
Ranking Wily People Who Rank Each Other

Anson Kahng
Computer Science Department

Carnegie Mellon University

Yasmine Kotturi
Human-Computer Interaction Institute

Carnegie Mellon University

Chinmay Kulkarni
Human-Computer Interaction Institute

Carnegie Mellon University

David Kurokawa
Computer Science Department

Carnegie Mellon University

Ariel D. Procaccia
Computer Science Department

Carnegie Mellon University

Abstract

We study rank aggregation algorithms that take as input the
opinions of players over their peers, represented as rankings,
and output a social ordering of the players (which reflects,
e.g., relative contribution to a project or fit for a job). To pre-
vent strategic behavior, these algorithms must be impartial,
i.e., players should not be able to influence their own po-
sition in the output ranking. We design several randomized
algorithms that are impartial and closely emulate given (non-
impartial) rank aggregation rules in a rigorous sense. Exper-
imental results further support the efficacy and practicability
of our algorithms.

1 Introduction

Our work is primarily motivated by two applications. The
first is ordering authors on a scientific paper based on con-
tribution. In medical research, for example, author lists tend
to be long, and the difference between being listed second or
third on an important paper can make or break a career. We
would like to employ an algorithm that receives from each
author a ranking, which reflects his own opinion regarding
the relative contribution of different authors, and outputs an
aggregate ranking.

The second application is online labor markets, such as
Upwork or Freelancer. In the bigger markets, employers typ-
ically receive dozens of applications for a job, but there is an
embarrassment of riches, because employers do not have the
knowledge required to accurately evaluate applicants. For
the past year we have been building a prototype of a new
online labor market, where applicants for a job — who are
well-suited to evaluate applications for that same job — rank
each other.1 We would like to implement a mechanism that
aggregates these rankings into a single ranking that is then
shown to the employer.

As the reader has no doubt realized by now, the forego-
ing applications share a common problem, which gets in the
way of applying standard rank aggregation rules: strategic
behavior. Specifically, in these relatively high-stakes scenar-
ios, it is likely that a player would try to improve his own
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1To be more accurate, they submit pairwise comparisons of
other applicants, but, as we discuss in Section 7, that is essentially
the same setting.

position in the output ranking by manipulating his reported
ranking. For example, he might weaken a strong contender
for the top position by ranking him last. Our goal, therefore,
is to design rank aggregation rules that are impartial, in the
sense that the position of a player in the output ranking is
completely independent of the report of that player.

1.1 Our Approach and Results

On a high level, our approach is to design randomized rank
aggregation rules that are impartial and closely emulate stan-
dard rank aggregation rules that are not impartial. Specifi-
cally, we focus on providing impartial approximations to the
important class of pairwise rules, which, as input, only re-
quire information about the fraction of players ranking any
one player above another. Our theoretical results crucially
depend on the notion of approximation — or measure of er-
ror — in question.

In Section 4, we introduce the k-PARTITE algorithm,
which, in a nutshell, randomly partitions the players into
subsets, builds a probability distribution over the positions
of members of one subset based on the aggregate opinion of
members of other subsets, and then generates a distribution
over rankings that is consistent with these distributions over
positions. We prove that k-PARTITE is impartial, and, when
used in conjunction with any pairwise rule, it provides small
backward error with respect to that rule: With high probabil-
ity, k-PARTITE places each player in the same position that
the given pairwise rule would have placed him had the input
rankings been slightly perturbed.

In Section 5, we present the COMMITTEE algorithm. It
randomly chooses a subset of players, who serve as the
eponymous committee. Each committee member is posi-
tioned based on the opinions of other committee members,
and then all other players are ordered by the committee. The
key idea is that, to avoid conflicts and achieve impartiality,
each committee member has slots that are reserved for him,
and he is inserted into the reserved slot that most closely
matches the aggregate opinion of other committee members.
We prove that COMMITTEE provides mixed error guarantees
with respect to any given pairwise rule, that is, with high
probability, COMMITTEE places each player in a position
that is close to where the given pairwise rule would have
placed him had the input rankings been slightly perturbed.
Taking on some forward error — a mismatch between the
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positions — allows for improved backward error compared
to k-PARTITE.

In Section 6, we empirically measure the performance of
our impartial algorithms with respect to the popular Kemeny
rule, which is defined via a natural optimization objective.
The experimental results demonstrate that our impartial al-
gorithms, when coupled with the Kemeny rule, output near-
optimal rankings with respect to the Kemeny objective, de-
spite the impartiality constraint.

