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Abstract

We consider ordinal approximation algorithms for a broad
class of utility maximization problems for multi-agent sys-
tems. In these problems, agents have utilities for connect-
ing to each other, and the goal is to compute a maximum-
utility solution subject to a set of constraints. We represent
these as a class of graph optimization problems, including
matching, spanning tree problems, TSP, maximum weight
planar subgraph, and many others. We study these prob-
lems in the ordinal setting: latent numerical utilities exist,
but we only have access to ordinal preference information,
i.e., every agent specifies an ordering over the other agents
by preference. We prove that for the large class of graph
problems we identify, ordinal information is enough to com-
pute solutions which are close to optimal, thus demonstrat-
ing there is no need to know the underlying numerical util-
ities. For example, for problems in this class with bounded
degree b a simple ordinal greedy algorithm always produces
a (b 4+ 1)-approximation; we also quantify how the quality
of ordinal approximation depends on the sparsity of the re-
sulting graphs. In particular, our results imply that ordinal
information is enough to obtain a 2-approximation for Max-
imum Spanning Tree; a 4-approximation for Max Weight
Planar Subgraph; a 2-approximation for Max-TSP; and a 2-
approximation for various Matching problems.

1 Introduction

Human beings are terrible at expressing their feelings quan-
titatively. For example, when forming collaborations people
may be able to order their peers from “best to collaborate
with” to worst, but would have a difficult time assigning ex-
act numeric values to the acuteness of these preferences. In
other words, even when numerical (possibly latent) utilities
exist, in many settings it is much more reasonable to assume
that we only know ordinal preferences: every agent speci-
fies the order of their preferences over the alternatives, in-
stead of a numerical value for each alternative. Recently
there has been a lot of work using such an implicit utilitar-
ian approach, especially for matching and social choice (see
Related Work), in situations where obtaining true numerical
utilities may be difficult. Amazingly, as this line of work
shows, it is often possible to design algorithms and mech-
anisms which perform well using only ordinal information.
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In fact, ordinal algorithms often perform almost as well as
omniscient mechanisms which know the true underlying nu-
merical utilities, instead of just the ordinal preferences in-
duced by these utilities.

In this work we consider a relatively general network for-
mation setting. All problems considered herein are modeled
by an undirected complete graph G = (N, &), where the
(symmetric) weight w(z, y) of each edge (x,y) € & repre-
sents the hidden utility of connecting agents x,y € N. The
goal is to form a maximum-weight (i.e., maximum utility)
graph which obeys some given constraints. For example,
constraints may include bounds on the maximum degree,
on component size, and many others. This framework in-
cludes such problems as matching, group formation, TSP,
and many others as special cases; see Section 2 for example
constraints and how they lead to different important settings.

In many settings we may not have access to the true edge
weights w(z, y). Instead, each agent x € N reports a strict
preference ordering over the other agents NV — {x} with
whom it can connect. We assume this ordering to be con-
sistent with the latent weights, so that w(z,y) > w(zx, z)
implies that x prefers y to z. While it is clearly impossible to
form an optimal (i.e., maximum-utility) solution without di-
rect knowledge of the edge weights, we show how to design
good approximation algorithms for selecting a maximum
weight subgraph of G, subject to a large set of constraints.
As usual in this line of work, the measure of performance
is simply the sum of the agent utilities. Our paper pro-
vides good approximations for a broad class of ordinal ana-
logues to graph optimization problems representing utility
maximization for multi-agent systems. Note that unlike all
previous work mentioned here, we do not make additional
assumptions about the structure of the edge weights: we
do not assume either that the agent utilities are normalized
(as in (Boutilier et al. 2015; Brandt et al. 2016; Caragiannis
et al. 2017; Caragiannis and Procaccia 2011; Christodoulou
et al. 2016)), nor that they form a metric space (as in
(Anshelevich, Bhardwaj, and Postl 2015; Anshelevich and
Postl 2017; Anshelevich and Sekar 2016a; 2016b; Caragian-
nis et al. 2016; Goel, Krishnaswamy, and Munagala 2017;
Gross, Anshelevich, and Xia 2017; Skowron and Elkind
2017)). Thus, our results demonstrate how well one can
perform using only ordinal information without additional
assumptions.



ABC Systems More specifically, we define a class of con-
straints called ABC Systems which consists of three types of
constraints. The first two are the familiar constraints which
bound the maximum degree of each node and the maximum
component size, or number of nodes in a connected compo-
nent. The third constraint is a much more general require-
ment called attachment which only applies to nodes that are
already in the same connected component. The maximiza-
tion problem for an ABC System is to compute a maximum
weight subgraph S C & of an undirected, complete graph
G = (N, &) such that in S every node has degree at most
b, every connected component has size (number of nodes) at
most ¢, and S € A for some arbitrary attachment set A.
A collection of subgraphs A is an attachment set of G if the
following properties hold for all subgraphs F' C &:

1) Heredity: If F € Aand F' C F then F’ € A.

