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Abstract

If voters’ preferences are one-dimensional, many hard problems
in computational social choice become tractable. A preference
profile can be classified as one-dimensional if it has the single-
crossing property, which requires that the voters can be ordered
from left to right so that their preferences are consistent with
this order. In practice, preferences may exhibit some one-
dimensional structure, despite not being single-crossing in
the formal sense. Hence, we ask whether one can identify
preference profiles that are close to being single-crossing.
We consider three distance measures, which are based on
partitioning voters or candidates or performing a small number
of swaps in each vote. We prove that it can be efficiently
decided if voters can be split into two single-crossing groups.
Also, for every fixed k � 1 we can decide in polynomial time
if a profile can be made single-crossing by performing at most
k candidate swaps per vote. In contrast, for each k � 3 it is
NP-complete to decide whether candidates can be partitioned
into k sets so that the restriction of the input profile to each set
is single-crossing.

1 Introduction
There is a growing body of literature in computational so-
cial choice that aims to identify notions of structure in col-
lective preferences, and to provide efficient algorithms for
recognising structured preferences; see a recent survey by
Elkind, Lackner, and Peters (2017). By discovering structural
properties of a preference profile we obtain an explanatory
model of voters’ behavior. Often such models allow us to
solve preference aggregation and elicitation problems more
efficiently. This is particularly important in the context
of multiwinner voting: while multiwinner voting rules are
useful in a variety of applications ranging from group rec-
ommendation systems and design of marketing campaigns to
parliamentary elections, and have attracted intense interest in
recent years (see Faliszewski et al. 2017), for many appealing
multiwinner rules the winner determination problem is com-
putationally hard (Lu and Boutilier 2011; Aziz et al. 2015;
Skowron, Faliszewski, and Lang 2016). Thus, it is important
to identify natural subdomains where winning sets can be
computed efficiently. The approach based on structured pref-
erences has been very successful in this setting, with a number
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distance metric single-peaked single-crossing

voter deletion NP-complete a,b in P b

alternative deletion in P a NP-complete b
voter partition NP-complete a in P for k = 2
alternative partition open NP-complete
local swaps NP-complete a in XP wrt k

Table 1: Overview of the complexity of deciding whether a
profile is close to being structured. Bold results are new.
a proved by Erdélyi, Lackner, and Pfandler (2017).
b proved by Bredereck, Chen, and Woeginger (2016).

of polynomial-time algorithms proposed for several rules and
various notions of structure (Betzler, Slinko, and Uhlmann
2013; Skowron et al. 2015; Yu, Chan, and Elkind 2013;
Clearwater, Puppe, and Slinko 2015; Peters and Elkind 2016;
Peters and Lackner 2017).
The two best-known types of structured preferences are

single-peaked preferences (Black 1948; Arrow 1951) and
single-crossing preferences (Inada 1964; Mirrlees 1971;
Roberts 1977). Informally, the former notion is based on
ordering the candidates along a one-dimensional axis, while
the latter notion is based on ordering the voters from left to
right; in both cases, the voters’ preferences are required to be
consistent with this ordering. In particular, single-crossing
preferences arise when voters’ opinions depend only on a
single one-dimensional type or parameter. For example, in
political elections, this parameter may be the position of
the voter on the left-to-right ideological spectrum (if candi-
dates, too, can be positioned on this spectrum, the voters’
preferences will be single-peaked, in addition to being single-
crossing, but single-crossing preferences may arise even if
this is not the case). Similarly, when voters choose among
several policies, the policy space may be complicated and
not obviously one-dimensional, but the voter’s preferences
could still be explainable by a single parameter (such as their
position on how to deal with a trade-off). The economics
literature considers many such scenarios, including taxation,
coalition formation, public goods, and education markets (see
Saporiti 2009).
Profiles that are single-peaked or single-crossing have

many attractive properties: for instance, for both domains it
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holds that the majority preferences are transitive, and there
is a strategyproof preference aggregation rule. Also, the
membership in either of these domains can be efficiently
tested, and both domains admit polynomial-time algorithms
for problems that are hard for general preferences (see Elkind,
Lackner, and Peters 2017).
However, these notions of structure are not robust: even the

addition of a single ‘misbehaving’ voter to a structured profile
can make it non-structured. Further, they are restrictive in that
only an exponentially small fraction of all preference profiles
belongs to one of these domains (Lackner and Lackner 2017).
Indeed, most preference profiles elicited in the real world are
unlikely to belong to either of these domains: none of the
profiles in the PrefLib library (Mattei and Walsh 2013) is
single-peaked or single-crossing.
Nevertheless, voters’ preferences are often driven by consid-

