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Abstract

The classic bribery problem is to find a minimal subset of
voters who need to change their vote to make some preferred
candidate win. We find an approximate solution for this prob-
lem for a broad family of scoring rules (which includes Borda
and t-approval), in the following sense: if there is a strategy
which requires bribing k voters, we efficiently find a strategy
which requires bribing at most k + ˜O(

√
k) voters.

Our algorithm is based on a randomized reduction from
bribery to coalitional manipulation (UCM). To solve the
UCM problem, we apply the Birkhoff-von Neumann (BvN)
decomposition to a fractional manipulation matrix. This al-
lows us to limit the size of the possible ballot search space
reducing it from exponential to polynomial, while still ob-
taining good approximation guarantees. Finding the optimal
solution in the truncated search space yields a new algorithm
for UCM, which is of independent interest.

Introduction

We study the popular preferential model for elections, where
each of the agents (also: voters) ranks the candidates. Then,
some function—known as a voting rule or a protocol—is
applied on the voter rankings in order to decide on the win-
ner(s). Ideally, we would like the voters to be truthful: that
is, that the rankings submitted by each voter would cor-
respond to his real preference over the alternatives. When
the voters might have the incentive to do otherwise, we re-
fer to the voting protocol as manipulable. Unfortunately,
a celebrated result in social choice theory achieved inde-
pendently by Gibbard and Satterthwaite (Gibbard 1973;
Satterthwaite 1975) shows that when the number of candi-
dates is at least 3, any reasonable voting rule is manipulable.

Manipulation can take several different forms. In un-
weighted coalitional manipulation (UCM), a set of voters
(hereafter the manipulators) sharing a preference for a can-
didate p try to coordinate their voting so that p will win the
election. This is assuming that all other voters are truthful
and that their preferences are known. In bribery, an inter-
ested party is willing to pay some of the voters to change
their vote into a given ballot, such that p will prevail. In both
cases, the goal is to make p win using minimal resources,
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for example, the number of manipulators or bribed voters,
respectively.

The importance of the aforementioned manipulation
forms ranges beyond their immediate definition. First, var-
ious manipulation forms model various aspects of campaign
management: which electorate or demographic should a can-
didate target during his campaign, and where should his or
her campaign manager direct the campaign funds. In re-
cent years, the significance of targeting specific electorates
in election campaigns had skyrocketed, see (Peters and Al-
cindor 2016) for one example out of many. In this context,
bribery models the act of targeting prospective voters and
convincing them to change their vote, and UCM models the
act of urging people not planning on voting to exercise their
right to vote (when it is done by an interested third party
supporting one candidate).

Second, they can also be seen as means by which we mea-
sure how well did a candidate do in the election, or equiva-
lently how far away was her from winning it. They achieve
so by calculating the effort needed to promote her enough
in order to win (Faliszewski, Skowron, and Talmon 2017).
In some way, such measures are more robust compared to
intrinsic measures like the candidate score in the election.

In response to the Gibbard-Satterthwaite theorem, exten-
sive research on the computational aspects of social choice
focused on providing some hope against manipulation by
showing that in many scenarios, finding a manipulative strat-
egy is computationally hard. In such cases research naturally
shifts its focus to devising approximations and heuristics.

In this paper, we shall focus on one of the most impor-
tant families of voting rules, known as positional scoring
rules, or scoring rules for short. For a given score vector
α = (α0, . . . , αm), where α0 ≤ · · · ≤ αm and m + 1
is the number of candidates, a scoring rule Rα is a voting
rule where each voter awards αm, . . . , α0 points to the can-
didates he ranked in places 1, 2, . . . ,m+1, respectively. The
winners are the candidates with maximum aggregate score.
Popular cases of scoring rules are the Plurality, Veto, and
Borda voting rules.

A string of results researched both the hardness and ap-
proximability of UCM for various voting rules, and in par-
ticular scoring rules. However, is seems that the equivalent
landscape for bribery is lacking: while several results had
shown that Borda-Bribery is NP-hard, and that the same
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holds even for the relatively simple t-approval-bribery (Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2009; Brels-
ford et al. 2008; Lin 2012; Bredereck et al. 2016b; 2016a),
only little work was done on approximating bribery (Fal-
iszewski 2008; Elkind and Faliszewski 2010; Bredereck et
al. 2016a). We aim at filling this gap, by providing results
which target the most classic bribery model, where the goal
is to minimize the number of bribed voters. Specifically we
show that for many scoring rules:

If there exists a strategy making a preferred candi-
date p win by bribing k voters, then we can efficiently
find a strategy making her win while bribing additional
Õ(

√
k) voters.1

Our additive approximation can be seen as a (1 + o(1))-
multiplicative approximation. It should be noted that the
non-trivial feat was to provide a guarantee tighter than any
constant-factor approximation. To provide an intuition as to
why a constant-factor approximation is relatively easy, let us
focus on one relatively simple rule, namely t-approval. If k
is the optimal number of manipulators needed, this means
that the gap between any candidate and p was at most 2k,
as bribing a voter can decrease the gap between some candi-
date and p by at most 2. Now imagine the following strategy:
iteratively, pick a voter that did not vote for p (if no such
voter exists, then p is already winning), and bribe him to
transfer one point from any candidate he currently supports,
to p. This decreases the aforementioned gap by at least 1,
and therefore at most 2k bribed voters are required by this
procedure. Thus, we have just described a 2-multiplicative
approximation to t-approval-bribery.

