorem implies that CSC
is fixed-parameter tractable if all the synergy functions are
concave. Intuitively, concave synergy functions correspond
to situations with decreasing marginal utilities; as motivat-
ing examples, consider (1) purchasing product clones (e.g.
a second phone) and (2) having several committee members
with the same expertise.

Theorem 5. CSC is fixed-parameter tractable with respect
to the number z of classes, if all the synergy functions are
concave functions over linear combinations.

Proof. We show how to reduce the problem into maximiz-
ing an integer linear program (ILP) with piece-wise linear
concave functions; the claim then follows by applying the
method developed by Bredereck et al. 2015a.

1075

We define z integer variables, zl (l ∈ [z]), where zl stands
for the number of committee members selected from the lth
class, Cl. For each l ∈ [z] we add a constraint 0 ≤ zl ≤
|Cl|, as we cannot select more than |Cl| committee members
from the class Cl. We add an additional constraint, namely∑

l∈[z] zl = k, to respect the required committee size.
It is convenient to define the following function for each

l ∈ [z]: for x ∈ [|Cl|], let gl(x) be the total weight of the x
heaviest alternatives in the class Cl. Notice that (1) we can
precompute the values of gl(x) (l ∈ [z], x ∈ [|Cl|]); and
(2) all the gl functions are concave: roughly speaking, this
is so since we take the heaviest items. To see the last claim
more formally, order the alternatives of the lth class in de-
creasing weights, and denote them, w.l.o.g, by a1, . . . , a|Cl|,
such that ai ≥ ai+1 (i ∈ [|Cl|−1]). Then, concavity follows
since gl(x+ 1)− gl(x) = ax+1 ≥ ax = gl(x)− gl(x− 1).
Logically, to maximize the committee score we shall first
maximize the sum

∑
l∈[z] gl(zl); as it is not linear, we uti-

lize its concavity, and transform it using extra real-valued
variables, following the technique of Bredereck et al. 2015a.

Further, we shall consider the addition to the commit-
tee score gained by the synergy functions. Here we as-
sume that each d-dimensional synergy function wj1,...,jd
is such that it is a (piece-wise linear) concave function
over linear combinations, that is, wj1,...,jd(x1, . . . , xd) =
gj1,...,jd(f(x1, . . . , xd)), where gj1,...,jd is a piece-wise lin-
ear concave function and f(x1, . . . , xd) is a linear com-
bination of x1, . . . , xd. Thus, for each d-dimensional syn-
ergy function, wj1,...,jd we define an integer variable
zj1,...,jd with the intent that zj1,...,jd is the value of
wj1,...,jd(zj1 , . . . , zjd). Logically, we shall add the con-
straint zj1,...,jd ≤ wj1,...,jd(zj1 , . . . , zjd); again, following
concavity, we can optimize it by transforming it using extra
real-valued variables (Bredereck et al. 2015a).

Finally, we maximize the following objective function:
∑

l∈[z]

zl +
∑

j1 �=... �=jd

zj1,...,jd ,

and notice that we maximize piece-wise linear concave func-
tions, thus our result follows by applying the method devel-
oped by Bredereck et al. (Bredereck et al. 2015a).

We end this section with an open question: Is CSC W [1]-
hard with respect to the number of synergy functions even if
all synergy functions are convex functions over linear com-
binations (i.e., does CSC remains fixed-parameter tractable
for increasing marginal utilities)?

Constant-bounded Synergies

Consider a synergy function fCj1
,...,Cjd

of dimension d.
We say that fCj1

,...,Cjd
is constant-bounded if it is de-

fined only for constant values. That is, there are constants
cj1 , . . . , cjd such that, for each i and every possible val-
ues x1, . . . , xd, if xi ≥ ci, then fxi1 ,...,xid

(x1, . . . , xd) =

fCi1
,...,Cid

(x1, . . . , xi−1, ci, xi+1, . . . , xd). We refer to ci as
the synergistic upper bound of class i. The next result de-
scribes an efficient algorithm for instances of CSC consist-
ing only of constant-bounded synergy functions.

Proposition 1. CSC with constant-bounded synergy func-
tions is in FPT with respect to the number of classes z.