erations that are essentially single-dimensional (consider, e.g.,
voting over tax rates), and in such cases we expect the prefer-
ences to be ‘nearly’ structured. For instance, it may be the case
that a profile can be made single-peaked or single-crossing
by swapping a few pairs of adjacent candidates in each vote,
ignoring a small number of ‘irrational’ voters or ‘unconven-
tional’ candidates, or splitting the voters in a few groups
so that within each group the preferences have the desired
structure. Such ‘nearly structured’ preferences may inherit
some of the attractive computational properties of the original
domain. Nearly structured preferences have been explored in
a number of recent papers (Faliszewski, Hemaspaandra, and
Hemaspaandra 2014; Cornaz, Galand, and Spanjaard 2012;
2013; Bredereck, Chen, and Woeginger 2016; Erdélyi, Lack-
ner, and Pfandler 2017), which introduced several distance
measures capturing how ‘close’ a given profile is to being
structured, studied the complexity of computing such dis-
tances, and proposed algorithms for social choice problems
that are hard for general preferences for instances from ‘nearly
structured’ domains.
In particular, these papers argue that, for nearly structured

domains to be algorithmically useful, they need to admit
efficient recognition algorithms. To address this challenge,
Erdélyi, Lackner, and Pfandler (2017) put forward an exten-
sive list of distance measures, and show that, for almost all
distances on their list, it is NP-hard to compute how far a given
profile is from being single-peaked. In contrast, for the single-
crossing domain the picture is far from complete: Bredereck,
Chen, and Woeginger (2016) provide a hardness result for
candidate deletion and a polynomial-time algorithm for voter
deletion, and Cornaz, Galand, and Spanjaard (2012; 2013)
provide positive algorithmic results for a measure they call the
single-peaked/single-crossing width, but for many distance
measures introduced by Erdélyi, Lackner, and Pfandler (2017)
the complexity of deciding if a given profile is close to being
single-crossing remains open.
Our contribution.We study profiles that are almost single-
crossing in three different senses:

• Voter partition. We ask whether the input profile can be
partitioned into k single-crossing subprofiles, i.e., whether
the electorate can be subdivided into few sub-communities
each of which is well-structured. We solve this problem

for k = 2 by reducing it to 2SAT.
• Local swaps. We ask whether the input profile can be made
single-crossing by making at most k swaps of adjacent
alternatives in the preferences of each voter, i.e., whether
it can be the case that the input profile fails to be single-
crossing simply because voters made small ‘errors’ when
reporting their preferences. We show that this problem is
in XP with respect to k, i.e., for each fixed k we can answer
this question in polynomial time.

• Alternative partition. We ask whether the set of alternatives
can be partitioned into k subsets A = A1 ∪ · · · ∪ Ak so
that the restriction of the input profile to each subset is
single-crossing. We show that this problem is NP-hard
for every fixed k � 3, by providing a reduction from the
k-colouring problem.

Our results are summarised in Table 1.

2 Preliminaries
Let A be a finite set of m alternatives, or candidates, and let
N = {1, . . . , n} be a set of n voters; each voter i is associated
with a strict total order vi over A, which we call vi’s preference
order. If alternative a is ranked above alternative b in a strict
total order v, wewrite a �v b. The collection P = (v1, . . . , vn)
is called a preference profile. Given a subset A′ of A, we
write P[A′] to denote a profile (u1, . . . , un) of strict linear
orders over A′ such that for each i ∈ [n] and all a, b ∈ A′ we
have a �ui b if and only if a �vi b; we refer to P[A′] as the
restriction of P to A′. We write Nab = {i ∈ N : a �vi b} to
denote the set of voters who prefer a to b.
Definition. Let L be a linear order over the set N of voters.
We say that P is single-crossing with respect to L if for all
pairs a, b ∈ A of alternatives, the sets Nab and Nba are
intervals of L.
Thus, as we move along L from left to right, we observe that
the voters’ preferences over a and b ‘cross’ at most once. We
say that a profile P is single-crossing if there exists some linear
order L over N such that P is single-crossing with respect to
L. We also say that P = (v1, . . . , vn) is single-crossing in the
given order if P is single-crossing with respect to the order L
given by 1 < 2 < · · · < n. Figure 1 shows an example of a
single-crossing profile.

v1 v2 v3 v4 v5

a b b d d
b a d b c
c d a c b
d c c a a

Figure 1: A preference profile that is single-crossing with
respect to the voter ordering 1 < 2 < 3 < 4 < 5. The
‘trajectories’ of any two alternatives cross at most once.

We now introduce an alternative way of looking at single-
crossing preferences, and present a method to decide whether
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a given profile is single-crossing. Given two linear orders u
and v, we define the conflict set Δ(u, v) to be the set of pairs
of alternatives on which u and v disagree:

Δ(u, v) = {{a, b} ⊆ A : a �u b and b �v a}.

