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Abstract

In a seminal paper, McAfee (1992) presented a truthful
mechanism for double auctions, attaining asymptotically-
optimal gain-from-trade without any prior information on
the valuations of the traders. McAfee’s mechanism han-
dles single-parametric agents, allowing each seller to sell
a single unit and each buyer to buy a single unit. This
paper presents a double-auction mechanism that handles
multi-parametric agents and allows multiple units per trader,
as long as the valuation functions of all traders have de-
creasing marginal returns. The mechanism is prior-free,
ex-post individually-rational, dominant-strategy truthful and
strongly-budget-balanced. Its gain-from-trade approaches the
optimum when the market size is sufficiently large.

1 Introduction

In a two-sided market, there are several sellers who hold
items for sale and several buyers who consider buying these
items. Examples are stock exchanges, used-car markets,
emission trading markets (Godby 1999; Sturm 2008), Inter-
net advertisements (Feldman and Gonen 2016) and markets
for spectrum reallocation (Leyton-Brown, Milgrom, and Se-
gal 2017). Each trader has a different valuation to each bun-
dle of items. In contrast to a one-sided market, here the val-
uations of both the buyers and the sellers are their private in-
formation, and both sides might act strategically. A double
auction is a mechanism for organizing a two-sided market
— deciding who will buy, who will sell and at what prices.

An important requirement from a double-auction is effi-
ciency, which is measured by its gain-from-trade (GFT) —
the total value gained by the buyers minus the total value
contributed by the sellers. As an example, in a used-car mar-
ket with a single buyer and a single seller holding a single
car, if the seller values the car as vs and the buyer as vb > vs,
then the potential GFT is vb − vs.

The most commonly used double-auction mechanism is
the Walrasian mechanism (Rustichini, Satterthwaite, and
Williams 1994; Babaioff et al. 2014). It computes an equilib-
rium price — a price at which the supply equals the demand:
the total number of units that sellers are interested to sell at
this price equals the total number of units that buyers are in-
terested to buy at this price. In a single-good market, an equi-
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librium price exists whenever the agents have decreasing-
marginal-returns (DMR) — the marginal utility for an agent
from having one more unit is weakly-decreasing in his cur-
rent number of units (Gul and Stacchetti 2000). Moreover,
by the First Welfare Theorem, this mechanism attains the
maximum GFT (Nisan et al. 2007, Theorem 11.13). Unfor-
tunately, this mechanism is not incentive-compatible (IC) —
agents have an incentive to misreport their valuations in or-
der to manipulate the price.

The problem of designing an IC double-auction has al-
ready been considered by Vickrey. In his seminal paper
(Vickrey 1961) he described a variant of his famous second-
price auction for a two-sided market. Like its one-sided vari-
ant, it is dominant-strategy incentive-compatible (DSIC, aka
truthful) — it is a weakly-dominant strategy for each agent
to reveal its true valuation function. But unlike the one-sided
variant it is not budget-balanced (BB) — it has a deficit
— it requires the market-maker to bring money from home.
While it is possible to charge entrance-fees to cover this cost,
this makes the mechanism not individually rational (IR) —
some traders might lose from participating.

Myerson and Satterthwaite (1983) proved that, in a two-
sided market, any mechanism that is IR, BB and IC cannot
be efficient . Intuitively, the reason is that it is impossible to
truthfully determine prices for trading. Consider any mech-
anism that charges the buyer pb and pays the seller ps. If
ps < vb, then the seller is incentivized to bid (ps + vb)/2 to
force the price up (the mechanism has to do the deal since
it is still efficient). Similarly, if pb > vs, the buyer is incen-
tivized to force the price down. Setting ps = vb and pb = vs
leads to a deficit. One way out is to determine take-it-or-
leave-it prices independently of the traders’ valuations, but
this might result in a total loss of GFT.