We provide a non-trivial approximation to Rα-Bribery
for large families of scoring rules (encompassing well-
known ones, like t-approval variants and Borda). Our meth-
ods are based on relaxed linear programs that are trans-
formed to a valid solution (i.e., bribery strategy) using a
seminal result from the interplay of combinatorics and ge-
ometry, namely the Birkhoff-von Neumann (BvN) decom-
position (Birkhoff 1946; von Neumann 1953; Kőnig 2001),
and specifically the constructive proof to its related theorem.
We use them as a tool to reduce the size of the valid strategy
search space from exponential to polynomial. It thus pro-
vides an important insight on the underlying combinatorial
properties of manipulation under scoring rules, and is inter-
esting in its own right.

En route to providing our approximation for Rα-Bribery,
we also supply new approximation results for Rα-UCM.
Our results target both approximation objectives appearing
in the literature, namely minimizing the number of required
manipulators (see (Zuckerman, Procaccia, and Rosenschein
2009; Xia, Conitzer, and Procaccia 2010)), and minimizing
the score margin between the highest non-preferred candi-
date and p (see (Brelsford et al. 2008)).

Our Results and Contributions

We focus on two families of scoring rules, namely constant
and non-concentrated scoring rules, defined as follows. A

1As common in the literature, the ˜O notation discards poly-
logarithmic factors.

scoring rule Rα is called constant if αm = O(1). A scoring
rule is called non-concentrated if ᾱ ≤ (1− ε)αm, for some
constant ε > 0, where ᾱ = 1/(m + 1)

∑m
j=0 αj is the av-

erage of the values in α. Our results can be summarized by
the following theorems. For Rα-Bribery:
Theorem 1. In Rα-Bribery under constant or non-
concentrated Rα, let k be the minimum number of voters
needed to be bribed in order to make p win. Then there ex-
ists a polynomial-time randomized algorithm using at most
k + Õ(

√
k)-voters, with exponentially-small failure proba-

bility.
This theorem immediately yields the following:

Corollary 2. In bribery under Borda, t-approval, plurality,
or veto, let k be the minimum number of voters to be bribed
in order to make p win. Then there exists a polynomial-time
randomized algorithm using at most k+Õ(

√
k)-voters, with

exponentially-small failure probability.
The above theorem shall use the constructive proof of the

following algorithm for Rα-UCM as a subprocedure:
Theorem 3. For Rα-UCM under any score vector
α, let k be the number of given manipulators. There
exists a polynomial-time randomized algorithm yield-
ing an Õ(αm

√
k)-additive-approximation to the margin-

minimization objective, with exponentially-small failure
probability.

Moving to the objective of minimizing manipulators, the
above theorem also enables the following result which—
for the specific case of non-concentrated scoring rules—
improves the m − 2 additive approximation given in (Xia,
Conitzer, and Procaccia 2010) when k = o(m):
Theorem 4. For Rα-UCM under non-concentrated Rα,
let k be the minimum number of manipulators required to
make p win. Then there exists a polynomial-time random-
ized algorithm using at most k+ Õ(

√
k) manipulators, with

exponentially-small failure probability.
Aside for the above results, we provide tighter analysis for

Borda-UCM, based on a result in (Zuckerman, Procaccia,
and Rosenschein 2009):
Theorem 5. The algorithm in (Zuckerman, Procaccia,
and Rosenschein 2009) for Borda-UCM, yields an (m −
1)/2-additive-approximation to the objective of margin-
minimization.

For brevity, we defer the proof of Theorem 5 to the full
version of this paper. It should be noted that while we prove
that their algorithm provides tighter analysis for Borda, an
equivalent property for all scoring rules is not known to
hold.

Related Work

Bribery. In the standard bribery model (every voter has
a unit price), t-approval-bribery is NP-hard (Lin 2012) ex-
cept for some small values of t for which t-approval-bribery
and t-veto-bribery become easy (Faliszewski, Hemaspaan-
dra, and Hemaspaandra 2009). Borda-bribery is NP-hard as
well (Brelsford et al. 2008).
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Little work was done on approximating bribery. Of in-
terest is an FPTAS for plurality-weighted-$bribery (Fal-
iszewski 2008) and other work targeting other models like
shift-bribery (Elkind, Faliszewski, and Slinko 2009; Elkind
and Faliszewski 2010; Bredereck et al. 2016a). See survey
in (Faliszewski and Rothe 2016) for more details.

Coalitional Manipulation. When m is bounded, Rα-
UCM is always easy (Conitzer, Sandholm, and Lang 2007).
When it is not, it was shown that t-approval (and thus plu-
rality and veto) are still easy (Zuckerman, Procaccia, and
Rosenschein 2009; Lin 2012), and then recently, that every
scoring rule where α comprises of a constant number of
coefficients is as well (Hemaspaandra and Schnoor 2016).
Other cases are not necessarily easy; in particular Borda
is NP-hard (Betzler, Niedermeier, and Woeginger 2011;
Davies et al. 2014).

Its weighted counterpart Rα-WCM (where every voter
has an associated weight by which his ballot is multi-
plied) is always hard for m ≥ 3, besides the single ex-
ception of the plurality scoring rule (Conitzer, Sandholm,
and Lang 2007; Hemaspaandra and Hemaspaandra 2007;
Procaccia and Rosenschein 2007).