The Kendall-tau distance between u and v is then defined as
d(u, v) = |Δ(u, v)|.
Consider a profile P = (v1, . . . , vn) that is single-crossing

in the given order. Then, as i grows from 1 to n, the number
of conflicts between v1 and vi increases with each crossing.
Thus, we have

� = Δ(v1, v1) ⊆ Δ(v1, v2) ⊆ · · · ⊆ Δ(v1, vn). (1)

Clearly, the converse is also true: If (1) holds, then P is
single-crossing in the given order. For example, in Figure 1,
we have

Δ(v1, v2) = {ab, cd},
Δ(v1, v3) = {ab, cd, ad},
Δ(v1, v4) = {ab, cd, ad, bd, ac},
Δ(v1, v5) = {ab, cd, ad, bd, ac, bc},

and these sets form a chain with respect to ⊆.
Given a profile P and a voter i, we say that P is single-

crossing with first voter i if P is single-crossing with respect to
an ordering L in which i is the first (leftmost) voter. Then (1)
implies the following characterisation.
Proposition 1. A profile P = (v1, . . . , vn) is single-crossing
with first voter i if and only if for all pairs of voters j, k either
Δ(vi, vj) ⊆ Δ(vi, vk) or Δ(vi, vk) ⊆ Δ(vi, vj).
The condition formulated in Proposition 1 is easy to check.

Thus, fixing the first voter substantially simplifies the task
of finding an ordering L such that P is single-crossing with
respect to L. In particular, using this characterisation, we
can decide in polynomial time whether a given profile P is
single-crossing.
Proposition 2. We can decide whether a given profile is
single-crossing in time O(n3m2).

Proof. Guess the first voter i, compute the sets Δ(vi, vj), and
check if they form a chain with respect to ⊆. �

This basic algorithm can be optimised in various ways,
leading to faster runtimes. For instance, one can work with
the Kendall-tau distances d(vi, vj) rather than the conflict sets
(see, e.g., Doignon and Falmagne 1994; Elkind, Faliszewski,
and Slinko 2012). Our algorithms for detecting nearly single-
crossing profiles, however, build on this simple template
based on conflict sets.
Another corollary to Proposition 1 is that, in order for a

profile P to be single-crossing with first voter i, the distances
d(vi, vj), vj ∈ P, must be pairwise distinct.

3 Voter Partition
Arguably, if a preference profile is single-crossing, then there
is a form of consensus among the voters: while individuals
may have very different preferences, there is a common
understanding of what the underlying issue space is, and how

different positions in this issue space translate into preference
rankings (List et al. 2012 make a similar argument in the
context of single-peaked preferences). However, it may also
happen that, while there is no common agreement over the
issue space, voters can be split into a few disjoint groups so
that each group shares the same perspective on issues and,
consequently, each group has single-crossing preferences.
This is the underlying idea of the voter partition metric,

which will be considered in this section. Formally, we ask if
we can partition N into k subsets, N = N1 ∪ N2 ∪ · · · ∪ Nk ,
so that for each j ∈ [k] the subprofile P j = (vi)i∈N j is
single-crossing. Certainly, the answer is ‘yes’ if k is large
enough: e.g., every two-voter profile is single-crossing, so
for k � |N |/2 the answer is positive. But given our original
motivation, we are particularly interested in solving this
problem for small values of k. An example of a profile where
the answer is ‘yes’ for k = 2 is shown in Figure 2.
We note that voter partition is related to voter deletion,

where we look for a maximum-cardinality subset N ′ of N such
that the profile P′ = (vi)i∈N ′ is single-crossing; in contrast,
in the voter partition problem we want both P′ and P \ P′ to
be single-crossing.

v1 v2 v3 v4 v5 v6

a a d b d a
b c c c a d
c d b d b c
d b a a c b

Figure 2: A preference profile that can be partitioned into
two single crossing profiles, {v1, v2, v3} and {v4, v5, v6}.

The main result of this section is a polynomial-time al-
gorithm for the voter partition problem with k = 2. Our
algorithm proceeds by creating and solving several instances
of 2SAT, and uses the characterisation of single-crossing
preferences with a fixed first voter from Proposition 1.
Theorem 3. Given a profile P with n voters and m alternatives,
we can decide in time O(n4m2) whether the voter set N can be
partitioned as N = N1∪N2 so that both profiles P1 = (vi)i∈N1
and P2 = (vi)i∈N2 are single-crossing.

Proof. As a first step, we guess two voters i, � ∈ N , i � �, and
let s1 = vi , s2 = v� . We then check whether there is a partition
P = P1 ∪ P2 such that for j = 1, 2 it holds that s j ∈ N j and
P j is single-crossing with first vote s j . We perform this check
by a reduction to 2SAT, the problem of deciding if a formula
of propositional logic in 2-CNF is satisfiable. 2SAT is known
to be solvable in linear time (see, e.g., Papadimitriou 1993).
To construct this formula, we introduce one variable zv

for each vote v ∈ P. Intuitively, an assignment α to these
variables corresponds to a partition of P into subprofiles

P1 = {v : α(zv) = true} and P2 = {v : α(zv) = false}. (2)