This impossibility result initiated a search for double-
auction mechanisms that are IC, IR and BB, and attain an
approximately maximal GFT. We define the competitive ra-
tio of a mechanism as the minimum ratio (over all util-
ity profiles) of its GFT divided by the optimal GFT. The
first approximation mechanism was presented by McAfee
McAfee (1992) for the case when each seller has a single
unit and each buyer wants a single unit. McAfee’s mech-
anism is truthful — it is a weakly-dominant strategy for
each agent to report his true valuation for the item. Its
competitive-ratio is 1− 1/k, where k is the number of units
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traded in the optimal situation. (i.e, its GFT is always at least
1 − 1/k of the maximum GFT). Thus, McAfee’s mecha-
nism is asymptotically efficient — when the market-size k
grows to infinity, the GFT approaches the maximum. In ad-
dition to being truthful, IR, BB and asymptotically-efficient,
McAfee’s mechanism has a fifth nice property — it is prior-
free (PF). This means that it does not require any statistical
information about the traders’ valuations; it works well even
for worst-case (adversarial) valuations.

The main drawback of McAfee’s mechanism is that it
works only for single-unit traders. Another potential draw-
back is that it is only weakly-budget-balanced (WBB) —
the market-maker need not bring money, but may the have
to take money. Moreover, in some cases the market-maker
consumes almost all the GFT, leaving only little GFT to
the traders (Segal-Halevi, Hassidim, and Aumann 2016b).
This may be acceptable when the market-maker is a monop-
olist (e.g. a government), but might be problematic when
the market-maker faces competition, e.g. in stock exchange
platforms, since a low GFT for the traders might drive them
away to the competitors. 1

This paper presents MUDA — a double-auction mecha-
nism for traders that buy and sell multiple units. The only
assumption required is that all traders have decreasing-
marginal-returns; this is the same assumption that guaran-
tees the existence of market-equilibrium.

The main idea of MUDA is to calculate equilibrium prices
using random halving. The general scheme is presented be-
low; it is explained in more detail in Section 3.

MUDA (general scheme): Split the market to two sub-
markets, left and right, by sending each trader to each
side with probability 1/2, independently of the others.
Then, in each sub-market:

1. Calculate a market-equilibrium price (pR at the right,
pL at the left).

2. Let the agents trade at the price from the other market
(pL at the right, pR at the left).

The random-sampling technique was found useful in
one-sided markets (Goldberg, Hartline, and Wright 2001;
Goldberg et al. 2006; Devanur, Hartline, and Yan 2015;
Balcan et al. 2008; 2007) and matching markets (Deva-
nur and Hayes 2009). However, applying it to a two-sided
market poses a new challenge: material balance — the
number of units bought and sold must be exactly equal.
This is in contrast to a one-sided market, where the seller
may leave some units unsold. Random-sampling in two-
sided markets was used only with one-parametric agents

1Technically it is possible to convert a WBB mechanism to a
SBB one: randomly pick an agent before the trade, disallow him to
participate in the trade, and give him all the surplus after the trade.
However, this might induce a lot of people without any interest in
the trade (e.g, “sellers” with no goods or “buyers” with no money)
to participate in the auction, in the hope of winning the lottery. We
believe this goes against the idea of truthfulness, and might have
adverse effects on the market.

— agents whose valuations are characterized by a single
signal Baliga and Vohra; Kojima and Yamashita (2003;
2014).

With random-sampling, the price at each sub-market is
determined exogenously based on the other sub-market, so
the agents cannot manipulate it by reporting strategically.
However, because of the material-balance requirement, the
traders have another reason to report strategically — they
might try to manipulate the quantity of trade. Thus, the
multi-unit two-sided setting is more difficult than both the
single-unit two-sided setting of McAfee and the multi-unit
one-sided setting common in the random-sampling litera-
ture. To illustrate this added difficulty, we prove:
Theorem 1. Suppose a single seller holds M units of a good
and a single buyer considers buying at most M units of this
good and the price per unit of the good is determined exoge-
nously. Then, the expected competitive ratio of every DSIC
and IR mechanism, whether deterministic or randomized, is:
• at most 1/M for agents with general valuations, and —
• at most 1/HM for agents with DMR valuations, where
HM is the M -th harmonic number (HM ≈ lnM + 1

M ).
Both these upper bounds are tight.