As for approximations, two main objectives for approx-
imation appear in the literature. The first focuses on mini-
mizing the margin between the highest non-preferred candi-
date and p, or some additive function thereof2 which also at-
tains its minimum when the margin is minimized (and thus is
equivalent from the optimization standpoint). It was used in
some older results, but also garnered recent interest: Brels-
ford et al. (Brelsford et al. 2008) provided approximation
for Rα-WCM for the limited case the number of candi-
dates is constant. Keller et al. (Keller, Hassidim, and Ha-
zon 2017) have removed the requirement on the number of
candidates, and showed a randomized algorithm providing
O(kmaxi|αi+β−αi|) additive approximation to the margin,
where β = Õ(

√
m) and k is the number of manipulators.

The second approximation objective revolves around min-
imizing the number of voters involved in the manipula-
tion. For UCM it is the number of added manipulators;
for bribery, it is the number of bribed voters. Zuckerman
et al. (Zuckerman, Procaccia, and Rosenschein 2009) show
that for Borda-UCM, their greedy algorithm, called RE-
VERSE elsewhere (Davies et al. 2014), provides an addi-
tive +1 approximation for this objective. Xia et al. (Xia,
Conitzer, and Procaccia 2010) provide an m − 2 additive
approximation for Rα-UCM.

Preliminaries

An election E = (C, V ) is defined by a candidate set
C = {p, c1, . . . , cm} and a set of n voters V where each
voter submits a ranking of the candidates according to its
preference. Then, some decision rule R is applied in order
to decide on the winner(s); formally R(E) ⊆ C is the set
of winners of the elections. In the specific case of a posi-
tional scoring rule Rα, the rule is described by a vector

2For example, the score of the highest non-preferred candidate,
or the difference in margin with and without the manipulation.

α = (α0, α1, . . . , αm) for which α0 ≤ α1 ≤ · · · ≤ αm,
and αm is polynomial in m, used as follows: each voter
awards αi to the candidate ranked (m + 1 − i)-th. Finally,
the winning candidate is the one with the highest aggregated
score. In the specific case of Borda scoring rule, we have that
α = (0, 1, . . . ,m−1,m). In t-approval, α = (0m+1−t;1t)

where 0t′ (resp. 1t′ ) is 0 (resp. 1) concatenated t′ times.
plurality (resp. veto) is the specific case of 1-approval (resp.
m-approval).

We assume the non-unique-winner/co-winner model
where p is considered a winner even if she is not the only
winner. Extending our work for the unique-winner model is
rather straightforward, but omitted for brevity.

Problem Definitions

Bribery. Given an election E under a rule R and a preferred
candidate p, the goal is to bribe the minimum amount of
voters, such that p will win, where bribing a voter is the
act of replacing its ballot by a ranking to our choosing.
The output is thus the identity of the bribed voters along
with their new ballots.

Minimum-manipulator-UCM. Given an election E under
a rule R and a preferred candidate p. The goal is to add
the least amount of additional voters (the manipulators),
and to determine their strategies, such that p will win.

Minimum-margin-UCM. Given an election E under a
scoring rule Rα, a preferred candidate p, and the num-
ber of allowed manipulators k, the goal is to deter-
mine the manipulator strategies, such that the margin
maxc∈C\{p} s(c)− s(p) is minimized, where s(c′) is c′’s
final score. Notice that as the number of manipulators is
limited, p will not necessarily win.

As we focus on scoring rules Rα, we will define the
scoring profile σ such that σ(c) is the initial score of
c. Notice that for UCM, having σ in the input makes
V redundant. Also notice that for minimum-margin-Rα-
UCM, minimizing the margin boils down to to minimiz-
ing maxc∈C\{p} s(c), as s(p) is determined in advance (ev-
ery manipulator will award her the maximum score possi-
ble and thus s(p) = σ(p) + kαm). Therefore we can effec-
tively discard p when solving the problem, and use α′ =
(α0, α1, . . . , αm−1) instead of α (i.e., αm is removed).

For ease of notation, let N = nm denote the natural
size of the input and let [m] = {1, . . . ,m} and [m]0 =
{0, . . . ,m−1}. For two parameters a, b, we denote the con-
tinuous set [a− b, a+ b] as [a± b].

Probabilities. Throughout the lemmas in this paper, a con-
stant λ > 1 will be used, where its value will be determined
in the main theorems. Many of the lemmas contain math-
ematical expressions that are said to hold with probability
at least 1 − cN−λ+d for some constants c, d. That is, their
failure probability is arbitrarily-chosen polynomially-small
(in m), based on our selection of λ, where ‘failure’ refers
to the event that the discussed expression does not hold, and
more generally, to the event that algorithm does not provide
the desired approximation guarantee. We would sometimes
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write “with failure probability at most cN−λ+d” when pre-
senting such expressions, and sometimes informally use the
term ‘with high probability’ when the exact probability is
clear from context.

As the aforementioned λ is constant and always appears
in both the runtime and approximation factors in polynomial
form, it would not have an effect on the asymptotic behavior
of both.

We use the following corollary of the well-known Cher-
noff bounds, focusing on their behavior for arbitrarily-
chosen polynomially-small error-probabilities:
Lemma 6. Let X1, . . . , Xn be independent random vari-
ables where Xi ∈ [0, U ] for all i, λ be some constant, and
N be some large enough value. Let X =

∑n
i=1 Xi. Then

Pr[X /∈ [E[X]±R1(λ, U,E[X])]] ≤ N−λ

where R1(λ, U,E[X]) ≤ 6λmax{√UE[X], U} lnN =

Õ(
√

UE[X] + U) is the “approximation error” we allow
w.r.t. the expected value E[X].

For brevity, we defer the proof to the full version of this
paper.