We now introduce clauses that force each of the profiles P j ,
j = 1, 2, to be single-crossing with first vote s j . Given two
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sets A and B, we write A ‖ B if A and B are incomparable
under ⊆, i.e., A � B and B � A. For each j = 1, 2 and
every pair of votes x, y ∈ P j the sets Δ(s j, x) and Δ(s j, y)
must be comparable under ⊆, i.e., Δ(s j, x) ∦ Δ(s j, y). That
is, if Δ(s j, x) ‖ Δ(s j, y) for some j = 1, 2, then votes x and y
cannot both belong to P j . Hence our condition is captured
by the following 2-CNF formula:

ϕs
1,s2 ≡

∧
x,y∈P

Δ(s1,x) ‖Δ(s1,y)

(¬zx ∨ ¬zy) ∧
∧

x,y∈N

Δ(s2,x) ‖Δ(s2,y)

(zx ∨ zy). (3)

If formula (3) is not satisfiable, there is no partition of P
into two single-crossing profiles with s1 and s2 as first votes.
Conversely, a satisfying assignment α can be converted into
a partition via (2).
Formula (3) has n variables and O(n2) clauses, and can

be constructed in O(n2m2) time. Since 2SAT can be solved
in linear time, we can decide whether (3) can be satisfied in
time O(n2). As we consider up to

(n
2
)
different formulas, the

overall runtime of this algorithm is O(n4m2). �

The proof of Theorem 3 does not extend to k = 3, since
the reduction to SAT would yield clauses with three literals.
We leave the complexity of voter partition with k � 3 open.
This problem seems structurally similar to the problem of 3-
colouring a graph formed by a union of three incomparability
graphs. However, existing results on incomparability graphs
(see, e.g., Bosek, Krawczyk, and Matecki 2013) do not seem
to be directly applicable to our problem.
We note that for the case of single-peaked preferences,

voter partition is known to be NP-hard for each k � 3, but the
case k = 2 is open (Erdélyi, Lackner, and Pfandler 2017).

4 Local Swaps
We now consider the local swaps distance, where we have a
budget of k swaps per vote: for each voter, we may (succes-
sively) perform k swaps of two candidates that are adjacent in
the vote, with the aim of making the profile single-crossing.
A swap of adjacent candidates is, in some sense, a minimal
change of a preference order, so this distance corresponds to
fine-grained perturbations of the input profile.
Figure 3 shows an example of a profile that can be made

single-crossing by performing a single swap per voter. Note
that the original version of the profile on the left looks rather
chaotic, whereas the perturbed version on the right is visibly
structured. If we are in a setting where we expect the true
profile to be single-crossing, but we observe the profile in the
left part of Figure 3, we may well come to the conclusion that
there have been errors in the process of eliciting the voters’
preferences, and that the perturbed profile is closer to the
truth.
As in the previous section, our aim is to decide whether we

can make a profile single-crossing by using at most k swaps
per vote. Note that even the case k = 1 is not trivial: a naive
brute-force search requires considering (m − 1)n possibilities.
However, we show that for k = 1 this problem can be solved
in polynomial time. In fact, we obtain a stronger result: our
problem can be solved in polynomial time for every fixed k,
though the exponent in the runtime may depend on k. This

v1 v2 v3 v4 v5 v6

a d a a b f

b a d d d c
c b b f a d

d c e b f b

f e c c c a

e f f e e e

�→

v1 v2 v3 v4 v5 v6

a a a a d f

b d d d b d
c b b b a c

d c c f f b

e e e c c a

f f f e e e

Figure 3: A profile that becomes single-crossing after we
swap a single pair of adjacent candidates in each vote.

places our problem in the parameterised complexity class XP
with respect to k.
Our algorithm proceeds by splitting the profile into several

pieces. Then for each piece we enumerate all ways in which
that piece can be made single-crossing by using at most k
swaps per voter. Finally, we use dynamic programming to
find a way to combine the results for individual pieces.
Theorem 4. Given a profile P with n voters and m alternatives,
we can decide in time O((nm)8k

3+2k2poly(n,m)) whether P
can be made single-crossing by making at most k swaps in
the preferences of each voter.

Proof. Note that if P contains multiple copies of some prefer-
ence order, we can remove all but one copy without changing
the answer to our question. Thus, in what follows we can
treat P as a set of (distinct) preference orders. Recall that
the Kendall-tau distance d(vi, vj) between two preference
orders is the number of pairs on which they disagree. Given
a set P = {v1, . . . , vq} of preference orders, we say that a set
P′ = {u1, . . . , ur } is a k-variant of P if for each i ∈ [q] there
is a j ∈ [r] such that d(vi, u j) � k and for each j ∈ [r] there
is an i ∈ [q] such that d(vi, u j) � k; note that we may have
q � r. Thus, a profile is obtainable from P by performing
k local swaps if and only if it is a k-variant. We can now
formalise our question as follows: is there a k-variant P′ of
P that is single-crossing?
Throughout our analysis of the problem, we will fix the

number k of allowed swaps per vote. Thus, ‘polynomial size’
and ‘polynomial time’ refer to values that are polynomial for
constant k, that is, to values bounded by (nm) f (k) for some
function f .
Let P be the input profile, interpreted as a set of linear

orders. The first step in our algorithm is to guess which
voter will appear first in the order of voters witnessing that
the target profile P′ is single-crossing. We implement this
guessing by iterating through all preference orders v ∈ P,
and iterating through all possibilities of applying at most k
swaps to v, yielding s. There areO(nmk) possibilities for this.
Having guessed the starting voter, we have to check whether
P is within k local swaps from being single-crossing with
first voter s.
We now partition P into blocks based on the distance to s.
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For each r = 1, . . . ,
(m
2
)
, let