The proof is given in Segal-Halevi and Hassidim (2017).
Theorem 1 can be seen as a dual to the Myerson–
Satterthwaite impossibility theorem. In their setting, the
quantity is determined exogenously and the traders might
manipulate the price; in our setting, the price is determined
exogenously and the traders might manipulate the quantity.

We present two variants of MUDA that overcome this
impossibility when the market is sufficiently large. We call
them Lottery-MUDA and Vickrey-MUDA.

Step 1 is the same in both variants. Step 2 in both vari-
ants starts by calculating the aggregate demand and aggre-
gate supply in each sub-market, at the prices calculated in
the other sub-market. Usually, the aggregate demand will
be larger or smaller than the aggregate supply, so the sub-
market will have a long side and a short side (e.g, if there is
more demand than supply then the buyers are the long side
and the sellers are the short side). The short side can always
trade their optimum quantity; i.e, if the buyers are short, we
can let each buyer buy the number of units that maximizes
his utility given the price. The two variants of MUDA differ
in the way they handle the long side: in Lottery-MUDA the
traders in the long side are selected using a random permu-
tation that ignores their values, while in Vickrey-MUDA the
high-value traders in the long side are selected. In Vickrey-
MUDA, each selected trader pays the market-maker a posi-
tive trading-fee calculated as in a Vickrey auction; this fee is
separate from the money transferred among the traders (the
inspiration to this idea came from a recent working paper by
Loertscher and Mezzetti (2016)).
Theorem 2. Both variants of MUDA are prior-free,
dominant-strategy incentive-compatible, individually-
rational and budget-balanced (no deficit). In addition,
Lottery-MUDA is strongly-budget-balanced (no surplus).

Proof. Prior-freeness holds by design: MUDA does not use
any statistical information on the valuations.

1194



DSIC and IR will be proved in Section 4 after presenting
the mechanism details.

Lottery-MUDA is strongly-budget-balanced (SBB) since
all money goes from buyers to sellers; the market-maker nei-
ther brings nor takes any money. Vickrey-MUDA is only
weakly budget-balanced (WBB) — the market-maker does
not lose money, but may make profit from trading-fees.

We emphasize that the properties are true ex-post — for
every outcome of the randomization in the mechanism.

We distinguish between the total-GFT, which includes
the gain of both the agents and the market-maker, and the
agents-GFT, which includes only the gain of the agents.
Since Lottery-MUDA is SBB, the agents-GFT equals the
total-GFT. In Vickrey-MUDA, the total-GFT is always
higher since the most profitable deals are selected. How-
ever, the agents-GFT might be much lower. In a particular
example shown in the arXiv version, the total-GFT is high
but the agents-GFT is near 0. Thus, Vickrey-MUDA may
be preferred when the market-maker is a monopolist (e.g, a
government), while Lottery-MUDA may be preferred when
the market-maker faces competition (e.g, a stock-exchange).

The competitive-ratio of MUDA depends on k — the
number of units traded in the optimal situation (the k used by
McAfee 1992), and M — the maximum number of units of-
fered(demanded) by a single seller(buyer). M represents the
market concentration — how much market power is held by
a single trader.

Theorem 3. The expected total-GFT of both Lottery-
MUDA and Vickrey-MUDA is at least a fraction 1 −
O(M

√
ln k
k ) of the maximum total-GFT.

The proof is given in Section 5.
While Vickrey-MUDA attains more total-GFT than

Lottery-MUDA, their asymptotic behavior is similar — both
of them approach the optimal total-GFT when the market
size (k) is large, as long as the market-concentration factor
(represented by M ) is kept constant. In contrast, if M is very
large (M = k) the market effectively has a single buyer and
a single seller, and the impossibility result of (Myerson and
Satterthwaite 1983) implies that no positive approximation
of the GFT is possible. The arXiv version shows an example
in which the agents-GFT of Vickrey-MUDA is close to 0
(the agents-GFT of Lottery-MUDA always equals its total-
GFT).