Proof. The idea is to guess a number bi between 0 and
ci, for every class Ci with synergistic upper bound of ci
(i ∈ [z]). This bi will be the number of representatives se-
lected from this class, unless the number selected is ci, and
then we will select at least ci representatives from the cor-
responding class. After this guessing phase, we select the
guessed number of representatives from each class accord-
ing to the guess, as described above, in a greedy way; specif-
ically, we always select the heaviest alternatives. Finally, if
we have not yet selected k alternatives, then we complete the
committee with alternatives selected greedily over all those
classes Ci for which our guessed number is ci. Note that
our “guesses” can be implemented by an exhaustive search.
So, for cmax = maxi ci, our running time is polynomial
in (cmax)

z and the number of alternatives, which proves
Proposition 1, since cmax is a constant by the definition of
constant-bounded synergy functions.

Structural Restrictions

Consider instances of CSC with dimension at most 2, and
let the classes-graph be a graph containing one vertex for
each class of alternatives and an edge between two vertices if
there is a non-trivial (i.e. not the zero function) synergy func-
tion between the corresponding classes. In this section we
show that instances of CSC with classes-graph of bounded
treewidth can be solved in polynomial time. We mention that
such classes-graphs contain as a special case graphs with
(only) small connected components, which seem of high rel-
evance to the motivating examples given in the Introduction.

Theorem 6. Any instance of CSC with classes-graph of con-
stant treewidth is solvable in polynomial time.

Proof. The main idea of our polynomial-time algorithm is
as follows. Let ω be the treewidth of the classes-graph cor-
responding to the given instance of CSC. Since there exist
small separators of size O(ω) which separates the graph into
two disconnected parts, it is possible, in polynomial time,
to brute-force over all possibilities of selecting alternatives
from classes within these separators. Intuitively, the latter
possibilities suffice: in the classes-graph, there are no edges
crossing these separators; thus, there are no synergies be-
tween classes from opposite sides of those separators.

For technical convenience, we will use a special type of
tree-decompositions called nice tree-decompositions.

Definition 1. A tree-decomposition (T,B) of G is said to be
nice if T is a rooted binary tree such that each vertex t ∈ T
is one of the following four types:

• Leaf Node: t is a leaf in T and Bt = {v} for some v ∈ G.
• Introduce Node: t has exactly one child t′ and Bt = Bt′∪
{v} for some v /∈ Bt′ .

• Forget Node: t has exactly one child t′ and Bt = Bt′\{v}
for some vertex v ∈ Bt′ .

• Join Node: t has exactly two children t′, t′′ such that
Bt′ = Bt = Bt′′ .

1076

The advantage of using nice tree-decompositions is that,
when writing a dynamic program, as we do below, we only
need to handle four types of nodes (intuitively, these node
types distinguish between certain types of separators). It
is known (Bodlaender and Koster 2008; Kloks 1994) that
a general tree decomposition (T,B) (of treewidth ω) can
be converted, in linear time, into a nice tree decomposition
(T ′, B′) of the same width such that |T ′| = O(ω · n).

As mentioned, we solve CSC using dynamic program-
ming. In fact, we solve a slightly generalized version of CSC
(it is more general, since we are given specific requirements
for different classes); specifically, we evaluate the follow-
ing values recursively: For a node t ∈ T whose bag ver-
tices are (without loss of generality) Bt = {v1, . . . , v|Bt|},
an integer k′ ∈ [k], and a vector [k′1, . . . , k

′
|Bt|], we de-

fine Rec(t, k′, [k′1, . . . , k
′
|Bt|]) to be the maximum commit-

tee score possible when selecting k′ alternatives from the
alternatives contained in the classes at the subtree rooted at
t (including t), when we select exactly k′j alternatives from
the class corresponding to the jth bag vertex vj of t.

Below we describe how to evaluate these
Rec(t, k′, [k′1, . . . , k

′
|Bt|]) values. First we mention that, as

our output, we return the committee corresponding to the
value of max[k′

1,...,k
′
|Bt|]∈[n]|Bt| Rec(r, k, [k′1, . . . , k

′
|Bt|],

where r is the root of the tree-decomposition of the
classes-graph of the given CSC instance (i.e., we consider
all vectors [k′1, . . . , k

′
|Bt|] and maximize over them).

Next we describe how to compute the values
Rec(t, k′, [k′1, . . . , k

′
|Bt|]) for each node type in the

nice tree decomposition. We let Wj(k
′
j) to denote the total

weight of k′j heaviest alternatives of the class corresponding
to vj .