1.2 Related Work

At this point there is a significant body of work on the
design of impartial mechanisms (de Clippel, Moulin, and
Tideman 2008; Alon et al. 2011; Holzman and Moulin
2013; Bousquet, Norin, and Vetta 2014; Tamura and Ohseto
2014; Berga and Gjorgjiev 2014; Fischer and Klimm 2014;
Mackenzie 2015), including several papers in major AI con-
ferences (Kurokawa et al. 2015; Aziz et al. 2016). We only
elaborate on the papers that are most closely related to ours.

The paper of de Clippel et al. (2008) introduced the no-
tion of impartiality, in the context of dividing credit for a
joint project. Specifically, the output of their mechanism is
the fraction of the total credit each player receives, and im-
partiality means that a player cannot affect his own share of
the credit. This mechanism is deployed on the fair division
website Spliddit.org, where one of the suggested applica-
tions is ordering authors on scientific papers. However, an
impartial credit division mechanism does not induce an im-
partial ranking mechanism, because, when players are sorted
by credit, a player can improve his own position by decreas-
ing another player’s share.

Berga and Gjorgjiev (2014) study the impartial rank ag-
gregation problem from an axiomatic viewpoint, but focus
on deterministic rules and a stronger notion of impartial-
ity (which we discuss in Section 7). Their results suggest
that deterministic impartial rank aggregation methods are
severely limited, and support our focus on randomized al-
gorithms.2

On a technical level, our k-PARTITE algorithm is remi-
niscent of an algorithm of Alon et al. (2011), in that it ran-
domly partitions the players into subsets, and the outcome of
players in one subset is only determined by players in other
subsets. But the details of the algorithm, and its analysis, are
completely different.

2 Preliminaries

In this section we introduce terminology and notations that
are standard in computational social choice (Brandt et al.
2016), as well as the formal instantiation of the concept of
impartiality in our setting.

2In addition, it is easy to prove that there are no determinis-
tic rank aggregation rules that are both impartial (according to our
definition) and Pareto efficient (Moulin 2014). The latter property
means that if everyone ranks one player above another, so does the
output ranking.

2.1 Rankings and Aggregation

For any k ∈ N, let [k] = {1, . . . , k}. Our setting involves
a set of players [n] = {1, . . . , n}. The opinions of players
are represented as rankings over [n], which we think of as
permutations. Let Π represent the set of all permutations of
[n], and let Πn represent the set of all input profiles. For any
σ ∈ Π, let σ(j) be the player at position j in σ and let σ−1(i)
be the position of player i in the ranking σ (where position
1 is the highest and position n is the lowest).

A deterministic rank aggregation rule (also known as a
social welfare function) is a function f : Πn → Π, which
takes in an input profile and returns a ranking. A randomized
rank aggregation rule returns a probability distribution over
rankings. We sometimes find it convenient to slightly abuse
notation and think of the domain of a rank aggregation rule
as Πn×2[n] — for �σ = (σ1, . . . , σn) and X ⊆ [n], f(�σ,X)
is the application of the rule to the input profile (σi)i∈X .

2.2 Pairwise Rank Aggregation Rules

An input profile �σ = (σ1, . . . , σn) induces a pairwise com-
parison matrix A(�σ), where

A(�σ)ij =
|{k ∈ [n] : σ−1

k (i) < σ−1
k (j)}|

n
.

In words, the (i, j) entry is the fraction of players who rank
i above j. Let Ω be the set of pairwise comparison matrices.
Therefore, we can think of A : Πn → Ω as a function that
takes in an input profile and returns its associated pairwise
comparison matrix. As before, we will also use the notation
A(�σ,X), for a subset of players X ⊆ [n], to denote the
pairwise comparison matrix associated with the rankings of
the players in X .

Some rank aggregation rules only require the information
encoded in the pairwise comparison matrix to compute their
output. Formally, a deterministic pairwise rank aggregation
rule is a function f : Ω → Π. We denote the class of all
deterministic pairwise rules by P .3

We pay special attention to two popular pairwise rules:
• The Borda Rule: Given �σ ∈ Πn, the score of each player
i is

∑n
j=1(n− σ−1

j (i)) (that is, each player awards n− k
points to the player in position k), and the players are
ranked by non-increasing score. It may not be immedi-
ately apparent that Borda is a pairwise rule — proving
this well-known fact is left to the curious reader as an easy
exercise.