While we focus on approximating the maximum GFT
(buyers’ values minus trading sellers’ values), other mecha-
nisms in the literature approximate the maximum social wel-
fare (buyers’ values plus non-trading sellers’ values). But
any mechanism that attains a fraction α of the optimal GFT
also attains a fraction of at least α of the optimal social wel-
fare (Brustle et al. 2017). Hence, MUDA is asymptotically-
optimal with respect to the social-welfare too.

The lower bound of Theorem 3 depends on k — the opti-
mal trade size. Ideally, we would like a bound that depends
on the number of traders that come to the market (say, n).
However, we cannot attain such bound theoretically in a
worst-case analysis, even for the social-welfare. As an ex-
ample, consider a single-good single-unit market having n

sellers with value 2, n−1 buyers with value 1 and one buyer
with value 1000000. Here k = 1 as there is only one relevant
trade. The competitive ratio of any mechanism depends only
on the probability with which it performs this single trade;
this probability does not change even when n→∞.

We complement our worst-case analysis that depends on
k with simulations of both variants of MUDA on agents
drawn from both synthetic and realistic distributions. The
simulations show that, when valuations are random (and not
worst-case), the competitive-ratio of MUDA increases with
the number of traders. These are presented in Section 6.

1.1 Related Work

Most existing mechanisms for multi-unit double-auction are
not truthful, e.g. Plott and Gray (1990).

The research on truthful double auction has made many
advancements since McAfee (1992). There are variants of
McAfee’s mechanism for maximizing the auctioneer’s sur-
plus (Deshmukh et al. 2002), handling spatially-distributed
markets (Babaioff, Nisan, and Pavlov 2004), transaction
costs (Chu and Shen 2006), supply chains (Babaioff and
Walsh 2006), constraints on the set of traders that can trade
simultaneously (Yao, Lu, and Jiang 2011; Dütting et al.
2017; Brustle et al. 2017), online arrival of buyers (Wang
et al. 2010) and strong budget-balance (Colini-Baldeschi et
al. 2016). All these advancements are for single-unit agents.

Other double-auction mechanisms either assume that the
agents’ valuations are additive (Huang, Scheller-Wolf, and
Sycara 2002; Xu, Jin, and Li 2010; Feldman and Gonen
2016; Goel et al. 2016; Hirai and Sato 2017) or assume
that their valuations are represented by a single parameter
Gonen, Gonen, and Pavlov; Kojima and Yamashita (2007;
2014). The DMR valuations handled by MUDA are multi-
parametric and include additive valuations as a special case.

Several recent double-auction mechanisms work in a
Bayesian setting — they assume that the traders’ valuations
are drawn from some probability distribution that is pub-
lic knowledge. Such knowledge allows the mechanism de-
signer to attain approximate efficiency without relying on
the agents’ reports. Examples are Yoon; Colini-Baldeschi
et al. (2008; 2017). Some other mechanisms require par-
tial prior knowledge on the valuations, such as their me-
dian (Blumrosen and Dobzinski 2014) or their maximum
and minimum value Gonen and Egri (2017). (Baliga and
Vohra 2003) assume that the agents’ valuations are drawn
from some unknown distribution (they handle single-unit
traders) . In contrast, MUDA needs no prior information on
the agents’ valuations and does not even assume that they
are drawn from some distribution.

We are aware of two truthful mechanisms that handle
multi-parametric agents with DMR valuations in a prior-free
way. The first is by Blumrosen and Dobzinski (2014): their
competitive ratio is 1/48 — it is not asymptotically-efficient.
The second is by Loertscher and Mezzetti (2016), which is
being developed simultaneously to our work. Their mecha-
nism (that does not use market-halving) is asymptotically-
efficient when the valuations of the traders are drawn from
probability distributions satisfying certain conditions. In
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contrast, our convergence theorem does not assume that
agents’ valuations are drawn from a distribution at all.

2 Model

Agents and valuations We consider a market for a single
good. Some agents, the “sellers”, are endowed with at most
M units of that good, and other agents, the “buyers”, are
endowed with an unlimited supply of money. Each agent j
has a valuation-function vj that returns, for every integer t
between 0 and M , the agent’s value for owning t units. The
valuations are normalized such that vi(0) = 0.