2) Atachment: f F € A and F + e ¢ A for some
e = (u,v) ¢ F, then there is a (u, v)-path in F. !

Note that all three of our constraints possess the heredity
property which enables greedy heuristics, like the Ordinal
Greedy algorithm we introduce in Section 3.1, to construct
valid solutions. The intuition behind the attachment property
is that if F € Abut '+ e ¢ A, then e must have both
endpoints in the same component. Therefore, the number
of such edges whose addition would violate A within any
component of size x is bounded by % —(z —1),
where z is bounded by c.

The utility maximization objective for ABC Systems en-
compasses a wide variety of well-known problems cen-
tral to algorithm design. The examples we address in this
paper include Max Weight b-Matching, Maximum Weight
Spanning Tree, Maximum Traveling Salesperson, and Max
Weight Planar Subgraph. Our results also encapsulate many
other interesting optimization problems for ABC Systems
which we will not discuss directly, like finding the maxi-
mum weight subgraph with minimum girth £, maximum cy-
cle length [, or which excludes a variety of graph minors
(including all 2-edge-connected minors). As we show, all
such problems are amenable to knowing only secondhand
ordinal information, instead of the true numerical utilities.

1.1 Our Contributions

Most algorithmic techniques for maximizing utility for the
full-information setting do not translate to the ordinal in-
formation setting. These typically rely on non-local infor-
mation, like comparisons between weights of non-adjacent
edges, or comparing the total weights of sets of edges. This
is not possible using only ordinal information. Even the fun-
damental, and well-studied (Vince 2002; Edmonds 1971;
Rado 1942), Omniscient Greedy algorithm, which adds
edges in strictly non-increasing order of their weight, can-
not be executed using only ordinal information. Instead, we
focus on the natural Ordinal Greedy algorithm (defined in
Section 3.1), which adds edges iteratively as long as the edge
(z,y) being added is the most preferred edge for both x and
y out of all the possible edges which could be added at that

"We use the “+” and “-” notation when adding or removing a
single edge to or from a set.
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time. Ordinal Greedy has some very nice properties: in ad-
dition to being natural and providing high-utility solutions
(as we prove in this paper), it also always creates pairwise
stable solutions: no pair of agents would have incentive to
destroy some of their links and form a new link connecting
them. Note that the performance of Ordinal Greedy can be
very different from Omniscient Greedy: see Example 1 in
Section 3.1 for intuition of why this must be.

In this paper, we analyze the performance of Ordinal
Greedy for many ABC Systems (see Table 1). We first prove
that for general ABC Systems, Ordinal Greedy always pro-
duces a solution with weight at most factor b + 1 away from
optimum, and that this factor is tight. In other words, for
general problems including all those in Table 1, as long as
the number of connections for each node must be bounded
by some small b, then using only ordinal information it is
possible to compete with the best possible solution, and thus
with any algorithm which knows the true numerical utilities.
Such results tell us that when b is small, there is no need to
find out the hidden edge weights/utilities; knowing the ordi-
nal preferences is good enough.

Second, we show that by relaxing the component size
constraint (i.e., setting ¢ to be unbounded) we can achieve
significant improvements. For convenience, we call ABC
Systems with the component size constraint relaxed AB Sys-
tems. We prove that as long as any solution formed by such
an AB System is guaranteed to be at most d-sparse, then
Ordinal Greedy forms a solution within a factor of d + 1
from optimum. Since the sparsity of a graph is at most half
the average degree in any subgraph, we know that d < %.

Therefore an AB System is at worst (g + 1)-approximable,
giving us a factor of 2 improvement over general ABC Sys-
tems.

This result is more powerful than it may first appear,
as many important constraints yield sparse solutions. For
example, since all tours and trees are l-sparse, Ordi-
nal Greedy provides a 2-approximation for both Maxi-
mum Traveling Salesperson and Maximum Weight Span-
ning Tree. And since all planar graphs are 3-sparse, we
obtain a 4-approximation for Max Weight Planar Subgraph
which uses only ordinal information.

Lastly, we consider Max Weight b-Matching, in which
the only constraint is that each agent can be matched with
at most b others. This is simply an ABC System with un-
bounded ¢ and A being all possible sets. We prove that our
approximation factor drops to a constant 2, regardless of the
value of b.