Algorithm For UCM
We begin by presenting an approximation for minimum-
margin UCM, which is outlined as Algorithm 1. It will be
used as a subprocedure in our Bribery algorithm. Consider
the relaxed linear program (LP) for minimizing the margin
for Rα-UCM, described as follows.

Given an instance of UCM, as described by a score pro-
file σ = (σ(ci))i∈[m] and the number of manipulators k, we
start by defining the variables xi,j for (i, j) ∈ [m] × [m]0,
and the variable θ, with the intent that xi,j will equal the
number of times candidate ci received a score of type αj ,
and that θ will serve as the upper-bound on each candi-
date’s final aggregate score. Notice that since the voters are
unweighted (i.e., they are identical; all have the same vot-
ing power) we do not care which manipulators awarded her
those scores; this is true due to (Davies et al. 2014, Theo-
rem 7) where they show that every score assignment such
that each candidate has received k scores, and each score-
type αj is repeated exactly k times, can be modified in poly-
nomial time into a valid strategy without affecting each can-
didate’s final score.

The LP is defined as:
min
x

θ (1)

subject to:
m∑
i=1

xi,j = k ∀j ∈ [m]0 , (2)

m−1∑
j=0

xi,j = k ∀i ∈ [m] , (3)

σ(ci) +
m−1∑
j=0

αjxi,j ≤ θ ∀i ∈ [m] , (4)

xi,j ∈ [0, k] ∀i ∈ [m], j ∈ [m]0 , (5)

where (2) guarantees that every score was awarded k times,
(3) guarantees that every candidate was given k scores, and
(4) guarantees that every candidate gets at most θ points.
The constraint xi,j ∈ [0, k] is a relaxation of the constraint
xi,j ∈ {0, . . . , k}, however, the latter would have caused the
LP to become an integer program (IP), and solving such is
NP-hard. We denote the relaxed LP as LPCM(α,σ, k).

Assume we solve the above LP, and let x� be the resulting
solution w.r.t. the objective value θ�. As an optimum of the
LP, x� denotes some allocation of scores such that the mar-
gin in minimized, however, as this allocation is fractional, it
does not translate into a valid strategy.

Many algorithms solve such scenarios using some form
of randomized rounding over the fractional variables. This
seems quite problematic as the variables are highly interde-
pendent, where their dependency is given by the LP con-
straints. These constraints should still hold even after the
rounding.

To work around this, notice that each possible ballot cor-
responds to some permutation π (with the meaning that ci
receives a score of απ(i)), and therefore randomized round-
ing should be done on the ballot level. However, to do so
we have to define some distribution over the ballots (permu-
tations), and there are m! of them. This is where the BvN
decomposition comes to our rescue.

Observe the matrix Y = [yi,j ] where yi,j = x�
i,j/k

and notice that it is doubly-stochastic, that is
∑

i Yi,j =∑
j Yi,j = 1. Roughly speaking, the Birkhoff-von Neumann

theorem states that each doubly-stochastic matrix is a point
in the Birkhoff polytope, whose vertices are all the m! per-
mutation matrices. In other words, every doubly-stochastic
matrix can be obtained by a convex combination (a weighted
sum with coefficients in [0, 1] which sum to 1) of all permu-
tation matrices. However, the surprising fact—as shown by
various constructive proofs to the theorem—is that such a
convex sum can be found in which the number of nonzero
coefficients is at most m2.

Let us now state a suitable variant of the Birkhoff-von
Neumann theorem:

Theorem 7 (BvN Theorem). Let Y be a doubly-stochastic
matrix. Then we can decompose Y to a convex combination
of at most m2 permutation matrices, that is, we decompose
Y = λ1Pπ1

+ · · ·+ λqPπq
where each πt is a permutation

with Pπt
being its corresponding permutation matrix, each

λt ∈ [0, 1] and
∑

t λt = 1, and q ≤ m2. This decomposition
can be found in polynomial time.

For the sake of completeness, we supply a constructive
proof of this theorem in the full version of this paper.

The remarkable thing about this form of the BvN decom-
position, is that it implies that when choosing ballots for
each of the manipulators, we only have to consider at most
m2 ballots—a polynomial number—out of the the m! possi-
ble ballots (that is, permutations of order m).

Let Π = {π1, . . . , πq} (resp. λ1, . . . , λq) be the set of per-
mutations (resp. weights) used in the above decomposition,
and let p̂ : Π → [0, 1] be a distribution over Π the such that
p̂(πt) = λt.
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Algorithm 1: Rα-UCM Algorithm.
1 Solve LPCM(α,σ, k), and let x� be the resulting

solution.
2 Apply the BvN decomposition on Y = x�/k, and let

Π = {π1, . . . , πq} be the resulting permutations
with respective weights λ1, . . . , λq . /* The
divisiion in x�/k is element-wise
*/

3 Define a distribution p̂ : Π → [0, 1] over Π such that
p̂(πt) = λt.

4 For each manipulator 	, randomly draw a random
permutation π� ∼ p̂, and assign it to 	 as his ballot.
/* meaning 	 awards ci a score of
απ(i) */

We proceed as follows. For each manipulator 	, we ran-
domly draw a random permutation π� ∼ p̂, and assign it to 	
as his ballot, that is 	 awards ci a score of απ�(i).

Let R2(λ, αm−1, k) = 6λαm−1

√
(k + 1) lnN . The fol-

lowing lemma shows that this bounds the additional points
received by a candidate by the rounding process:

Lemma 8. With failure probability at most N−λ+1, the
above algorithm adds at most R2(λ, αm−1, k) points to the
score each candidate had received by the LP.