Pr := {vi ∈ P : d(s, vi) = r}

be the set of preference orders at distance exactly r from s.
At first we will handle each Pr separately, by enumerating all
promising ways of applying k swaps to the orders in Pr . To
this end, let Bk(Pr ) denote the set of all k-variants P′

r of Pr

such that P′
r ∪ {s} is single-crossing with first vote s.

Lemma 5. The set Bk(Pr ) is of polynomial size and can be
enumerated in polynomial time.

Proof. Consider a set P′
r ∈ Bk(Pr ). We have d(s, v) ∈

[r − k, r + k] for each v ∈ P′
r . For P′

r to be single-crossing
with first vote s, the votes in P′

r must be at pairwise different
distances from s. Thus, for each d ∈ [r − k, r + k], there is at
most one preference order v in P′

r with d(s, v) = d. Hence
|P′

r | � 2k + 1.
It follows that P′

r is a k-variant of some subset P∗
r ⊆ Pr

of size at most 2k + 1. Thus, to enumerate Bk(Pr ), we can
enumerate all O(|Pr |

2k+1) subsets P∗
r ⊆ Pr of size at most

2k + 1, then, for each P∗
r , enumerate all O((mk)2k+1) k-vari-

ants of P∗
r , and finally cross out all sets that are not k-variants

of Pr or are not single-crossing with first voter s. �

The procedure described in Lemma 5 is rather inefficient
even for relatively small k. For the case k = 1, we can show
that Bk(Pr ) can be enumerated in time linear in m. We omit
the proof due to space constraints.
Having enumerated all potential k-variants for each Pr

separately, we now need a way to decide whether there is a
way to combine them into a single-crossing profile. Note that
in this profile votes from different sets P′

r may be interleaved,
which makes our problem more difficult. Nevertheless, we
will now argue that it can be reduced to the problem of finding
a path of a certain length in the directed acyclic graph that
we will now construct.
Let Pr1, . . . , Prq be a list of all non-empty sets Pr , where

r1 < · · · < rq . For each i = 1, . . . , q − 4k + 1, let

Cri := {(P′
ri , . . . , P

′
ri+4k−1 ) ∈ Bk (Pri ) × · · · × Bk (Pri+4k−1 ) :

{s} ∪ P′
ri ∪ · · · ∪ P′

ri+4k−1 is single-crossing with first vote s}

Thus, Cri is the set of all combinations of k-variants from 4k
successive non-empty sets Pr that together are single-crossing
with first vote s. We now construct a directed graph D with
vertex set V = Cr1 ∪ · · · ∪ Crq−4k+1 and add an arc

(P′
ri
, . . . , P′

ri+4k−1
) → (P′′

ri+1, . . . , P
′′
ri+4k

)

whenever these two vectors are compatible, that is, whenever
P′
ri+t
= P′′

ri+t
for all t ∈ [4k − 1]. Note that there are only arcs

between vertices from two successive sets Cri . To finish the
proof, we need the following lemma.

Lemma 6. Profile P admits a k-variant that is single-crossing
with first vote s if and only if D contains a path of length
q − 4k + 1.

Proof. Suppose P′ is such a k-variant. Then, for each ri , there
is some P′

ri
∈ Bk(Pri ) such that P′

ri
⊆ P′ by the correctness

of the algorithm in Lemma 5. Then D contains the path
(P′

r1, . . . , P
′
r4k

) → · · · → (P′
rq−4k+1

, . . . , P′
rq
).

Conversely, suppose D contains a path of length q− 4k + 1.
This induces a choice of P′

ri
∈ Bk(Pri ) for each i ∈ [q]. Let

P′ = {s}∪P′
r1∪· · ·∪P′

rq
. We claim that P′ is single-crossing

with first vote s. We check this using Proposition 1.
Suppose, aiming for a contradiction, that there exist prefer-

ence orders x ∈ Pri and y ∈ Prj with i � j such that Δ(s, x)
and Δ(s, y) are incomparable under ⊆. Choose x and y so as
to minimize j − i. Clearly j − i � 4k by construction of Cri .
Take any preference order z ∈ P′

ri+2k
. Then by minimality of

j − i, the sets Δ(s, x) and Δ(s, z) must be comparable, and the
sets Δ(s, z) and Δ(s, y) must be comparable (under ⊆). Since
we are only allowed k swaps per vote, we have

d(s, x) � ri + k = (ri + 2k) − k � d(s, z), and
d(s, z) � ri + 3k � rj − k � d(s, y).