To prove the ordinal approximations above, we first
demonstrate that for any ABC System (and any graphic
system with the heredity property defined earlier) Ordinal
Greedy achieves its worst approximation on an instance with
weight function w : &€ — {0,1}. We use this fact heavily
to establish our approximation bounds, and believe it to be
of independent interest. Note that similar results for Omni-
scient Greedy have relied critically on the fact that it selects
edges in strictly non-increasing order by weight. Clearly
this does not and cannot hold for the ordinal setting, as it
is even possible for the minimum weight edge of the graph
to be selected before the maximum weight edge. Because



Maximization Problem ‘ Ordinal Greedy ‘ Omniscient Greedy ‘ Best Known ‘
ABC System b+1 b+1 -
AB System max{2,d+ 1} max{2,d + 1} -
Spanning Tree 2 1 1
Planar Subgraph 4 3 72/25 (Calinescu et al.)
Traveling Salesperson 2 2 9/7 (Paluch, Mucha, and Madry)
b-Matching 2 2 1

Table 1: Here we compare our results for Ordinal Greedy, known results for Omniscient Greedy, and the best known
polynomial-time algorithm with full-information. All of our bounds are tight except for the one on Planar Subgraph.

of this, our proofs require completely new approaches and
techniques.

1.2 Related Work

Historically, it has been common to approach problems
in the ordinal setting with a normative view by designing
mechanisms which satisfy axiomatic properties, like stabil-
ity or truthfulness. These axiomatic properties are useful in
many applications, but do not provide a quantitative mea-
sure of the quality of a solution. The notion of distortion
and the implicit utilitarian framework were first introduced
by Procaccia and Rosenschein (2006) in the context of vot-
ing to provide such a measure. Since then the distortion, or
approximation factor, of various ordinal utility maximiza-
tion mechanisms has been studied, particularly for match-
ings (Anshelevich and Sekar 2016a; 2016b; Anshelevich
and Zhu 2017; Christodoulou et al. 2016; Caragiannis et al.
2016) and social choice (Anshelevich, Bhardwaj, and Postl
2015; Anshelevich and Postl 2017; Boutilier et al. 2015;
Brandt et al. 2016; Caragiannis et al. 2017; Caragiannis and
Procaccia 2011; Goel, Krishnaswamy, and Munagala 2017;
Gross, Anshelevich, and Xia 2017; Skowron and Elkind
2017).

Our work is unlike that in social choice, since we con-
sider network formation problems where agent preferences
are expressed over one another. In the context of match-
ings, Anshelevich and Sekar (2016a; 2016b) develop various
matching algorithms as a black-box to provide approxima-
tions for a variety of matching and clustering problems un-
der the implicit utilitarian view. Additionally, Christodoulou
et al. (2016) and Caragiannis et al. (2016) provide re-
sults for one-sided matchings and Anshelevich and Zhu
(2017) consider bipartite matchings. However, all previ-
ous work on approximation for utility maximization men-
tioned above either assumes the underlying weights form
a metric space (Anshelevich, Bhardwaj, and Postl 2015;
Anshelevich and Postl 2017; Anshelevich and Sekar 2016a;
2016b; Anshelevich and Zhu 2017; Goel, Krishnaswamy,
and Munagala 2017; Gross, Anshelevich, and Xia 2017;
Skowron and Elkind 2017; Caragiannis et al. 2016) or
are normalized (Boutilier et al. 2015; Brandt et al. 2016;
Caragiannis et al. 2017; Caragiannis and Procaccia 2011;
Christodoulou et al. 2016), with only two exceptions. The
first exception is that Maximum Traveling Salesperson
yields a 2-approximation without the metric assumption
(Anshelevich and Sekar 2016b). We prove this result as part
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of a much more general theorem using much more general
techniques. The second is the result developed in the full-
information setting by Preis (1999) and affirmed in the or-
dinal setting by Anshelevich and Sekar (2016a), that Max
Weight Matching yields a 2-approximation without any as-
sumptions on the weights. We generalize this result to all
b-Matchings instead of only b = 1.

The work most similar to ours is (Anshelevich and Sekar
2016a) which bounds the distortion of ordinal mechanisms
for several problems, including Maximum Traveling Sales-
person, but relies heavily on the assumption that the weights
obey the triangle inequality. For the Ordinal Greedy algo-
rithm, Anshelevich and Sekar (2016a) show the metric as-
sumption implies that any two edges which are both most
preferred by their respective endpoints at some iteration
must be within a factor of 2 of one another, even if they are
not adjacent. By contrast, this non-local information is un-
available to us in our model. Our paper is unique in that we
identify a large class of problems for which assumptions on
the weights are unnecessary to achieve good approximations
to optimum with only ordinal information.