Proof. Let x̃i,j be the number of αj scores awarded to ci
by the manipulators. Now focus on some i, and let Q be all
points awarded to ci by the manipulators, according to our
algorithm. On one hand, Q =

∑m−1
j=0 αj x̃i,j . On the other

hand, Q =
∑k

�=1 απ�(i), and thus

E[Q] =
k∑

�=1

E[απ�(i)] = k
∑
π∈Π

p̂(π)απ(i) ,

where the last equality follows by the π�’s being i.i.d. By
further splitting the summation in the r.h.s.:

E[Q] = k
m−1∑
j=0

αj

∑
π∈Π

π(i)=j

p̂(π) = k
∑
j

αjyi,j =
m−1∑
j=0

αjx
�
i,j

In addition, notice that

m−1∑
j=0

αjx
�
i,j ≤ αm−1

m−1∑
j=0

x�
i,j = αm−1k . (6)

Applying Corollary 6 to Q =
∑k

�=1 απ�(i) and recalling
that απ�(i) ∈ [0, αm−1], we get that with failure probability
at most N−λ:

|Q− E[Q]| ≤ R1(λ, αm−1,E[Q])

≤ 6λmax{αm−1

√
k, αm−1} lnN

= 6λαm−1

√
k lnN

≤ R2(λ, αm−1, k) .

where the first inequality follows by an application of Corol-
lary 6, the second by Eq. (6), and the first equality by natu-
rally assuming that k ≥ 1 (otherwise there are no manipula-
tors and the problem instance is degenerate).

In words, when we created valid ballots for each of the
voters, the score of each candidate increased by at most
R2(λ, αm−1, k) with probability failure probability at most
N−λ. By applying the union-bound over all m ≤ N can-
didates, it can be made to hold for all candidates simultane-
ously with failure probability at most N−λ+1.

Let θ̃ = maxi∈[m] σ(ci) +
∑m−1

j=0 αj x̃i,j be the objec-
tive value obtained by our algorithm. We are now ready to
complete the proof of Theorem 3:

Proof of Theorem 3. This is true by the fact that the algo-
rithm adds at most R2(λ, αm−1, k) points to each candidate,
and thus θ̃ ≤ θ� + R2(λ, αm−1, k) ≤ θ̄ + R2(λ, αm−1, k),
where θ̄ is the UCM (integral) optimum. The last inequal-
ity holds since the LP is a relaxation of the original IP.
The overall running time is polynomial, as it is com-
prised of solving an LP (Karmarkar 1984), followed by the
polynomial-time BvN decomposition. The above algorithm
has a polynomially-small failure probability N−λ+1. By
choosing e.g. λ = 2 and running it a linear number of times,
and choosing the run yielding minimal θ̃, the failure proba-
bility becomes exponentially-small, while the runtime stays
polynomial.

The proof of Theorem 4 continues from here, by show-
ing that for non-concentrated scoring rules, when the mar-
gin is at most R2(λ, αm−1, k), then with high probability
O(R2(λ, αm−1, k)/αm−1) = Õ(

√
k) additional manipula-

tors are needed in order to close the gap. We defer the proof
to the full version of the paper, and note that it is similar in
nature to the proof of Lemma 14.

Algorithm For Bribery

We can now move to describe the actual bribery LP, denoted
LPB(α,σ). Let yv be an indicator variable for each voter
v indicating whether he should be bribed. As bribing vot-
ers boils down to their deletion, followed by re-adding them
with a new ballot, we also need to describe how to allocate
the points of the new ballots. Therefore we define—as in the
UCM case—the variables xi,j with the intent that xi,j will
equal the number scores of type j awarded to ci. The relaxed
LP is defined as follows:

min
x,y,θ,k

k

subject to:∑
v∈V

yv = k (7)

σ(ci)−
∑
v∈V

αj(v,ci)yv +
m−1∑
j=0

αjxi,j ≤ θ ∀i ∈ [m] , (8)
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Algorithm 2: Rα-bribery Algorithm.
1 Solve the Bribery LP as described, and let

(x�;y�, θ�) and k� be the resulting solution
2 foreach v do

3 ỹv ←
{
1 with probability y�v
0 otherwise

4 Set f ← ∑
v∈V ỹv −

∑
v∈V y�v and let k̃ =

∑
v∈V ỹv

5 Define σ̂(ci) = σ(ci)−
∑

v∈V j(v, ci)ỹv for every
i ∈ [m]

6 Apply our UCM algorithm on the input
((α0, . . . , αm−1), σ̂, k̃)

7 while σ̂(p) < maxc∈C′ σ̂(c) do
/* while p loses */

8 Pick at most ε−1N voters and bribe them
according to Lemma 13/Lemma 14

σ(p)−
∑
v∈V

αj(v,p)yv + αmk ≥ θ , (9)

m∑
i=1

xi,j = k ∀j ∈ [m]0 , (10)

m−1∑
j=0

xi,j = k ∀i ∈ [m] , (11)

yv ∈ [0, 1] ∀v , (12)
xi,j ∈ [0, k] ∀i, j , (13)

where αj(v,c) is the score currently given by a voter v to
a candidate c. Constraints (10,11) are identical to their cor-
responding constraints in the coalitional manipulation LP.
Constraint (7) makes sure that the number of bribed voters
will be k, the variable we seek to minimize. (8,9) together
make sure that p has a final score greater than or equal to any
other candidate. Notice that the use of αmk in (9) stems from
the fact that the score awarded to p by the k bribed voters is
known; each will give her the maximum score available.