All agents have decreasing marginal returns (DMR). For-
mally, vj(t+1)− vj(t) ≤ vj(t)− vj(t−1), for every agent
j and t ∈ {1, . . . ,M − 1}.

We will often represent a multi-unit agent as M single-
unit virtual agents; the value of virtual-agent t of agent j is
the agent’s marginal value for having the t-th unit: vj,t :=
vj(t) − vj(t − 1) for t ∈ {1, . . . ,M} (a similar idea was
used by Chawla et al. (2010)).

We assume that the agents’ valuations are generic, i.e,
all marginal values of different traders are different and
linearly-independent over the integers (no linear combina-
tion with integer coefficients equals zero). This assumption
can be dropped if we use centralized tie-breaking; see Hsu
et al. (2016) for other ways to handle ties in markets.

Given a price p per unit of the good, the gain of a buyer
i from buying t units is Gaini(t, p) = vi(t) − t · p, and
the gain of a seller j from selling t units is Gainj(t, p) =
t · p + vj(Mj − t) − vj(Mj), where Mj is the number of
units initially held by seller j, Mj ≤M .

A mechanism is a (randomized) function that takes the
agents’ valuations and returns (1) a trading-price p, (2)
for each buyer(seller) i, the amount of units ti he should
buy(sell) at price p, and possibly a trading-fee fi paid to
the market-maker. A mechanism is materially-balanced if
the number of units bought equals the number of units sold:∑

i∈Buyers ti =
∑

j∈Sellers tj . It is budget-balanced (BB) if it
is materially-balanced and

∑
i∈Traders fi ≥ 0. It is strongly-

budget-balanced (SBB) if
∑

i∈Traders fi = 0.
A mechanism is individually-rational (IR) if every agent

i has a weakly-positive gain: Gaini(ti, p) − fi ≥ 0 with
probability 1. It is DSIC (= truthful) if an agent can never
increase his gain by pretending to have different valuations.

The demand of buyer i is the number of
units that maximizes the gain: Demandi(p) =
argmaxt∈{0,...,M} Gaini(t, p). The genericity assumption
implies that the maximum is unique. When i has DMR,
Demandi(p) equals the number of virtual-buyers i, t with
vi,t > p. 2

The aggregate-demand at price p is the sum of demands
of all buyers. Equivalently, this is the number of virtual-

2This is true only for a DMR agent. For example, suppose buyer
i values one unit as 3 and two units as 4. Then vi,1 = 3 and vi,2 =
1. If the price is 2, then there is one virtual buyer with value above
the price, and indeed the agent’s demand is 1. However, if the buyer
values one unit as 1 and two units as 4, then vi,1 = 1 and vi,2 = 3.
If the price is 2, then there is still one virtual buyer with value above
the price, but the agent’s demand is 0.

buyers with vj,t > p. The supply and aggregate-supply are
defined analogously.

The total-gain-from-trade is the sum of gains of all buy-
ers and sellers: total GFT :=

∑
i∈Traders Gaini(ti). Note

that in a materially-balanced mechanism, the total-GFT does
not depend on the trading-price. The agents-GFT is the total
GFT minus the total fees, agents GFT := total GFT −∑

i∈Traders fi.

3 Mechanism Details

This section explains the details of the MUDA mechanism
presented in the introduction. The steps are done in each sub-
market separately. For convenience we describe step 1 in the
right market and step 2 in the left market; the execution in
the opposite direction is entirely analogous.

Step 1: Price calculation. We calculate a price that is an
equilibrium price at the right market — a price pR for which
DemandR(pR) = SupplyR(pR). Such a price exists even
in more general (multi-good) settings. It can be found, for
example, by simulating an English auction (Gul and Stac-
chetti 2000), or by binary search.