The Omniscient Greedy algorithm has been studied ex-
tensively. In fact, it is known to be optimal on ex-
actly the set of independence systems (any system with
the heredity property) which are matroids (Edmonds 1971;
Rado 1942), which includes Maximum Spanning Trees. Ko-
rte and Hausmann (1978) showed that Omniscient Greedy
provides good approximations for many independence sys-
tems, including matching and symmetric TSP. Dyer, Foulds,
and Frieze (1985) further demonstrated that Omniscient
Greedy provides a tight 3-approximation for Max Weight
Planar Subgraph. These results were later reformulated as
k-extendibility by Mestre (2006), who applies this idea to
a diverse set of problems, including b-Matching. Unfortu-
nately, the proofs for all results just mentioned rely criti-
cally on Omniscient Greedy selecting edges in strictly non-
increasing order, making them untenable in the ordinal set-
ting. No ordinal algorithm can yield optimum solutions,
even for matroids. However, as we show in Table 1, our
results compete well with the best known polynomial-time
algorithms for ABC Systems.

2 Model and Problem Statements

The input for all problems in this paper is a set A/ of agents
(nodes) of size n, and a strict preference ordering for each
z € N over the edges adjacent to x. The preference order-



ings reported by each agent are induced by a set of hidden
symmetric weights w(x,y) = w(y, z) forall z,y € N. The
set of hidden weights corresponds to an undirected, com-
plete graph G = (N, €) with non-negative weight function
w : & — RT. The transitive relation of the individual pref-
erence orderings for all agents determines a partial ordering
o over all edges; note that some pairs of edges may end up
being incomparable in o (see Example 1). The preference
ordering o is said to be consistent with the hidden weights
if Vo,y,2 € N, if x prefers y to z then it must be that
w(x,y) > w(x,z). If an edge e; is known to be at least
as large as edge e, according to this partial ordering o, then
we will say that e; dominates ey in 0. The problems we
consider are optimization problems where for an instance
(w, o) the objective is to compute the subgraph of G with
maximum total edge weight, subject to a set of constraints,
knowing only o.

For weight function w, we let O PT,, be the optimal solu-
tion for the weights prescribed by w, and we let w(OPT,,)
be the total weight of the optimal solution evaluated by w.
Likewise, we use S to denote our constructed solution and
w(S) its weight. Our approximation factor for a problem

is therefore o« = %naog %, where S is any solution
w,o

returned by our algorithm for (w, o).

Recall the definition of ABC Systems. Given constraints
A, b, ¢ we can say without loss of generality that b < ¢ — 1,
because if any node has ¢ or more neighbors in a compo-
nent, this component would have to be of size greater than
c. When b = ¢ — 1 this effectively removes the node degree
constraint. Similarly, when ¢ = n, the component size is ef-
fectively unbounded. Therefore, 1 < b < ¢ < n. Likewise,
when A = all subgraphs of G, this effectively annuls the at-
tachment set constraint. Some specific problems which we
consider in this paper are as follows.

Max ABC: ¢ < n, b < ¢, A = any attachment set of G
Max AB: ¢ =n, b < ¢, A = any attachment set of G

Maximum Spanning Tree: ¢ = n, b = ¢ — 1, A = all
acyclic subgraphs of G

Maximum Traveling Salesperson: ¢ = n, b = 2, A = all
subgraphs of GG without non-Hamiltonian cycles

Max Weight Planar Subgraph: c =n,b=c— 1, A=all
planar subgraphs of G

Max Weight b-Matching: ¢ = n, b < ¢, A = all subgraphs
of G

Max Weight Matching: ¢ = n, b = 1, A = all subgraphs
of G

3 Algorithmic Framework

In this section we define the Ordinal Greedy algorithm and
reveal some of its salient properties. Rather than limit our-
selves only to ABC Systems, in this section we consider gen-
eral graphic independence systems. An independence sys-
tem for our setting is a pair (£, £) where & corresponds to
the set of edges in some graph and L is a collection of sub-
sets of £ such that if ' € £ and I/ C F then I/ € L.
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The sets in £ are called independent. It is easy to see that
all ABC Systems are independence systems because their
three constraints possess this heredity property. Let 3 de-
note the set of all subgraphs in which all nodes have degree
at most b and let C denote the set of all subgraphs in which all
connected components have size at most ¢. Our Max ABC
problem can be restated as: Given a graph G = (N, £), at-
tachment set A, degree limit b and component size limit ¢,
compute the maximum weight subgraphin £L = ANBNC.

3.1 The Ordinal Greedy Algorithm

In an ordinal setting, algorithms only have access to a par-
tial ordering, or set of preference orderings, which pro-
vide strictly local information about the preferences of each
agent. This precludes the use of algorithms which require
comparisons between the weights of non-adjacent edges. In
fact, it is not difficult to see that no ordinal algorithm can be
guaranteed to compute the optimal solution for even simple
settings, e.g., forming a matching (Anshelevich and Sekar
2016a). However, the Ordinal Greedy algorithm defined be-
low performs well in this setting because it relies on strictly
local information. Ordinal Greedy starts from the empty set
and builds up a sequence of intermediate solutions by adding
locally optimal edges at each iteration which do not violate
a set of constraints, i.e., preserve independence. To under-
stand how this heuristic is applied to the ordinal setting, we
must formalize what it means for an edge to be locally opti-
mal.