Our algorithm is outlined as Algorithm 2, and is com-
prised of four stages. In the first stage, we shall solve the
Bribery LP, as previously defined. In the second, we will
choose an initial set of voters to bribe using a simple form
of randomized rounding. This choice of voters will reduce
the problem to an instance of the UCM problem, in which
the number of manipulators is known (as we have already
determined them). This is the point—the third stage—where
we shall use our UCM algorithm, to determine their strategy.
Our main claim here is that by bribing not too many voters,
and assigning them ballots, we have reduced this bribery in-
stance to another bribery instance, in which the margin is
small—at most Õ(αm

√
k). Then, at the fourth stage, we will

show that this margin is relatively easy to close, by using at
most Õ(

√
k) additional bribed voters.

Stage 1: Solving the Bribery LP. We solve LPB, obtain-
ing the solution (x�,y�, θ�) w.r.t. the optimal objective k�.
While (x�,y�, θ�) is a fractional solution (since it solves a
relaxed LP) it will enable us to obtain an integral solution

without too much compromise on the increase in the num-
ber of bribed voters.

Stage 2: Rounding y�. We round the vector y� without
touching x� for now. This is done as follows:

ỹv =

{
1 with probability y�v ;

0 otherwise.

Now let k̃ =
∑

v∈V ỹv .

Lemma 9. Recall that R2(λ, αm, k) = 6λαm(k +
1)1/2 lnN . Then:
• With probability at least 1−N−λ,

k̃ ∈ [k� ±R2(λ, 1, k
�)] ,

• For every c ∈ C \ {p}, with probability at least 1−N−λ,

σ(c)−
∑
v∈V

αj(v,c)ỹv+
m−1∑
j=0

αjx
�
i,j ≤ θ�+R2(λ, αm, k�) ,

• With probability at least 1−N−λ,

σ(p)−
∑
v∈V

αj(v,p)ỹv + αmk� ≥ θ� −R2(λ, αm, k�) .

Proof sketch. Full proof is deferred to the full version of this
paper. As a sketch, the first part follows by Corollary 6. The
second and third by the LP definition, and Corollary 6 with
Eqs. (8) and (9), respectively.

Stage 3: Running UCM. Let f = k̃ − k�, α′ =
(α0, . . . , αm−1), and let σ̂(ci) = σ(ci)−

∑
v∈V αj(v,ci)ỹv .

In words, σ̂(ci) is σ(ci) when it is adjusted for the loss of the
voters who were deleted as described by the vector ỹ. Notice
that σ̂ is only defined for the non preferred candidates. We
have now reduced the problem to the UCM problem: σ̂ is the
new score profile, k̃ is the number of manipulators we have
at our disposal (one for each of the deleted voters), and α′
is α without the score αm which is always awarded to p by
the manipulators, and thus is irrelevant to the input. We call
our UCM algorithm on (α′, σ̂, k̃). We do not rely here on its
approximation guarantee provided by Theorem 3, but on the
stronger claim, hinted by Lemma 8, that the R2(λ, αm−1, k)
factor is an additive term not just w.r.t. the optimum, but also
w.r.t. the fractional solution of LPCM(α′, σ̂, k̃).

In this spirit, let L be a shorthand to LPCM(α′, σ̂, k̃), and
let θL be the optimal objective value of L. We provide the
two following lemmas, where the first will compare θL to the
value θ�. The second will then directly compare the result of
our UCM algorithm to θL.
Lemma 10. With failure probability at most 2N−λ+1, it
holds that θL ≤ θ� + 2R2(λ, αm, k�).

Proof. We will manually define a (not necessarily opti-
mal) solution to L where the objective is at most θ� +
2R2(λ, αm, k�). As the LP solution cannot be worse, the
lemma will follow.

Let x��
i,j = (k̃/k�)x�

i,j for all i, j. Notice that now Equa-
tions (2,3) hold w.r.t. x�� and k̃, as required. When we also
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plug x�� into (8) instead of x�, the l.h.s. of (8) increases by
at most

m−1∑
j=0

αjx
��
i,j −

m−1∑
j=0

αjx
�
i,j = (k̃ − k�)/k�

m−1∑
j=0

αjx
�
i,j

≤ fαm/k�
m−1∑
j=0

x�
i,j

= αmf

We conclude that for all i with failure probability at most
2N−λ, it holds that:

σ̂(ci) +
m−1∑
j=0

αjx
��
i,j

= σ(ci)−
∑
v∈V

αj(v,ci)ỹv +
m−1∑
j=0

αjx
��
i,j

≤ σ(ci)−
∑
v∈V

αj(v,ci)ỹv +
m−1∑
j=0

αjx
�
i,j + αmf

≤ θ� +R2(λ, αm−1, k
�) + αmf

= θ� +R2(λ, αm−1, k
�) + αmR2(λ, 1, k

�)

≤ θ� + 2R2(λ, αm, k�) ,

where the first equality is by definition, the second follows
from the above argument, and the third and fourth follow
by Lemma 9 (where each also contributes N−λ to the fail-
ure probability). Notice that we have just showed here that
Equation (4) holds w.r.t. x�� and k̃, as required.

Since we want the above to hold for all i simultaneously,
the failure probability becomes at most 2N−λ+1 by the
union bound. We have just defined a valid solution with ob-
jective value at most θ� + 2R2(λ, αm, k�) with high proba-
bility; as θL cannot be worse, we are done.

Let θ̃ be the maximum candidate score as a result of our
UCM algorithm on the input (α′, σ̂, k̃). Define:

R3 = 2R2(λ, αm, k�)

+R2(λ, αm−1, k
� +R2(λ, 1, k

�)) .