Hence, we must have Δ(s, x) ⊆ Δ(s, z) and Δ(s, z) ⊆ Δ(s, y).
Thus Δ(s, x) ⊆ Δ(s, y), which is a contradiction. �

Now, the digraph D is acyclic, since it admits a topological
ordering; also, for every fixed k it has polynomially many
vertices. Thus, we can decide in polynomial time whether
D contains a directed path with q − 4k + 1 vertices. By
Lemma 6, such paths correspond to k-variants of P that
are single-crossing with first vote s. Thus, the proof is
complete. �

5 Alternative Partition
The alternative partitionmetric is similar in spirit to the voter
partition metric: given a profile P over a set of alternatives
A, we ask whether we can partition A into k subsets A =
A1 ∪ · · · ∪ Ak so that for each j ∈ [k] the restriction of P
to Aj is single-crossing. Importantly, each restricted profile
P[Aj] may be single-crossing with respect to a different
voter ordering. We will now argue that this problem is
NP-complete.

v1 v2 v3 v4

a a b b
b b a a
c d c d
d c d c

In our hardness reduction, it will
be useful to have some small pro-
files that are not single-crossing. For
example, consider the profile on the
right. Suppose this profile was single-
crossing with respect to some order
<L . By considering the pair {a, b},
we conclude that {1, 2} <L {3, 4} or
{3, 4} <L {1, 2}. Similarly, by considering the pair {c, d},
we conclude that either {1, 3} <L {2, 4} or {2, 4} <L {1, 3}.
The conditions imposed by {a, b} are incompatible with those
imposed by {c, d}, so this profile is not single-crossing. We
can use this profile as a gadget in our reduction, to ensure that
alternatives a, b, c, d cannot all be contained in the same part
of our partition.
Profiles of this type are known as δ-configurations, which

together with ‘γ-configurations’ are used by Bredereck, Chen,
and Woeginger (2013) to characterise the domain of single-
crossing profiles in terms of forbidden subprofiles. Given a
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profile P, we will say that a subset A† ⊆ A of alternatives
induces a δ-configuration if there are four voters i1, i2, i3, i4
and we can write A† = {a, b, c, d} (where a, b, c, d are not
necessarily distinct) so that

a �i1 b and c �i1 d, a �i2 b and d �i2 c,
b �i3 a and c �i3 d, b �i4 a and d �i4 c.

As argued above, when A† induces a δ-configuration, and
A′ ⊆ A is such that P[A′] is single-crossing, it holds that
A† � A′, i.e., the alternatives in A† cannot all be in the same
part of the partition.
Our reduction is from the k-colouring problem. An instance

of this problem is an undirected graph G = (V, E) and a
parameter k; it is a ‘yes’-instance if it is possible to partition
V into k independent sets, and a ‘no’-instance otherwise. The
k-colouring problem is NP-complete for each k � 3 (Garey
and Johnson 1979). The high-level idea of our reduction is
that the vertices of G become alternatives, and we use voters
and further dummy alternatives to build δ-configurations
that force alternatives corresponding to adjacent vertices to
lie in different partition parts. The implementation details
are rather involved. Our reduction is inspired by the proof
that it is NP-hard to decide if a given profile can be made
single-crossing by removing k alternatives (Bredereck, Chen,
and Woeginger 2016).
Theorem 7. For every k � 3, it is NP-complete to decide
whether given a profile P we can partition the alternative set
A into k sets A = A1 ∪ · · · ∪ Ak so that for each j ∈ [k] the
profile P[Aj] is single-crossing.

Proof. This problem is in NP, since one can check in poly-
nomial time whether k sets form a partition and whether a
given profile is single-crossing. To show NP-hardness, we
reduce from the k-colouring problem.
Given an instance G of the k-colouring problem, where G

has vertex set F = { f1, . . . , fn} and edge set E = {e1, . . . , em},
we will construct a profile P over a set of alternatives A in such
a way that A can be partitioned into k sets A = A1 ∪ · · · ∪ Ak

with each profile P[Aj] being single-crossing if and only if
G is k-colourable.
For every vertex fi ∈ F we introduce a candidate qi . Let

Q := {qi : i ∈ [n]}.
Define the canonical order of Q to be

〈Q〉 := q1 � · · · � qn.
For every edge ei ∈ E we introduce 4k candidates
a1i , . . . , a

2k
i , x

1
i , . . . , x

2k
i , and define

Bi := {a1i , . . . , a
2k
i }, Xi := {x1i , . . . , x

2k
i },

with the canonical orders of Bi and Xi being defined as
〈Bi〉 := a1i � · · · � a2ki , 〈Xi〉 := x1i � · · · � x2ki .