Step 2: Posted-price trade. For each buyer i in the left
market, calculate Demandi(p

R). For each seller j in the
left market, calculate Supplyj(p

R). Let DemandL be the
sum of demands and SupplyL the sum of supplies. If
DemandL = SupplyL, then we can let the traders trade
freely at price pR and the market will clear. Usually, how-
ever, we will not be so lucky: there will be either ex-
cess demand (DemandL > SupplyL) or excess supply
(DemandL < SupplyL). These two cases are handled anal-
ogously; henceforth we describe how to handle excess sup-
ply. First, we ask each buyer to pay in advance for the opti-
mal number of units he wants to buy at price pR, so we have
money for DemandL units. Since DemandL < SupplyL,
we will have more than enough units to give to all these buy-
ers for their money. The problem is how to select the sellers
that will supply these DemandL units. We present two so-
lutions.

(a) Lottery: Order the sellers randomly; let each seller in
turn sell at price pR as many units as he likes, while there is
money (i.e, while at most DemandL units are sold).

(b) Vickrey-style auction: Order the virtual sellers in in-
creasing order of their value. From the SupplyL virtual sell-
ers whose value is below pR, pick the DemandL virtual-
sellers with the lowest values, and have each of them sell an
item at price pR.

The Vickrey-style auction is followed by a 4th step:
trading-fees. For each seller j, let kj be the number of
virtual-sellers of this seller that are picked. Note that kj ≤
Supplyj(p

R). The fee paid by seller j is determined by the
potential gains of the virtual-sellers that are “pushed” out of
the market because of seller j. Specifically, consider the set
of virtual-sellers who want to trade in the left-market, ex-
cept the kj virtual-sellers of j. From this set, pick the (at
most) DemandL low-value ones. In this set, there are (at
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most) kj virtual-sellers that do not trade when seller j is
present. Seller j pays to the market-maker, the gain (price
minus value) of these virtual sellers. Note that the trading-
fee is positive if kj > 0 and zero if kj = 0.

Example 1. Suppose pR = 50. The virtual-buyers in the
left market have values 100, 90, 80, 60, 40, 20, so the aggre-
gate demand is 4. There are two sellers: Alice’s values are
10, 20, 40, 60, 70 and Bob’s values are 15, 25, 35, 45, 65, so
the aggregate supply is 7 and there is excess supply. The four
high-value virtual-buyers (with values 100,90,80,60) each
pays 50 and is guaranteed a unit.

In Lottery-MUDA, the two sellers are ordered randomly;
if Alice is first then she sells 3 units and gains 40+30+10 =
80, and Bob sells 1 unit and gains 35, so the GFT is 115. If
Bob is first then he sells 4 units and gains 35 + 25 + 15 +
5 = 80, and Alice sells nothing. The price is 50 per unit, all
money collected from the buyers is given to the sellers, and
no money is given to the market-maker.

In Vickrey-MUDA, the four low-value virtual-sellers are
picked: they are the virtual-sellers with values 10,15,20,25.
So each each real seller sells two units for 50 per unit. At this
point Alice’s gain is (50− 10) + (50− 20) = 70 and Bob’s
gain is (50− 15)+ (50− 25) = 60, so the total-GFT is 130.
Now, Alice pays a fee of 20, since her presence prevents Bob
from selling two units worth for him 35 and 45, so her net
gain is 50. Bob pays 10, since his presence prevents Alice
from selling a unit worth for her 40 (the unit worth 60 would
not have been sold anyway), so his net gain is 50 too, and the
agents-GFT is 100. The market-maker gains 30.

4 Strategic Properties of MUDA

In both variants of MUDA, the traders cannot affect their
trading-price. Moreover, in both variants, the traders in the
short side of each sub-market trade the amount of units that
maximizes their gain given the price, so for them the mecha-
nism is obviously IR and DSIC. As for the long-side traders:

(a) in Lottery-MUDA they play random serial dictator-
ship: the first agents in the line trade their optimal quantity
given the price and the last agents in the line cannot trade
at all. There is at most a single agent, in the middle of the
line, who trades less than his optimal quantity. Because of
the DMR assumption, it is always optimal to trade as many
units as possible up to the optimal quantity (since the high-
est gain comes from trading the first units). Therefore, the
mechanism is IR and DSIC for all traders.