• The Kemeny Rule: The Kendall tau distance dKT be-
tween two rankings σ, τ ∈ Π is the number of
pairs of players on which the two rankings disagree.
Given �σ ∈ Πn, the Kemeny rule returns a ranking in
argminτ∈Π

∑n
i=1 dKT (τ, σi). Computing the output of

the Kemeny rule is hard, but can be done in practice using
integer programming or heuristic algorithms (Conitzer,
Davenport, and Kalagnanam 2006).
Other well-known rules, such as Copeland and Maximin,

are also pairwise.
3We do not consider randomized pairwise rules in this paper.

Strictly speaking, we do not require this determinism, but we as-
sume it as it makes the proofs more transparent.
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2.3 Impartiality

Recall that we are interested in designing rank aggregation
rules that are impartial, that is, no player i can affect his
probability of being ranked in position j, for all i, j ∈ [n].
Formally:
Definition 2.1. A (possibly randomized) rank aggrega-
tion rule f is impartial if for all i ∈ [n], all in-
put profiles (σ1, . . . , σn) ∈ Πn, and all σ̃i ∈ Π, it
holds that �x = �y, where xj is the probability i is
ranked in position j in f (σ1, . . . , σi−1, σi, σi+1, . . . , σn),
and yj is the probability i is ranked in position j in
f (σ1, . . . , σi−1, σ̃i, σi+1, . . . , σn).

In an alternative model, we may assume that each player
i has a value vij for being ranked in position j, and then
impartiality would mean no player can affect his expected
value for the outcome, regardless of his value function. Al-
though this definition may seem weaker than Definition 2.1
at first glance, it is easy to verify that the two definitions are,
in fact, equivalent.

3 Measures of Error

Given that our goal is to approximate rank aggregation rules,
the measure of error is critical to the statement of the formal
problem. To define appropriate notions, we adapt concepts
that are standard in scientific computing (e.g., in numerical
stability analysis): forward error, backward error, and mixed
error. We view these imported definitions as part of our con-
ceptual contribution.
Definition 3.1. Let f be a rank aggregation rule. A rank ag-
gregation rule g is said to have (ΔP ,ΔF ) forward error with
respect to f if for every input profile �σ ∈ Πn, the probability
that for all i ∈ [n] it holds that∣∣f(�σ)−1(i)− g(�σ)−1(i)

∣∣
n

< ΔF

is at least 1−ΔP .
Intuitively, a low amount of forward error implies that ev-

ery player i is placed near his correct rank (as determined by
f ) with high probability. Unfortunately, as the next theorem
states, impartial rank aggregation rules cannot approximate
the Borda rule. Since Borda is a pairwise rule, the theorem
rules out the possibility of approximating all pairwise rules.
Theorem 3.2. For all n ≥ 2 and ε > 0, there exists no
impartial rank aggregation rule g that gives a (1/2−ε, 1/3)
forward error with respect to the Borda rule f .

Proof. For n = 2, a direct analysis (which we omit) gives
the result. Let us therefore consider only the case n ≥ 3. Let
g be an impartial rank aggregation rule.

Suppose we have the input profile �σ where i �= 2 gives
the ranking (i − 1, . . . , n, 1, . . . , i − 2). Note that if player
2 continued this trend and gave the ranking 1, . . . , n then all
players would have the same Borda score.

Now let us consider player 2 in more depth, and define the
probability vector �x ∈ [0, 1]n, where xi denotes the proba-
bility player 2 will be in position i when g determines the
ranking. By impartiality we know that �x does not depend on

the ranking of player 2. As �x is a probability vector, we must
have one of the following.

Case 1: The first �n/2� entries of �x sum to at most 1/2.
In this case, if player 2 has the ranking (2, 1, 3, 4, 5, . . . , n)
in �σ, then f(�σ)−1(2) = 1.

Case 2: The last �n/2� entries of �x sum to at most 1/2. In
this case, if player 2 has the ranking (1, 3, 2, 4, 5, . . . , n) in
�σ, then f(�σ)−1(2) = n.

In either case, we find that with probability at least 1/2,
g will place 2 in a position at distance at least �n/2� from
f ’s placement. That is, with probability at least 1/2 we have∣∣f(�σ)−1(2)− g(�σ)−1(2)

∣∣ ≥ �n/2� ≥ n/3, giving at best a
forward error of (1/2, 1/3).