Furthermore, for j ∈ [2k] we let � = 2k − j and define the
following linear orders over the sets Bi and Xi:
〈̂Bi〉 j := a1i � a2i � · · · � a�i � a2ki � a2k−1i � · · · � a�+1i ,

〈̂Xi〉 j := x1i � x2i � · · · � x�i � x2ki � x2k−1i � · · · � x�+1i ,

〈̃Bi〉 j := a j
i � a j−1

i � · · · � a1i � a j+1
i � a j+2

i � · · · � a2ki ,

〈̃Xi〉 j := x j
i � x j−1

i � · · · � x1i � x j+1
i � x j+2

i � · · · � x2ki .

Define the candidate set A to be

A := Q ∪ B1 ∪ X1 ∪ · · · ∪ Bm ∪ Xm.

Now for every j ∈ [2k] we construct two votes vj, v′j that rank
the candidates as follows:

vj : 〈Q〉 � 〈̂B1〉 j � 〈̂X1〉 j � · · · � �〈Bm〉 j �
�〈Xm〉 j,

v′j : 〈Q〉 � 〈̃B1〉 j � 〈̃X1〉 j � · · · � �〈Bm〉 j �
�〈Xm〉 j .

For each i ∈ [m] it holds that any three distinct candidates
ari , a

s
i , a

t
i in Bi such that r < s < t, together with votes

v1, v2k−r, v
′
s, v2k , induce a δ-configuration, since

v1 : ari � as
i � at

i,

v2k−r : ari � at
i � as

i ,

v′s : as
i � ari � at

i,

v2k : at
i � as

i � ari .

Similarly, any three distinct candidates xri , x
s
i , x

t
i in Xi with

r < s < t, together with votes v1, v2k−r, v′s, v2k , induce a
δ-configuration.
Now, for every edge ei = { fj, fk} with j < k we construct

four votes w4i−3,w4i−2,w4i−1,w4i that rank the candidates as
follows:

〈B1〉 � 〈X1〉 � · · · � 〈Bi−1〉 � 〈Xi−1〉 �

q1 � · · · � qj−1 � {qj} ∪ Bi � qj+1 � · · · �

qk−1 � {qk} ∪ Xi � qk+1 � · · · � qn �

〈Bi+1〉 � 〈Xi+1〉 � · · · � 〈Bm〉 � 〈Xm〉.

We still need to define the relative ranking of qj and Bi , as
well as of qk and Xi:

w4i−3 ranks qj � 〈Bi〉 and qk � 〈Xi〉,

w4i−2 ranks qj � 〈Bi〉 and 〈Xi〉 � qk,
w4i−1 ranks 〈Bi〉 � qj and qk � 〈Xi〉,

w4i ranks 〈Bi〉 � qj and 〈Xi〉 � qk .

Note that for all candidates s ∈ Bi and t ∈ Xi it holds
that votes w4i−3, . . . ,w4i and candidates qj, qk, s, t induce a
δ-configuration.
Define the profile P to be

{vi, v
′
i : i ∈ [2k]} ∪ {w4i−3,w4i−2,w4i−1,w4i : i ∈ [m]}.

The profile P can be constructed in polynomial time. We
will now show thatG is k-colourable if and only if there exists
a partition A1∪· · ·∪Ak of A such that P[Ai] is single-crossing
for each i ∈ [k].

⇐= Suppose A1, . . . , Ak is a partition of A such that
P[A1], . . . , P[Ak] are all single-crossing. For each i ∈ [k],
define

Fi := { fj ∈ F : qj ∈ Ai}.

We show that F1, . . . , Fk is a valid k-colouring for G.
Clearly, F1, . . . , Fk partition F; hence it suffices to show

that each Fi is an independent set. Suppose, aiming for
a contradiction, that one of the sets Fi , say F1, is not an
independent set. Then there exists an edge e� = ( fi, fj) ∈ E
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such that fi, fj ∈ F1. By definition of F1 both qi and qj are
in A1.
Recall that any three distinct candidates ar�, a

s
�
, at

�
in B� ,

where r < s < t, together with votes v1, v2k−r, v′s, v2k induce
a δ-configuration. Since P[A1], . . . , P[Ak] are all single-
crossing, it follows that |B� ∩ At | � 2 for all t ∈ [k]. Because
|B� | = 2k, it follows that |B� ∩ At | = 2 for all t ∈ [k];
similarly, |X� ∩ At | = 2 for all t ∈ [k]. Now let a ∈ B� ∩ A1
and x ∈ X� ∩ A1. Then votes w4�−3, . . . ,w4� and candidates
a, x, qi, qj induce a δ-configuration, which contradicts the
assumption that P[A1] is single-crossing.
Thus F1, and similarly all other sets Fi , are independent

sets. Hence F1, . . . , Fk is a valid colouring of G.
=⇒ Now suppose that G is k-colourable. Let F1, . . . , Fk

be a k-colouring of G. We construct a partition of A =
A1 ∪ · · · ∪ Ak , where for each i ∈ [k] we take

Ai := {qj ∈ A : fj ∈ Fi}

∪ {a2i−1j , a2ij , x
2i−1
j , x2ij ∈ A : j ∈ [m]}.