(b) In Vickrey-MUDA, long-side virtual-traders trade
only if they have positive gain. In this case, a trader with
kj participating virtual-traders pays a fee that is equal to the
gain of at most kj non-participating virtual-traders. Since the
mechanism always selects the virtual-traders with the high-
est gain, the total fee paid by any trader is lower than his
gain, so the net gain remains positive and the mechanism is
IR. The mechanism is DSIC since it is effectively a multi-
unit Vickrey-auction with a reserve-price. It is known that
such a mechanism is DSIC; we omit the proof.

5 Competitive-Ratio Analysis

In this section we prove Theorem 3. In fact, we prove a
more general claim that depends on a third parameter, m —
the minimum number of units offered(demanded) by a sin-
gle seller(buyer) at same value. We assume that the virtual-
traders of each trader i are divided to groups of size at least
m, such that the values in each group are the same. So each
agent i values mi,1 units as vi,1, mi,2 units as vi,2, etc.,
with mi,l ≥ m for all l and

∑
l mi,l ≤ M . Theorem 3 fol-

lows from the expression at the end of this section by setting
m = 1.

We first analyze the optimal trade, then the right sub-
market and finally the left sub-market.

5.1 Optimal trade

In the optimal trade, there is a set B∗ of virtual-buyers who
buy goods from a set S∗ of virtual-sellers. By material-
balance the numbers of virtual-agents in both groups are the
same; this is the number we denoted by k:

|B∗| = |S∗| = k (1)

We call these k buyers and sellers the efficient traders. We
make the pessimistic assumption that all GFT in the sub-
markets comes from these efficient traders. Therefore, the
GFT of our mechanism depends on the numbers of efficient
traders that trade in each sub-market.

The reduction in GFT has two reasons: one is the sam-
pling error — efficient buyers and sellers land in different
sub-markets, so they do not meet and cannot trade. This er-
ror is easy to bound using standard tail bounds. The second
reason is the pricing error — the price at the sub-market
might be too high or too low, which might create imbal-
ance in the demand and supply. Analyzing this error requires
careful analysis of the equilibrium in the optimal situation
vs. the equilibrium in each sub-market.

5.2 Right sub-market

In the right sub-market, MUDA calculates an equilibrium
price pR. We define four sets of virtual-traders:
• B− is the set of efficient virtual-buyers (members of B∗)

whose value is below pR (so they won’t buy at price pR).
• S− is the set of efficient virtual-sellers (members of S∗)

whose value is above pR (so they won’t sell at price pR).
• B+ is the set of inefficient virtual-buyers whose value is

above pR (so they want to buy at price pR).
• S+ is the set of inefficient virtual-sellers whose value is

below pR (so they want to sell at price pR).
These sets represent the pricing error, so we want to upper-
bound their sizes.

For any set T of agents, denote by TR the subset of T that
is sampled to the right market and by TL the subset of T
sampled to the left market. By definition of the equilibrium
price pR:

|BR
∗ | − |BR

−|+ |BR
+ | = |SR

∗ | − |SR
− |+ |SR

+ | (2)

In order to relate (1) and (2), we have to relate BR
∗ , S

R
∗ to

B∗, S∗. This is be done using the following lemma.
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Figure 1: Price-distortion due to sampling. Each ball is the
value of a single-unit buyer and each square is the value of a
single-unit seller. Left: the optimal situation where there are
5 deals: the buyers above the line pO trade with the sellers
below the line. Right: the right market: full markers repre-
sent the traders sampled to the right and empty markers rep-
resent the traders sampled to the left. The equilibrium price
pR is higher than pO, so some efficient buyers quit (B−) and
some inefficient sellers join (S+).

Lemma. For every set T of virtual-traders and for every
integer q > 0:

w.p. 1− 2 exp

(−2mq2

M2|T |
)

:

∣∣∣∣|TR| − |T |
2

∣∣∣∣ < q (3)

(“w.p. x” is a shorthand to “with probability at least x”).

The lemma is proved using Hoeffding’s inequality. The
proof is standard and we omit it.