With this impossibility in hand, we set our sights on an
alternate error measure, which is well defined only with re-
spect to pairwise rank aggregation rules. For this definition
and throughout the paper, we use the Frobenius norm and
denote ‖A‖∞ = maxi,j |Ai,j |.
Definition 3.3. Let f ∈ P . A rank aggregation rule g is
said to have (ΔP ,ΔB) backward error with respect to f if
for every input profile �σ ∈ Πn the probability that for all
i ∈ [n] there exists a matrix Ã ∈ Ω such that

1.
∥∥∥A(�σ)− Ã

∥∥∥
∞

< ΔB , and

2. f(Ã)−1(i) = g(�σ)−1(i),

is at least 1−ΔP .

Intuitively, a low amount of backward error implies that
every player i is placed in a rank that had the players altered
their opinions slightly, i would be in the correct rank (ac-
cording to f ) with high probability. See Section 7 for further
discussion of this concept.

Finally, we define a third measure of error, which, in a
sense, is a union of the two previous notions.

Definition 3.4. Let f ∈ P . A rank aggregation rule g is
said to have (ΔP ,ΔB ,ΔF ) mixed error with respect to f if
for every input profile �σ ∈ Πn, the probability that for all
i ∈ [n] there exists a matrix Ã ∈ Ω such that

1.
∥∥∥A(�σ)− Ã

∥∥∥
∞

< ΔB , and

2. |f(Ã)−1(i)−g(�σ)−1(i)|
n < ΔF ,

is at least 1−ΔP .

4 The k-PARTITE Algorithm

We now introduce and analyze our first impartial rule, k-
PARTITE, which is formally given as Algorithm 1. As it ap-
pears somewhat opaque, it is best to understand its ideas
when we assume that all the Xi are the same size, i.e., k
divides n, |Xi| = n/k, and γi = k for all i ∈ [k]. Slight
adjustments are made when this is not the case, which for
purposes of intuition can be safely ignored.

First, players are randomly split into k groups of equal
size X1, . . . , Xk, and then each such group separately ranks
all n players producing rankings τi. The crux of the algo-
rithm is the construction of the matrix Z, which, in turn, is
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the sum of Z(i) matrices. Intuitively, the Z(i) matrix repre-
sents Xi’s contribution to Z, and its (a, b) entry indicates
the probability that a should be placed in position b overall.
Specifically, each player not in Xi is placed in his exact po-
sition dictated by τi with probability 1/k, and in all positions
that the players in Xi themselves were assigned to in τi with
probability 1/(n(k−1)). This information is encoded as the
only non-zero entries in Z(i) — each column then sums to
1/k, each row representing a player in Xi is zero, and all
other rows sum to 1/(k− 1). As we show in Appendix A, Z
is doubly stochastic (its rows and columns sum to 1); hence
we can apply the Birkhoff-von Neumann Theorem (Birkhoff
1946; von Neumann 1953) to sample from this distribution
and remain faithful to the probabilities.

input: f ∈ P and �σ ∈ Πn

1: Randomly split all n players into k groups X1, . . . , Xk

where |Xi| ∈ {�n/k� , 
n/k�}
2: for i = 1, . . . , k do
3: τi ← f(�σ,Xi)
4: γi ← n/ |Xi|
5: Let Z(i) ∈ R

n×n where

Z
(i)
a,b ←

⎧⎪⎨
⎪⎩

1
γi

if a �∈ Xi and τi(b) = a
1

γi(γi−1)|Xi| if a �∈ Xi and τi(b) ∈ Xi

0 otherwise

6: end for

7: Z ← ∑
i∈[k]

n
|Xi|−1

k−1 Z(i)

8: Sample a ranking σ such that a is ranked in position b
with probability Za,b

9: return σ

Algorithm 1: k-PARTITE

Our goal is to prove the following theorem, which states
the guarantees of k-PARTITE.
Theorem 4.1. k-PARTITE is impartial, and, for every f ∈ P
and �σ ∈ Πn, if k = �(n/ lnn)1/3�, it gives at most

(4/k, 4/k) ∈
(
O

((
lnn

n

)1/3
)
, O

((
lnn

n

)1/3
))

backward error with respect to f .
Note that, in particular, the error goes to 0 as n grows.