The sets A1, . . . , Ak form a partition of A, and thus we only
need to show that P[Ai] is single-crossing for each i ∈ [k].
To do so, we define an order of votes in each profile P[Ai],
i ∈ [k]. We set

Li := v2(k−i+1) > · · · > v2k > v′2i > · · · > v′2k >

v1 > · · · > v2k−2i+1 > v′1 > · · · > v′2i−1 >

{w1,w2,w3,w4} > · · · > {w4m−3,w4m−2,w4m−1,w4m}.

It remains to define Li on the sets {w4j−3,w4j−2,w4j−1,w4j}
for j ∈ [m]. Suppose that ej = ( fk, f�). Then if f� � Fi , then

Li : w4j−3 > w4j−2 > w4j−1 > w4j,

and if f� ∈ Fi , then

Li : w4j−3 > w4j−1 > w4j−2 > w4j .

Note that for all j ∈ [m] in all votes up to v′2k in the linear
order Li candidate a2ij is ranked above a2i−1j and candidate x2ij
is ranked above x2i−1j , whereas in all votes from v1 onwards
candidate a2i−1j is ranked above a2ij and candidate x2i−1j is
ranked above x2ij for all j ∈ [m].
It is straightforward to check that P[Ai] is single-crossing

with respect to Li by arguing that for all distinct candidates
s, t ∈ Ai the set of votes where s is ranked above t is connected
in Li , and so is the set of votes where t is ranked above s. We
omit this argument due to space constraints; details can be
found in the full version of the paper. �

6 Conclusions and Future Work
This work contributes to our understanding of nearly struc-
tured preferences. For two natural notions of distance we have
obtained efficient algorithms for identifying preferences that
are very nearly single-crossing. We consider our algorithmic
result for the local swaps distance to be particularly appealing,
because it concerns an operation that only performs small
perturbations to voters’ reported preferences. Indeed, we be-
lieve that when preferences are a few local swaps away from

being structured, we can sometimes be justified in taking the
structured version of the profile to be the starting point of the
analysis. It is instructive to contrast the local swap distance
and the voter deletion distance: while for single-crossing pref-
erences the latter admits an efficient algorithm even when k is
part of the input (Bredereck, Chen, and Woeginger 2016), the
voter deletion distance forces us to completely ignore some
voters’ preferences; in this sense, the local swaps distance is
more egalitarian.
The running time of our algorithm for local swaps, whose

exponent depends on k, will only be acceptable for small
k (and moderate values of n and m). However, this is the
practically relevant case: we are presumably not interested in
profiles that can be made structured by very large perturba-
tions, since then the structure does not explain much anyway.
It would be interesting to obtain other positive results of this
type, i.e., to design algorithms that can efficiently detect if a
given preference profile is very close to being structured.
In contrast to our tractability results for voter partition

and local swaps, we obtain a hardness result for alternative
partition. In a sense, this result is not surprising, as for the
related measures of voter and alternative deletion, a similar
phenomenon is known: the smallest number of voters that
need to be deleted to make a profile single-crossing can be
computed in polynomial time, whereas for alternative deletion
this problem is NP-hard (Bredereck, Chen, and Woeginger
2016). Intuitively, this is because the definition of single-
crossing preferences focuses on ordering the voters, and
therefore computational problems that deal with rearranging
the voters are easier than those that deal with rearranging the
alternatives. Indeed, for single-peaked preferences, which
are defined in terms of an ordering of the alternatives, the
alternative deletion problem is easy, but the voter deletion
problem is NP-hard (Erdélyi, Lackner, and Pfandler 2017).
Our work leaves a number of interesting open questions. In

particular, for the local swaps distance, it would be desirable to
improve the running time of our algorithm, and to investigate
the existence of an FPT algorithm. For the voter partition
algorithm, the complexity of partitioning into k > 2 sets
remains open. It is also natural to ask if there are analogues
of our results for the single-peaked domain. We note that
existing NP-completeness results for this domain (Erdélyi,
Lackner, and Pfandler 2017), do not rule out tractability of
voter partition for k = 2, or an XP result for local swaps.
Another research direction is to investigate the complexity

of deciding whether a given profile is close to being structured,
for more general notions of structure, such as being single-
peaked or single-crossing on graphs other than the line (such
as, e.g., trees or cycles). To the best of our knowledge, this
topic has not yet been explored.
Finally, to make our positive results more practically ap-

plicable, it would be desirable to extend tractability results
for winner determination of various preference aggregation
rules (particularly multiwinner voting rules) from the per-
fectly structured profiles to those that are almost structured.
Such results have been obtained for single-peaked or single-
crossing width (Cornaz, Galand, and Spanjaard 2012; 2013;
Skowron et al. 2015), and, very recently, for a few other
distance measures (Misra, Sonar, and Vaidyanathan 2017).
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Results of this type also appear in the literature on manipula-
tion and control (see, e.g., Faliszewski, Hemaspaandra, and
Hemaspaandra 2014; Yang and Guo 2015; 2017). Extending
this line of research to a wider range of domains and distance
measures is a promising direction for future work.
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