We claim the following:
Lemma 11. With probability at least 1− 4N−λ+1, it holds
that θ̃ ≤ θ� +R3.

Proof. By combining Lemma 8 w.r.t. θ̃ and θL and
Lemma 10, we obtain that, with failure probability at most
4N−λ+1:

θ̃ ≤ θL +R2(λ, αm−1, k̃)

≤ θL +R2(λ, αm−1, k
� +R2(λ, 1, k

�))

≤ θ� + 2R2(λ, αm, k�)

+R2(λ, αm−1, k
� +R2(λ, 1, k

�))

= θ� +R3 ,

where the first inequality is by Lemma 8, the second by
Lemma 9, and the third by Lemma 10. The aforementioned
failure probability is obtained by a union-bound over the
failure probability of each of the lemmas used.

Stage 4: Bribing More Voters. Let us return to
LPB(α,σ), and let x̃ be the allocation of the scores to the
candidates according to our UCM algorithm, w.r.t. the opti-
mum value θ̃. Does plugging (x̃; ỹ; θ̃, k̃) into their respec-
tive places in the LP constitute a valid solution? The an-
swer is unfortunately no; while we showed that all other
constraints hold, Eq. (9) does not necessarily hold. σ(p) −∑

v∈V j(v, p)ỹv + αmk̃ might be less then θ̃. However, we
can prove that the margin needed for Eq. (9) to hold is not
too large; let R4 = R2(λ, αm, k�) + αmR2(λ, 1, k

�) +R3.
Then:

Lemma 12. With probability at least 1− 6N−λ+1, it holds
that σ(p)−∑

v∈V αj(v,p)ỹv + αmk̃ ≥ θ̃ −R4.

Proof. Let Q = σ(p) − ∑
v∈V αj(v,p)ỹv + αmk̃. Then as-

suming none of the previous lemmas fail:

Q ≥ σ(p)−
∑
v∈V

αj(v,p)ỹv + αmk� − αmR2(λ, 1, k
�)

≥ θ� − (R2(λ, αm, k�) + αmR2(λ, 1, k
�))

≥ θ̃ − (R2(λ, αm, k�)

+ αmR2(λ, 1, k
�) +R3)

= θ̃ −R4 ,

where the first inequality follows by the first part of
Lemma 9, the second follows by the third part of Lemma 9,
the third by Lemma 11. The failure probability is bounded
by 6N−λ+1, by a union-bound on the failure probabilities
of the lemmas used.

Summing up, Lemma 12 shows that currently p might be
still losing by a margin of at most R4 = Õ(αm

√
k�).

The next two lemmas will show the relation between this
margin, and the number of manipulators needed in order to
close it and make p win. The proofs will be constructive and
will supply a polynomial-time algorithm. Let C ′ = C \ {p}
and let N = ln1+δ N for some constant δ > 0. Let s′(c)
be the current score of c at some point in time and let g =
maxc∈C′ s′(c)− s′(p) be the margin at this point in time.

Lemma 13. Let Rα be a constant voting rule. By brib-
ing at most N voters we can change the margin to be
g′ ≤ max{0, g − εαmN} for some constant ε > 0. That
is, we can either make p win, or at least reduce the margin
by which she loses by εαmN .

Proof. By repeating the following procedure at most N
times: pick a voter who gave p at most αm − 1 points (if
no such voter exists, p is already winning and we can stop
repeating the procedure), and change his ballot such that p
and the candidate ranked first are swapped. Notice that by
this the gap between any c and p has decreased by at least 1.

If the above procedure stopped short of N iterations, then
p is winning and we are done. Otherwise the gap is de-
creased by at least N . Setting ε = 1/αm we are done.

Non-concentrated rules have a much more involved proof:
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Lemma 14. Let α be such that ᾱ ≤ (1 − 6ε)αm for some
constant 0 < ε < 1/6. Then by bribing at most ε−1N voters
we can—with failure probability at most 2N−λ+1—change
the margin to be g′ ≤ max{0, g − εαmN}. That is, we can
either make p win, or at least reduce the margin by which
she loses by εαmN .

Proof. We split to cases; we will first discuss two easy ones:

• Let A be the set of un-bribed voters who awarded p at
most αm − 1 points. If |A| ≤ ε−1N , simply bribe all vot-
ers in A and let them move p to the top position. p is now
ranked top by all voters and received the maximum score
obtainable and by the co-winner assumption she wins.

• Otherwise, let B ⊆ A be the set un-bribed voters which
gave p at most (1− ε)αm points. If |B| ≥ N we are done:
we can just bribe N of them and let them move p to the
top position, thus decreasing g by εαmN points.

If the two above cases do not hold, then it holds that |A| >
ε−1N , but |B| < N . In words, there are at most |B| <
N voters who gave p at most (1 − ε)αm points, and |A \
B| > 5N voters who gave p more than (1−ε)αm points. For
the time being, we bribe the voter-set B using the method
described in the latter item; we will shortly bribe another N
voters as well.

Assume we have bribed B; then by now all voters have
given p more than (1− ε)αm points. In other words, p’s cur-
rent score is at least (1 − ε)αmn. Now randomly pick N
voters from A\B. Let them all put p in the top position, and
rank all other candidates randomly, that is, the ranking of
all other candidates will be determined by a random permu-
tation. Now let c be some candidate and define r such that
s′(c) = rαmn. In words, c has received rαm points from
each voter on average. Now assume for a moment we first
delete the N voters we bribe, and only then re-add the voters
with their new ballots.