Turning to the proof, it is clear that the algorithm is impartial
because of the inability of any player i to affect the ith row
of the Z matrix. We therefore focus on establishing the error
bound. To this end, we first prove several lemmas.
Lemma 4.2. If t players X = {x1, . . . , xt} are sampled
without replacement from [n] with input profile �σ ∈ Πn,
then

P [‖A(�σ)−A(�σ,X)‖∞ ≥ ε] < n2 exp

(
− tε2

2

)
.

Proof.

P [‖A(�σ)−A(�σ,X)‖∞ ≥ ε]

≤
∑
i<j

P [|A(�σ)i,j −A(�σ,X)i,j | ≥ ε]

≤
∑
i<j

2 exp

(
− tε2

2

)
= 2

(
n

2

)
exp

(
− tε2

2

)

< n2 exp

(
− tε2

2

)
,

where the first transition follows from the union bound, and
the second transition follows from Hoeffding’s Inequality.

Lemma 4.3. For every f ∈ P , �σ ∈ Πn, and ε > 0, k-
PARTITE gives at most(

1−
(
k − 2

k − 1

)(
1− n2k exp

(
−�n/k� ε2

2

))
, ε

)
backward error to f .

Proof. Observe that

P [∃i ∈ [k] s.t. ‖A(�σ)−A(�σ,Xi)‖∞ ≥ ε]

≤
k∑

i=1

P [‖A(�σ)−A(�σ,Xi)‖∞ ≥ ε]

≤
k∑

i=1

n2 exp

(
−|Xi| ε2

2

)

≤
k∑

i=1

n2 exp

(
−�n/k� ε2

2

)

= n2k exp

(
−�n/k� ε2

2

)
,

where the second inequality follows from Lemma 4.2.
Further observe that, by Lines 5 and 7 of k-PARTITE, for

any player a he is placed directly where one of the Xi places
him with probability∑

i∈[k]: a �∈Xi

n
|Xi| − 1

k − 1

1

γi
=

∑
i∈[k]: a �∈Xi

n
|Xi| − 1

k − 1

1
n
|Xi|

= 1− 1

n(k − 1)

∑
i∈[k]: a �∈Xi

|Xi|

≥ 1− 1

n(k − 1)

k∑
i=1

|Xi|

= 1− 1

n(k − 1)
n

=
k − 2

k − 1
.

Now, if for all i ∈ [n], ‖A(�σ)−A(�σ,Xi)‖∞ < ε, and
each player a is placed in the position that some Xia places
him, then we can set Ã = A(�σ,Xia) for all a ∈ [n] to satisfy
the conditions of backward error. Moreover, these events are
independent. We conclude that k-PARTITE gives at most(

1−
(
k − 2

k − 1

)(
1− n2k exp

(
−�n/k� ε2

2

))
, ε

)
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backward error, as stated.

Proof of Theorem 4.1. From Lemma 4.3 it suffices to show
that if we have ε = 4/k,

1−
(
k − 2

k − 1

)(
1− n2k exp

(
−�n/k� ε2

2

))
≤ 4

k
.

Observe that

n2k exp

(
−�n/k� ε2

2

)

≤ n2k exp

(
− (n/k − 1)ε2

2

)

= n2k exp

(
− (n/k − 1)(4/k)2

2

)

= n2k exp

(
8

k2

)
exp

(
−8n

k3

)

≤ n2
(
n1/3

)
exp

(
8

22

)
exp

(
− 8n

n
lnn

)

= e2n−17/3

≤ n−2.

Thus we see that

1−
(
k − 2

k − 1

)(
1− n2k exp

(
−�n/k� ε2

2

))

=
1

k − 1
+

(
k − 2

k − 1

)(
n2k exp

(
−�n/k� ε2

2

))

≤ 1

k − 1
+ n−2

≤ 2/k + 2/k

= 4/k.

A natural question is why we insist on what appears to be
a somewhat convoluted algorithm, instead of a more natu-
ral approach such as the impartial NAIVE-BIPARTITE, for-
mally given as Algorithm 2. The reason is that this algo-
rithm does not even guarantee tolerable mixed error in gen-
eral. Indeed, consider f ∈ P that is defined as follows. Let
X ⊆ {2, . . . , n} be the set of players such that at least
one player ranks i above 1; return the ranking starting with
the players of X ordered lexicographically, followed by the
players of [n] \ ({1} ∪X) ordered lexicographically, and
player 1 inserted into position �n/3� overall (shifting ap-
propriately). Now consider the input profile where i reports
the ranking (i, 1, 2, . . . , i − 1, i + 1, . . . , n). Then NAIVE-
BIPARTITE will always return a ranking where player 1 is
placed first or second — as he will always top his set. This
means that the algorithm cannot even provide a mixed error
of (1/2, 1, 1/4).