Definition 1. Undominated Edge

Given a set E of edges, (u,v) € E is undominated if for all
(u,x) and (v,y) in E, w(u,v) > w(u,z) and w(u,v) >
w(v,y).

At this point it is important to make several observations.
First, every edge set E has at least one undominated edge,
because its maximum weight edge must be undominated.
However, there may be undominated edges which are not
globally maximum. Second, for any edge set E it is straight-
forward to find at least one undominated edge using only the
partial ordering o (see (Anshelevich and Sekar 2016a) for
details). Undominated edges are either of the form (u,v)
where v and v are each other’s most preferred neighbor, or
form cycles in which each subsequent node is the first choice
of the previous one, and thus all edges in the cycle have the
same weight.

What follows is a general purpose Ordinal Greedy algo-
rithm, which starts from the empty set and iteratively selects
undominated edges from the set of remaining edges which
do not violate the constraints in question. The algorithm
uses the partial ordering o to determine which edges are un-
dominated at each iteration. The algorithm concludes when
there are no edges left which can be added to the subgraph
without violating the constraints, so the final solution S is
maximal in this sense.

We refer to the iteration at which an edge e = (u,v) is
removed from E as the critical iteration of e. When the
inputs to our algorithm (€, £) characterize an ABC System,
there are exactly four cases which may occur at the critical
iteration of edge e:



Algorithm 1: Ordinal Greedy

Input: Edge set &, partial ordering o, collection of
valid subgraphs £
Initialize S =0, E = & ;
while £ # () do
Pick an undominated edge ¢ = (u,v) € E and
add it to the intermediate solution: S < S + ¢ ;
Remove e from F ;
Remove all edges f from E suchthat S+ f ¢ L ;
end
Output: Return S

1) e is added to the ordinal greedy solution S

2) e is removed from E because S+ ¢ ¢ A

3) e is removed from E because S + e ¢ B (where B = sets
of edges with any degree < b)

4) e is removed from E because S + ¢ ¢ C (where C = sets
of edges with any component size < c¢)

For cases 2-4 we say e was eliminated due to A, B, or
C. If an edge ¢ = (u,v) was eliminated due to A, the at-
tachment property implies there must be a (u, v)-path in the
intermediate solution at its critical iteration. In other words,
u and v are already in the same connected component in S
at this iteration. If e = (u, v) was eliminated due to B, either
w or v must already have degree exactly b at this iteration.
If e = (u,v) was eliminated due to C, u and v must already
be in disjoint connected components whose cumulative size
is greater than c. Note that in these three cases, an edge can
only be eliminated if at least one adjacent edge of equal or
greater weight has already been added to the intermediate
solution, and all adjacent edges already added to the inter-
mediate solution must be of equal or greater weight (since
only undominated edges are added to our solution).

There are limiting values of A, b, and ¢ for which elimi-
nation due to these constraints cannot occur. When ¢ = n,
no edge can be eliminated due to C because all nodes can
be in the same connected component. Additionally, when A
is the set of all subgraphs of GG, no edge can be eliminated
due to A. If adding an edge would violate more than one
constraint, we say that it was eliminated in order of priority
C — B — A. For example, when b = ¢ — 1, no edge can
be eliminated due to B, because for a node to reach degree
b the size of its component must be exactly ¢ and we say
that any incident edge would be eliminated due to C. As the
following sections show, the approximation factor of Ordi-
nal Greedy for an ABC System depends on which cases of
elimination can occur.

Notice that the performance of the Ordinal Greedy algo-
rithm can deviate significantly from the Omniscient Greedy
algorithm in the full-information setting (which we call
“Omniscient Greedy” because it knows the underlying edge
weights and can choose the edge with maximum weight at
each iteration). Consider the following example.

Example 1. Suppose the graph G = (N, £) is constructed
as follows. Let N' = {uy, ...up, vy, ...vx }. Let w(u;,v;) =
1 + € for ¢ < k for some infinitesimal €. Let w(u;,u;) =1
for all ¢ # j. Let w(v;,v;) = € forall ¢ # j. Let all other
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edges have weight 0. Consider the ABC System correspond-
ing to finding a Maximum-Weight Spanning Tree. It is clear
that Omniscient Greedy will find the optimum solution with
weight w(OPT,,) = k(1 +¢)+ (k —1).