LEAF NODE. Let t be a leaf node whose bag vertices
are Bt = {v1, . . . , v|Bt|}. First, make sure that k′ =∑

j∈[|Bt|] k
′
j . If so, then select k′j heaviest alternatives from

each vj ∈ Bt. Then, compute the committee score, tak-
ing into account synergies between the vertices of Bt.
More formally, we return Rec(t, k′, [k′1, . . . , k

′
|Bt|]) =∑

j∈[|Bt|] Wj(k
′
j) +

∑
j1 �=j2∈[|Bt|] wvj1 ,vj2

(k′j1 , k
′
j2
).

INTRODUCE NODE. Let t be an introduce node whose bag
vertices are Bt = {v1, . . . , v|Bt|}, and where v1 is the in-
troduced node; i.e., t has a single child, t′, and Bt′ =
{v2, . . . , v|Bt|}. Select k′1 heaviest alternatives from v1 and
compute the sum of synergies corresponding to pairs of
vertices v1, vj (2 ≤ vj ≤ |Bt|); then, recursively call t′.
More formally, Rec(t, k′, [k′1, . . . , k

′
|Bt|]) = W1(k

′
1) +∑

2≤j≤|Bt| wv1,vj (k
′
1, k

′
j)+Rec(t′, k′−k′1, [k

′
2, . . . , k

′
|Bt|]).

FORGET NODE. Let t be a forget node whose single child
is t′ with Bt′ = {v1, . . . , v|Bt′ |}, where v1 is the for-
gotten node; i.e., t = {v2, . . . , v|Bt′ |}. Guess how many
alternatives to select from the class corresponding to the
forgotten node, and recursively call t′. More formally, let
k′′ = k′ −

∑
2≤j≤|Bt′ | k

′
j (i.e., k′′ is the number of re-

maining alternatives to select from classes in the subtree

of t, not including t); then, Rec(t, k′, [k′2, . . . , k
′
|Bt′ |]) =

maxk′
1∈k′′ Rec(t′, k′ − k′1, [k

′
1, . . . , k

′
|Bt′ |]).

JOIN NODE. Let t be a join node whose two chil-
dren are t′ and t′′, such that Bt = Bt′ = Bt′′ =
{v1, . . . , v|Bt|}. Recursively call the two children, but,
since the synergies within the bag vertices are com-
puted in each of the children, decrease the total value
accordingly. More formally, Rec(t, k′, [k′1, . . . , k

′
|Bt|]) =

Rec(t′, k′, [k′1, . . . , k
′
|Bt|]) + Rec(t′′, k′, [k′1, . . . , k

′
|Bt|]) −∑

j1 �=j2∈[|Bt|] wvj1
,vj2

(k′j1 , k
′
j2
).

This finishes the description of our dynamic program
whose correctness follows by its exhaustive nature. The
number of recursive values computed is z · k · kω where z is
the number of classes (kω is the number of different vectors
of the form [k′1, . . . , k

′
|Bt|] and is bounded by kω since ω is

the treewidth of the classes graph); as ω is assumed to be
constant, the number of recursive values computed is poly-
nomial in the input size. Each of these values is computed by
issuing a polynomial number of recursive calls, thus com-
plexity follows.

Discussion

We introduced the CSC problem, which is concerned with
identifying winning committees in multiwinner elections,
when some (positive and negative) relations between cer-
tain alternatives are present; specifically, we utilized the fact
that in many cases (but not all; see below) there is a natural
partition of the set of alternatives, such that the relations be-
tween them can be expressed as synergy functions involving
these classes. We have demonstrated that CSC can model
various of real-world scenarios, including scenarios involv-
ing both positive and negative relations, scenarios with both
interclass and intraclass relations, and scenarios where some
diversity requirements or desires are to be satisfied by the
winning committee.

Even though, in its most general form, CSC is compu-
tationally intractable, We have developed algorithms which
efficiently solve many CSC instances.

We end the paper by discussing generalizations of CSC
and other avenues for future research, as well as some other
subtle points concerning our modeling.

• In our formal model, we used individual weights for the
alternatives as well as synergy functions to model the syn-
ergies between the alternatives. The individual weights for
the alternatives can naturally correspond to scores cor-
responding to any weakly separable multiwinner voting
rule operating on an implicit multiwinner election (see
Example 2 and the discussion concerning weakly sepa-
rable multiwinner voting rules in the section describing
the Formal Model). One might generalize CSC and study
a similar problem, but one where the assumed underlying
multiwinner voting rule is not weakly separable, but, say,
Chamberlin–Courant or PAV.