5 The COMMITTEE Algorithm

k-PARTITE demonstrates that there exist impartial rules that
accurately imitate any f ∈ P . Observe, however, that the

input: f ∈ P and �σ ∈ Πn

1: Randomly split the n players into two sets X and Y
where |X| = ⌈

n
2

⌉
and |Y | = ⌊

n
2

⌋
2: τ1 ← f(�σ,X) restricted to the players only in Y
3: τ2 ← f(�σ, Y ) restricted to the players only in X
4: σ interlaces τ1 and τ2, that is,

σ(i) ←
{
τ1 ((i+ 1)/2) if i is odd
τ2 (i/2) if i is even

5: return σ

Algorithm 2: NAIVE-BIPARTITE

algorithm is somewhat hamstrung by the fact that a player
must be (with high probability) ranked in exactly the loca-
tion that a small perturbation of the input rankings would
give.

To allow more flexibility, we focus on mixed error,
and consider COMMITTEE, given as Algorithm 3. Intu-
itively, this algorithm selects a random committee X =
{x1, . . . , xk}, which then determines the entire ranking.
First, for each committee member xi, we determine their
rank using only the rankings given by the remaining k −
1 members. However, as directly placing each committee
member in this fashion may cause collisions (i.e., multiple
members may be assigned the same rank) we restrict place-
ment of xi to only the positions i, i + k, i + 2k, . . . Specif-
ically, we assign xi to the closest such position to the rank
given to xi by the other committee members. There are then
k of the n positions assigned. Second, the committee ranks
all of the n players, and the non-committee members are
placed in the order ranked by the committee in the remain-
ing n− k slots.

input: f ∈ P and �σ ∈ Πn

1: Randomly select a subset X = {x1, . . . , xk} ⊆ [n]
2: for i = 1, . . . , k do
3: c ← argminj∈{i,i+k,...}

∣
∣j − f (�σ,X \ {xi})−1 (xi)

∣
∣

4: σ(c) ← xi

5: end for
6: τ ← f(�σ,X)
7: j ← 1
8: for i = 1, . . . , n do
9: if τ(i) �∈ X then

10: while σ(j) is occupied do
11: j ← j + 1
12: end while
13: σ(j) ← τ(i)
14: end if
15: end for
16: return σ

Algorithm 3: COMMITTEE

The algorithm yields the following guarantees
Theorem 5.1. COMMITTEE is impartial, and, for every f ∈
P , �σ ∈ Πn, and ε > 0, if k = 1 + 2

ε2 ln
(

n3

ε

)
, it gives at

most (ε, ε, (k + 1) /n) mixed error with respect to f .
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Importantly, this theorem allows for an incomparable er-
ror to Theorem 4.1. That is, we can reduce the backward
error so long as we are willing to take on some forward
error. For example, setting ε appropriately gives at most(
n−2/5, n−2/5, 2/n+ (34/5)n−1/5 lnn

)
mixed error.

As in the case of k-PARTITE, the impartiality of COM-
MITTEE is obvious, because the position of each committee
member is only determined by other committee members,
and the position of non-committee members is determined
by committee members. The proof of Theorem 5.1 therefore
focuses on establishing the stated mixed error guarantee; it
is relegated to the full version of the paper.4

6 Experiments
Our theoretical results indicate that impartial rules like k-
PARTITE and COMMITTEE are likely to yield rankings that
are close, in a sense (backward error or mixed error), to the
output of a given rank aggregation rule. In this section we
investigate a more natural metric, which is beyond the reach
of our theory, and empirically demonstrate that our rules per-
form well with respect to this metric, too.