Now consider Ordinal Greedy. Suppose Ordinal Greedy
begins by selecting (u;,v;) for i < k, which are all un-
dominated at the beginning of the algorithm. Once these
edges have been selected, edges of the form (u;,u;) and
(v;,v;) become undominated for ¢ # j. Now, if an edge
(us,u;) or (v, v;) is selected, the other must be eliminated
at that iteration, since taking it would form a cycle. No-
tice that since we only have access to ordinal information,
there is no possible way for Ordinal Greedy to tell which of
these edges is better: they are both edges which are most
preferred by their endpoints, even though one secretly has
weight 1 and the other only e. In other words, these edges
are incomparable in the partial preference order . Sup-
pose Ordinal Greedy proceeds by selecting (v;,v;+1) for
1 < k. Then the Ordinal Greedy solution formed has weight
w(S) = k(14€)+ (k—1)e. This example shows that (in the
limit) it is not possible for Ordinal Greedy to always result in
solutions better than a factor of 2 away from optimum, even
though Omniscient Greedy can easily compute the true op-
timum solution. As we show in this paper, however, despite
its knowledge handicap, Ordinal Greedy can often produce
surprisingly good results.

3.2 Properties of Ordinal Greedy

For any independence system in the full-information set-
ting, the Omniscient Greedy algorithm has been shown to
achieve its worst approximation on an instance with a bi-
nary weight function @ : £ — {0,1} (Korte and Haus-
mann 1978). However, previous proofs have relied crucially
on the fact that Omniscient Greedy selects edges in strictly
non-increasing order by weight, which is not possible with
only ordinal information. We offer a new proof to show that
even in the ordinal setting, Ordinal Greedy always achieves
its worst approximation factor on an instance with a binary
weight function w : & — {0, 1} for any graphic indepen-
dence system. This theorem will allow us to prove approxi-
mation bounds for ABC and AB Systems later in this paper.

Theorem 1. For any graphic independence system (€, L),
for any instance (w, o) with weight function w : & — RT
and partial ordering o consistent with w, there exists an in-
stance (W, o) with weight function w : € — {0,1} such
that o is consistent with w and the worst-case ratio of the
optimal solution to an Ordinal Greedy solution is at least as
large as for (w, o).

Proof Sketch. Please see the full version of this paper for
detailed proof; here we only provide a short proof sketch.
Suppose on instance (w, o) the ratio between the optimal so-
Iution O PT, and solution .S constructed by Ordinal Greedy

wOPTw) — 5. Qur goal is to construct a binary weight

w(S)

function w such that % > 4. When § is infinite,
constructing w is straightforward, so we only consider finite
values of d. First we create a weight function w by raising

the weights of all edges not in S’ as much as possible without

is



altering the weights of the edges of .S, such that o remains
consistent with . Since Ordinal Greedy selects .S and none
of its edge weights have changed, and the edge weights of

OPT, cannot have decreased, then % > §. From

w we carefully create w by proving that there must exist a
subset of edges to which we can assign weight 1 and let all
other edges have weight 0, such that o is consistent with w
wggw) > w(g(};ﬁ;w) > 4. O

and

Another nice property is that every solution constructed
by Ordinal Greedy is pairwise stable. Pairwise stability
means that no pair of agents x, y has incentive to collude to
add edge (z, y) by each giving up some of their edges in the
Ordinal Greedy solution S. Either this exchange would de-
crease the total utility of one of the agents, or adding (z, y)
is infeasible even after sacrificing the other edges. Here we
assume that the utility of a node z in solution S is simply the
total weight of edges in S incident on x.

Theorem 2. Any solution S constructed by Ordinal Greedy
on an independence system is pairwise stable.

4 Ordinal Approximation for ABC Systems

In this section we bound the worst-case performance of Or-
dinal Greedy compared to the optimal solution for any ABC
System. We use o, . to denote the approximation factor,
or the ratio of the optimal solution to the worst possible Or-
dinal Greedy solution for any ABC System.

Unlike Example I in Section 3.1 for the maximum span-
ning tree problem, Ordinal Greedy does not provide a con-
stant approximation factor for all ABC Systems. However,
it does always provide a finite approximation which depends
on the degree limit b. To simplify notation, since the opti-
mal solution here is only evaluated using the same weight
function used to generate it, we refer to the total weight of
the optimal solution w(OPT,,) as w(OPT'). Here we show
that o < b+ 1 for any ABC System and provide a fam-

ily of examples where wgs)(g)T ) = b+ 1 to show that b + 1
is a tight bound on the approximation factor. In later sec-
tions, we explore classes of ABC Systems in which Ordinal
Greedy achieves a better worst-case approximation.

Note that this result is quite general. As we discussed,
ABC Systems include many varied constraints, some quite
difficult to approximate. Our result in this section states that,
even for extremely complex .4 and constraints on compo-
nent size c, as long as the maximum allowed degree of any
node is small, then it is possible to form a good approx-
imation to the true optimum solution while only knowing
ordinal information instead of the true edge weights.