• As another problem variant, notice that here we assumed
that the values of the synergy functions are given ex-
plicitly. It might be interesting to see whether different

1077

access models to their values (e.g., as oracle functions)
correspond better to some real-world scenarios, and if
so, whether efficient (exact, parameterized, or approxima-
tion) algorithms exist for such variants of CSC.

• It is natural to try to further extend the modeling power
of CSC; as some example, consider (1) A generalization
of CSC where not only one partition of the set of alterna-
tives is given, but several partitions: this might correspond
to diversity wishes across multiple dimensions, such as
both gender diversity and ethnic diversity; and (2) A gen-
eralization of CSC with individual synergy functions: it
seems plausible to assume that, for different voters, dif-
ferent synergies play different roles and importance.

Acknowledgements

We are very grateful to Irit Dinur for useful discussions and
for her help with showing hardness. We are also very grate-
ful to Uri Feige, Inbal Livni-Navon and Maayan Meir for
useful discussions.

References

Bodlaender, H. L., and Koster, A. 2008. Combinatorial op-
timization on graphs of bounded treewidth. The Computer
Journal 51(3):255–269.
Bredereck, R.; Faliszewski, P.; Niedermeier, R.; Skowron,
P.; and Talmon, N. 2015a. Elections with few candidates:
Prices, weights, and covering problems. In Proceedings of
the 4th International Conference on Algorithmic Decision
Theory (ADT ’15), 414–431.
Bredereck, R.; Faliszewski, P.; Niedermeier, R.; and Talmon,
N. 2015b. Large-scale election campaigns: Combinatorial
shift bribery. In Proceedings of AAMAS’15, 67–75.
Bulteau, L.; Chen, J.; Faliszewski, P.; Niedermeier, R.; and
Talmon, N. 2015. Combinatorial voter control in elections.
Theoretical Computer Science 589:99–120.
Chen, J.; Faliszewski, P.; Niedermeier, R.; and Talmon, N.
2015. Elections with few voters: Candidate control can be
easy. In Proceedings of AAAI’15, 2045–2051.
Conitzer, V. 2012. Should social network structure be taken
into account in elections? Mathematical Social Sciences
64(1):100–102.
Doucette, J. A.; Hosseini, H.; Tsang, A.; Larson, K.; and
Cohen, R. 2015. Voting with social networks: Truth springs
from argument amongst friends. Presented at the 2nd Work-
shop on Exploring Beyond the Worst Case in Computational
Social Choice; Held as part of AAMAS’15.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals of
Parameterized Complexity. Springer.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2016. Committee scoring rules: Axiomatic classification and
hierarchy. In Proceedings of IJCAI’16, 250–256.
Feige, U., and Izsak, R. 2013. Welfare maximization and the
supermodular degree. In Innovations in Theoretical Com-
puter Science, ITCS, 247–256.

Feldman, M., and Izsak, R. 2014. Constrained monotone
function maximization and the supermodular degree. In Ap-
proximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM, 160–
175.
Feldman, M., and Izsak, R. 2017. Building a good team:
Secretary problems and the supermodular degree. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA, 1651–1670.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.
Ieong, S., and Shoham, Y. 2005. Marginal contribution nets:
a compact representation scheme for coalitional games. In
Proceedings 6th ACM Conference on Electronic Commerce
(EC-2005), Vancouver, BC, Canada, June 5-8, 2005, 193–
202.
Izsak, R. 2017. Working together: Committee selection
and the supermodular degree. In Proceedings of AAMAS’17,
1578–1580.
Kloks, T. 1994. Treewidth: computations and approxima-
tions, volume 842. Springer Science & Business Media.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford.
Procaccia, A. D.; Shah, N.; and Sodomka, E. 2015. Ranked
voting on social networks. In Proceedings of IJCAI’15,
2040–2046.
Salehi-Abari, A., and Boutilier, C. 2014. Empathetic social
choice on social networks. In Proceedings of AAMAS’14,
693–700.
Sina, S.; Hazon, N.; Hassidim, A.; and Kraus, S. 2015.
Adapting the social network to affect elections. In Proceed-
ings of AAMAS’15, 705–713.

1078