In our experiments, we focus on the Kemeny rule (see
Section 2), as it is defined via an optimization problem, so
we can use its objective function as our measure. Specifi-
cally, we interpret the Kemeny rule as maximizing the num-
ber of agreements with the input rankings, that is, given
�σ ∈ Πn, it chooses a ranking τ ∈ Π that maximizes

Kem(τ, �σ) =

n∑
i=1

((
m

2

)
− dKT (τ, σi)

)
. (1)

We quantify the error of an impartial rule by comparing
how well it does with respect to measure (1) with the perfor-
mance of the optimal ranking returned by the Kemeny rule.
In more detail, let f be the Kemeny rule, and let g be an im-
partial rule; given an input profile �σ, we are interested in the
Kemeny approximation ratio Kem(g(�σ), �σ)/Kem(f(�σ), �σ);
this ratio is upper-bounded by 1 due to the definition of the
Kemeny rule. We use the number of agreements, instead
of the number of disagreements, as our measure because in
cases where the number of disagreements is very small, the
ratio would be misleadingly large.

The input profiles are generated according to the popular
Mallows (1957) model. In this model, there is a base ranking
of the alternatives τ∗, and rankings are drawn i.i.d. from a
probability distribution over Π, defined by

Pr[σ | τ∗] = φdKT (σ,τ∗)∑
σ′∈Π φdKT (σ′,τ∗) ,

for a dispersion parameter φ ∈ [0, 1]. Note that φ = 1 cor-
responds to uniformly random rankings (and therefore input
rankings disagree on pairs of alternatives with probability
1/2), whereas φ = 0 means, by convention, that all rankings
coincide with the base ranking, that is, there is unanimous
agreement. We empirically study the Kemeny approxima-
tion ratio of the impartial rules NAIVE-BIPARTITE, COM-
MITTEE, and k-PARTITE, for multiple values of φ, each of
which represents a different level of agreement.

4Available from http://procaccia.info/research.

Throughout our experiments, we let k = n/4, n/8 for
COMMITTEE and let k = 4, 8 for k-PARTITE. The intuition
behind these choices is that the size of the initial commit-
tee and each subset in the partition should grow with n, and
choosing these values of k works reasonably in practice. We
ran experiments with n ∈ {8, 16, 24, 32, 40} players and
φ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.

Our results for the three impartial rules — NAIVE-
BIPARTITE, COMMITTEE, and k-PARTITE — and φ = 0.3
are shown in Figures 1(a), 1(b), and 1(c), respectively; the
results for other values of φ, which can be found in the full
version of the paper, are qualitatively similar. In each fig-
ure, the x axis shows the values of n, and the y axis shows
the Kemeny approximation ratio obtained by the impartial
rule. All three impartial rules perform well as n increases.
As a baseline, a straightforward calculation shows that with
φ = 0.3, a ranking drawn from the Mallows model would
agree with the base ranking (which is typically the output of
Kemeny when the input profile is drawn from Mallows) with
probability 0.77 on any given pair of alternatives, and that
probability is 0.5 if the latter ranking is replaced with a uni-
formly random ranking, so the (impartial) rule that chooses
a ranking uniformly at random gives a Kemeny approxima-
tion ratio of 0.5/0.77 = 0.65.

On a high level, the three impartial rules achieve excellent
Kemeny approximations despite their very different theoret-
ical guarantees. But k-PARTITE has by far the highest vari-
ance. This phenomenon is due to the fact that if the position
of a player is chosen from a setting in which he was not
placed in his exact place as prescribed by players in some
partition, he is essentially placed in a random location in the
final ranking. In NAIVE-BIPARTITE and COMMITTEE, this
is not an issue, as players are always placed in some sense
close to a position in which a subset of players believes they
belong. As can be seen in the full version of the paper, this
phenomenon is more pronounced for lower values of φ be-
cause placing players in a random location is penalized more
heavily when the population is generally sharply clustered
around a certain ranking.

Furthermore, the performance of our impartial algorithms
depends on the specific choice of k (except for NAIVE-
BIPARTITE, which does not depend on any parameter k).
The following observations can be seen in the full version
of the paper. COMMITTEE performs better with the smaller
value of k, but this effect lessens as φ increases (i.e., it helps
more when players have generally similar opinions). With
small φ, because most committees will agree on a consis-
tent ranking, the additional error from inserting players into
larger buckets leads to a noticeable difference. However, as
players start to disagree more, the benefit of getting better
estimates from larger committees counteracts the insertion
error. k-PARTITE acts similarly: the larger value of k leads
to better performance for low φ, but this effect again lessens
as φ increases. This is because each player is placed ex-
actly where one of the groups places him with probability
(k−2)/(k−1), which increases with k, but being placed in
one of these positions is most beneficial when players gen-
erally agree. As opinions become increasingly random and
diffuse, groups disagree more strongly about where to place
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(c) k-PARTITE

Figure 1: Kemeny approximation ratio of three impartial
mechanisms for φ = 0.3. The median of each boxplot is
marked with a black line, the edges of each box denote the
quartile values, and the whiskers extend to data within 1.5
times the interquartile range from the edges of each box.

a specific player.