Theorem 3. For any ABC System, the Ordinal Greedy al-
gorithm always produces a solution within a factor of (b+1)
of the optimal solution, and this bound is tight.

ABC

Proof Sketch. See the full version of this paper for a de-
tailed proof; here we only provide a short proof sketch. We
proceed via a charging argument. We wish to charge the
weight of the edges of OPT to the edges of S such that
all edges of OPT are fully charged somewhere, and no
edge of S receives a charge greater than b + 1 times its
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weight. However, unlike Omniscient Greedy in the full-
information setting, we cannot assume that any eliminated
edge of OPT has weight smaller than all edges of the Ordi-
nal Greedy solution S which were added before its critical
iteration. This prohibits us from using the methods in previ-
ous work. Thankfully, due to Theorem 1 we know that if Or-
dinal Greedy produces a solution within a factor of (b+1) of
optimal for all instances with binary weight functions, then
this holds for all instances. We therefore assume that all
weights are {0,1}, and can now charge any edge of OPT
to any weight 1 edge of .S, but must ensure that no weight is
charged to any edges of S with weight 0.

To ensure no edge of S is charged more than b + 1 times
its weight, we look at the connected components of S with
only weight 1 edges, and charge all edges of OPT to these
components. Specifically, we design the following charging
scheme. Let (u,v) be an edge of OPT where w(u,v) = 1.
Let P, and P, be the connected components containing u
and v in the subgraph of S containing only weight 1 edges.
We charge the weight of w(u, v) between P, and P, based
on what occurs at the critical iteration of (u, v). If (u,v) € S
then P, = P,, so charge its full weight to this component.
If (u,v) was eliminated due to A, charge its full weight to
either P, or P, arbitrarily. Note that while the attachment
property of A ensures that v and v are in the same connected
component in S at this iteration, this does not imply that
P, = P, because all (u, v)-paths in S may contain a weight
0 edge. If (u,v) was eliminated due to B, one of its end-
points must have a degree of exactly b in S at this iteration,
so charge its full weight to the component containing this
endpoint. If (u,v) was eliminated due to C, we split the
charge between P, and P, based on the size of the con-
nected components in .S’ containing v and v at this iteration.
Let ¢, and g, be the sizes of the connected components in .S
containing u and v at the critical iteration of (u,v). Charge

9=t o P, and —=_ to P,. In all four cases we
Gutqov—2 qutqo—2
have ensured the full weight of the edge of OPT has been
charged between the components containing its endpoints.

The rest of the proof involves arguing that each such com-
ponent P, of size p is charged a total of at most (b+1)(p—1)
using the above charging scheme. Since such a component
must contain at least p — 1 edges with weight 1, this com-
pletes the proof of the upper bound because it shows that the
total number of edges in O P with weight 1 is at most b+ 1
times the number of such edges in S.

We then provide a family of examples to show this bound
is tight. Omniscient Greedy has the same worst-case solu-
tion as Ordinal Greedy on this family of examples, so our
ordinal approximation competes well despite its knowledge
handicap. Note that in the example yielding the lower bound
of o, . > b+ 1, all edges are eliminated due to C. The fol-
lowing section demonstrates that when the component size
constraint is relaxed by allowing ¢ = n, the approximation
factor improves significantly. O

5 AB Systems and Important Special Cases

In this section, we bound the performance of Ordinal Greedy
on ABC Systems where ¢ = n, effectively removing the



component size constraint. We then discuss some com-
mon examples of maximization problems on AB Systems,
including Max Spanning Tree, Max TSP, and Max Planar
Subgraph. To improve our bound from b + 1 we invoke the
notion of sparsity.

Definition 2. Sparsity

A graph S is d-sparse if for all subgraphs F' C S containing
V(F') nodes and E(F) edges % < dand forany d < d
BE) - g,

there exists a subgraph F' C S such that VP

Suppose our attachment set A and degree limit b imply
that any feasible solution must be d-sparse. Note that this
sparsity is implied by our constraints, and is not a separate
constraint. Our main result in this section is that, for any
graph collection which is guaranteed to be d-sparse, ordi-
nal information is enough to produce good approximations.
Specifically, we prove a bound of d + 1 for such settings.
Since the sparsity corresponds to an upper bound on aver-
age degree of the nodes, it is always true that d < %, and
so when ¢ = n, this immediately reduces the approximation
factor from b + 1 to g + 1. Even for large b, however, there
are many natural classes of graphs that are always sparse,
including planar graphs, scale-free graphs, graphs of small
arboricity or treewidth, and many others. As we discuss in
the next section, this result allows us to provide extremely
strong guarantees for many important problems.