When we delete N voters, c loses rαmN points in ex-
pectation. Formally, let Xc be the number of points c had
actually lost. Then E[Xc] = rαmN . We want to make sure
that c will lose approximately rαmN points. However—as
it is many times the case—we are afraid that Xc will diverge
too much from E[Xc]. To analyze that, note that we can treat
Xc as a sum of independent random variables Xv,c, where

Xv,c =

{
αj(v,c) if v is chosen to be bribed;
0 otherwise.

By Corollary 6, we get that Xc ∈ [rαmN ±
R1(λ, αm, rαmN)] ⊆ [rαmN ± R1(λ, αm, αmN)] with
failure probability at most N−λ.

When we re-add the bribed voters according to our
scheme, c receives a score in [ᾱN ± R1(λ, αm, αmN)]
points with failure probability at most N−λ—again, by a
similar application of Corollary 6.

Summing up, after the entire bribery process, c had lost at
least (rαm − ᾱ)N − 2R1(λ, αm, αmN) points with failure
probability at most 2N−λ. Using the union-bound, the same
can be made to hold for all m candidates simultaneously
with failure probability at most 2N−λ+1.

We can now split to cases; candidates with r ≥ 1−4ε lost
at least εαmN points, assuming that 2R1(λ, αm, αmN) ≤
εαmN (as it is asymptotically; otherwise the entire input is
constant-sized). Candidates with r < 1 − 4ε might have
gained points in the process, however the number of points
gained in the process is bounded by the number of points
awarded in the voter re-addition stage. Since the number of
these awarded points is at most ᾱN + R1(λ, αm, αmN),
each such candidate c now have score of at most s′′(c) ≤
(1 − 4ε)αmn + ᾱN + R1(λ, αm, αmN). However, since
N ≤ εn (follows by the fact that n ≥ |A| > ε−1N ), and
R1(λ, αm, αmN) ≤ εαmN < εαmn,

s′′(c) ≤ (1− 4ε)αmn+ ᾱN +R1(λ, αm, αmN)

≤ (1− 4ε)αmn+ ᾱεn+ εαmn

< (1− 4ε)αmn+ αmεn+ εαmn

= (1− 2ε)αmn ≤ s′(p)− εαmn .

We conclude that after this process, every candidate either
lost εαmN points, or gained points, but in that case never
surpassed s′(p) − εαmn ≤ s′′(p) − εαmn. The amount of
voters we have bribed is |B| + N ≤ 2N < ε−1N . The
lemma thus follows.

With Lemmas 13 and 14, we have just shown that for
many types of α, the ratio between a margin to the num-
ber of bribed voters needed in order to close the margin is
O(αm). This leads to the following:

Lemma 15. Assuming that Lemma 12 did not fail, then be-
sides the k̃ = k� + f voters we have already bribed, with
failure probability at most �R4/(εαm ln1+δ N )� · 2N−λ+1,
it holds that at most f ′ = ε−2R4/αm + ε−1 ln1+δ N addi-
tional voters are needed to be bribed in order for p to win,
for some constant ε > 0.

Proof. By repeatedly applying the algorithm in the con-
structive proof of either Lemma 13 or Lemma 14, until p
wins. For constant scoring rules the analysis is straightfor-
ward. For non-concentrated scoring rules, since every batch
of ε−1N = ε−1 ln1+δ N bribed voters decrease the margin
by at least εαmN points, at most f ′ = �R4/(εαmN)�·ε−1N
bribed voters are needed.

As for the failure probability, we can be conservative and
require that each of the �R4/(εαmN)� iterations will suc-
ceed; using the union-bound, the probability any of the iter-
ations will fail is at most �R4/(εαmN)� · 2N−λ+1.

We are now ready to complete the proof for Theorem 1.

Proof of Theorem 1. Let k̄ be the number of voters bribed
by an optimal strategy, and notice that k� ≤ k̄, since the LP
is a relaxation of the original problem. Following the above
discussion, we had bribed overall k� + f + f ′ ≤ k̄+ f + f ′
voters. For the sake of brevity, and since our concern is order
of magnitude analysis, we will only loosely bound both the
approximation factor f + f ′ and the failure probability.

Since R4 can be loosely bounded by 41λ2αm(k̄ +
1)1/2 ln2 N , then f + f ′ is bounded by 43λ2ε−2(k̄ +

1)1/2 ln2 N = Õ(
√
k̄). As for the failure probability, we
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require both Lemmas 12 and 15 to succeed; the probability
any of them would fail is at most 6N−λ+1+�R4/(εαmN)�·
2N−λ+1 ≤ (48λ2ε−1 lnN ) · (k̄ + 1)1/22N−λ+1 =

Õ(k̄)/N λ−1. Setting λ = 3 will thus provide at most
1/Ω(N ) failure probability, since k̄ ≤ n.

By running the algorithm a linear number of times, and
choosing the run yielding minimal number of bribed voters,
the failure probability becomes exponentially-small, while
the runtime stays polynomial.

Conclusions

Bribery can be seen as a two stage process: voter elimina-
tion, followed by the addition of voters with new ballots.
The former can be seen as a set cover variant, while the lat-
ter is exactly a coalitional manipulation instance. However
these problems should not be solved independently, and de-
ciding which voters to eliminate must be tightly integrated
with the decision on their new strategy. We showed that this
can be achieved by an LP: its fractional solution, determines
both stages at once. While we cannot retain this property
when requiring an integral solution, the LP still enables us
(a) to take all information into account when deciding who
to eliminate, and (b) to create a UCM instance which does
not add much to the objective.
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