7 Discussion

We conclude with a discussion of several important points
that were referenced earlier.

Pairwise comparisons. In practice, players would often be
asked to compare pairs of players, rather than giving a com-
plete ranking. Crucially, our results seamlessly extend to that
setting. Indeed, standard measure concentration inequalities
show that a small number of random caparisons are suffi-
cient to accurately estimate the pairwise comparison matrix
(see, e.g., Procaccia and Shah 2016). Because we focus on
pairwise rank aggregation rules, this means that the input
to the rule is qualitatively unaffected by the transition from
complete rankings to pairwise comparisons.

Strong impartiality. A natural notion of impartiality that is
stronger than ours (call it strong impartiality) requires that a
player would not be able to affect the subset of players that
are ranked above himself. In the context of online labor mar-
kets, for example, the rationale is that an employer is more
likely to select the applicant in position k if the applicants in
positions 1, . . . , k−1 are relatively weak, so it is not just the
applicant’s position that determines his chances of getting
the job. Unfortunately, strong impartiality seems too strin-
gent to admit reasonable rules. In fact, we can prove that no
strongly impartial rule can give a (1/3, 1/7, 1/10) mixed er-
ror with respect to Borda, but this statement requires the ad-
ditional assumption that strongly impartial randomized rules
are distributions over strongly impartial deterministic rules.5
We believe that a similar statement holds without the addi-
tional assumption.

Flipping the quantifiers. Our definitions of backward error
and mixed error include the words “for all i ∈ [n] there ex-
ists a matrix Ã ∈ Ω.” That is, for each player we can find a
pairwise comparison matrix close to the original one, such
that our rule puts i in a position that is identical or close to
that in which the given rule would put i on the input Ã. The
definitions would be even more compelling if the quantifiers
were flipped, i.e., “there exists a matrix Ã ∈ Ω such that for
all i ∈ [n].” Under this alternative formulation, we are not
allowed to tailor Ã to i, but rather there is one pairwise com-
parison matrix that achieves the desired property for every i.
It remains an open problem whether our theorems (or vari-
ants thereof) still hold under these more demanding notions
of error, and, if not, whether these notions are feasible at all.
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A Z is Doubly Stochastic

In this appendix, we verify that the matrix Z constructed in
k-PARTITE (Algorithm 1) is indeed doubly stochastic.

Let us first consider the row sums of the Z(i). Denote the
sum of the ath row by

S(i)
a =

n∑
b=1

Z
(i)
ab .

If a ∈ Xi, clearly S
(i)
a = 0. Otherwise for a �∈ Xi, we find

that

S(i)
a =

1

γi
+ |Xi| 1

γi(γi − 1) |Xi| =
1

γi − 1
.

We therefore find that the ath row of Z sums to

∑
i∈[k]

(
n
|Xi| − 1

k − 1

)
S(i)
a =

∑
i∈[k]: a �∈Xi

n
|Xi| − 1

k − 1

1

γi − 1

=
∑

i∈[k]: a �∈Xi

γi − 1

k − 1

1

γi − 1

=
∑

i∈[k]: a �∈Xi

1

k − 1

= 1.

Next we consider the column sums of the Z(i), denoted
T (i)b. If τi(b) �∈ Xi we have that the column has only one
non-zero entry with a value of 1/γi = |Xi|/n. Otherwise, if
τi(b) ∈ Xi, we find that

T
(i)
b = (n− |Xi|) 1

γi(γi − 1) |Xi|
= (γi |Xi| − |Xi|) 1

γi(γi − 1) |Xi|
=

1

γi
=

|Xi|
n

.

Therefore, all columns of Z(i) sum to |Xi|/n, and we find
that the bth column of Z sums to

∑
i∈[k]

(
n
|Xi| − 1

k − 1

)
T

(i)
b =

∑
i∈[k]

n
|Xi| − 1

k − 1

|Xi|
n

=
1

k − 1

∑
i∈[k]

(
1− |Xi|

n

)

=
1

k − 1

⎛
⎝k −

∑
i∈[k]

|Xi|
n

⎞
⎠

=
1

k − 1
(k − 1)

= 1.
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