Theorem 4. For any ABC System where the components can
be of any size and the constraints imply that any feasible so-
lution must be d-sparse, the Ordinal Greedy algorithm al-
ways produces a solution within a factor of max{2, (d+1)}
of the optimal solution, and this bound is tight.

Proof Sketch. See the full version of this paper for detailed
proof. As with our proof of Theorem 3 for general ABC
Systems, we only need to consider instances with weights
{0,1} due to Theorem 1. However, the charging schemes
and proofs for ABC Systems and AB Systems differ signif-
icantly. To lower the approximation factor from b + 1 to
max{2,d + 1}, we have to be more selective about where
we charge the edges of O PT'. For simplicity, we first assign
the edges of O PT to their endpoints, before considering the
total charge to all the nodes in any component. Since O PT'
is d-sparse, the edges of OPT' can be assigned to their end-
points such that each node is assigned at most d edges. We
then take such an assignment and for each edge of OPT
eliminated due to B we change its assignment, if necessary,
to the node which caused its elimination. Let P be a com-
ponent of the subgraph of S containing only weight 1 edges,
and suppose p = |P|. Then, similarly to the proof of The-
orem 3, we must show that this component will be charged
at most max{2, d + 1}w(P), but unlike before, components
may be charged more than (d +1)(p — 1) if w(P) > p — 1.

Now we consider two cases based on whether any node in
a component was charged an edge of O PT" eliminated due
to B. If there such a node in a component, then it must be
possible to distribute the charge on the nodes over the edges
of the component directly so that no edge is charged more
than max{2,d + 1} times its weight. If there is no such
node, then we show that at least one node in the component
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must be charged at most p — 1 and the rest are charged at
most d(p — 1), cumulatively providing a charge at most (d +
1)(p—1) which can then be distributed over the edges in the
component. Once again, we provide a family of examples to
show that this bound is tight. ([

5.1 Important Cases of AB Systems

Theorem 4 establishes that for AB Systems in which solu-
tions are always sparse, ordinal algorithms don’t perform
much worse than ones which know the true underlying edge
weights. While our result in the previous section is quite
general, it is worth noting how it applies to many important
problems which happen to be special cases of AB Systems.
Since all tours and cycles are 1-sparse, and all planar graphs
are at most 3-sparse, we immediately arrive at the following
corollaries:

Corollary 1. Ordinal Greedy always computes a 2-
approximation for Maximum Weight Spanning Tree, and this
bound is tight.

Corollary 2. Ordinal Greedy always computes a 2-
approximation for Maximum Traveling Salesperson, and
this bound is tight.

Corollary 3. Ordinal Greedy always computes a 4-
approximation for Max Weight Planar Subgraph.

See Example 1 and the full version of this paper for tight
lower bound examples for Maximum Spanning Tree and
Maximum Traveling Salesperson, respectively.

More generally, the same arguments can be applied to
any problem where the goal is to find maximum-weight sub-
graphs with some excluded minor, finding maximum-weight
graphs with small treewidth or arboricity, as well as a variety
of other graph problems.

6 b-Matching

For any ABC System where ¢ = n and A = all subgraphs
of G, the only constraint is that each node must have degree
at most b. This is equivalent to the well-known problem of
Max Weight b-Matching. In this case, the approximation
provided by Ordinal Greedy improves greatly over general
AB Systems. In fact, it provides a strict 2-approximation
regardless of the value of b.

Theorem 5. For any ABC System on graph G, where c = n
and A = all subgraphs of G, Ordinal Greedy always con-
structs a solution within a factor of 2 of the optimal solution.
This bound is tight.

Please see the full version of this paper for the proof. Note
that b = 1 is the problem Max Weight Matching, and our
result generalizes the results from (Anshelevich and Sekar
2016a) and (Preis 1999).

7 Conclusion and Further Directions

In this paper we identify a large class of problems we call
ABC Systems for which ordinal preference information is
sufficient for algorithms to provide good approximations to
optimal, even without access to cardinal utilities. Previ-
ous work has shown that if agent preferences form a metric



space, approximations for TSP and matching can improve
in expectation (Anshelevich and Sekar 2016a). It remains
to be seen how Ordinal Greedy performs on ABC Systems
in expectation and how much the approximation factors for
general ABC or AB Systems improve when this metric as-
sumption holds. Also along the lines of previous work, it
would be interesting to investigate whether truthful ordi-
nal algorithms for ABC and AB Systems can compete with
our non-truthful algorithm, much as (Anshelevich and Sekar
2016b) did for the problems first approached in (Anshele-
vich and Sekar 2016a). Lastly, we have seen that all solu-
tions produced by Ordinal Greedy are pairwise stable, but it
is unknown for our problems whether all pairwise stable so-
lutions produce a good approximation to optimum (although
it is easily seen to be true for MST and TSP).
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