We apply this lemma twice, to B∗ and S∗, and combine
the outcomes using the union bound. This gives, ∀q > 0:

w.p.1− 4e
−2mq2

M2k :

∣∣∣∣|BR
∗ | −

k

2

∣∣∣∣ < q and
∣∣∣∣|SR

∗ | −
k

2

∣∣∣∣ < q

(4)

Combining equations 1,2,4 gives, ∀q > 0:

w.p.1− 4e
−2mq2

M2k :
∣∣|BR

− ∪ SR
+ | − |BR

+ ∪ SR
− |
∣∣ < 2q (5)

Of the two sets in the left-hand side, at least one must be
empty: if pR is too high (relative to some optimal equilib-
rium price pO) then efficient buyers quit and inefficient sell-
ers join, but no inefficient buyers join and no efficient sellers
quit, so BR

+ = SR
− = ∅. This situation is illustrated in Figure

1. Analogously, if pR is too low then BR
− = SR

+ = ∅.
From now on we assume that the situation is like in Figure

1 (the other situation is analogous). So (5) implies:

∀q : w.p.1− 4e
−2mq2

M2k : |BR
−| < 2q and |SR

+ | < 2q (6)

Our goal is now to derive an upper bound on B− and S+.
They are entirely analogous; we focus on B−. Note that we
cannot apply (3) directly to B−, since B− is a random-set —
it depends on the random-sampling through pR. (3) does not
apply to sets T that depend on the random-sampling; as an il-
lustration, suppose the set T is selected such that it contains

only virtual-agents from the right market. Then TR = T
so (3) is obviously not satisfied. Fortunately, B− is a special
random-set — it is one-dimensional: for every integer t > 0,
it has only a single possible value with cardinality t, which
is the set of t virtual-buyers with the lowest value in B∗ (see
Figure 1, where t = 1). Denote these sets by B−,t. For ev-
ery t, B−,t is independent of the random-sampling, so it is
eligible to (3). Substituting there q → 2t− 2q gives:

∀q, t : w.p.1− 2e
−2m(2t−2q)2

M2·4t :
∣∣|BR

−,4t| − 2t
∣∣ < 2t− 2q

(7)

=⇒ |BR
−,4t| > 2q

If |BR
−| < 2q and |BR

−,4t| > 2q, then necessarily |B−| < 4t.
So by combining (6) and (7) with the union bound we get,
∀q, t:

w.p.1− 4e
−2m(t−q)2

M2t − 4e
−2mq2

M2k : |B−| < 4t & |S+| < 4t
(8)

To simplify the expression we choose t = 2q; assuming
2q < k, this implies −2m(t−q)2

M2t < −2mq2

M2k , so (8) simpli-
fies to:

∀q < k/2 : w.p.1− 8e
−2mq2

M2k : |B−| < 8q & |S+| < 8q
(9)

5.3 Left sub-market

Denote by BL(SL) the set of efficient buyers(sellers) who
want to buy(sell) in the left sub-market at price pR:

BL := BL
∗ \BL

− = B∗ \BR
∗ \BL

−
SL := SL

∗ \ SL
− = SL

∗ = S∗ \ SR
∗

(Recall that we assume the case in which S− and B+ are
empty; the other case is analogous).

Using (4) and (9) with the same q gives, for every q < k
2 :

w.p. 1− 8e
−2mq2

M2k : |BL| > k

2
− 9q and |SL| > k

2
− q

In Vickrey-MUDA, the most efficient traders in each side
trade with each other. Therefore, the mechanism makes at
least the k

2 − 9q most efficient deals in the left submarket.
Similar considerations are true in the right submarket. All in
all, Vickrey-MUDA does at least the k − 18q most efficient

out of the k efficient deals. Therefore, w.p. 1− 8e
−2mq2

M2k , the
competitive ratio is at least 1− 18 q

k .
In Lottery-MUDA, the efficient sellers in SL

∗ have to com-
pete with the inefficient sellers in SL

+ in the random lottery.
The expected number of efficient deals carried out is thus:

|BL|
|SL

+|+ |SL∗ |
≥ k/2− 9q

k/2 + 9q
≥ k

2
− 18q

Therefore, w.p. 1− 8e
−2mq2

M2k , the expected competitive ratio
is at least 1− 36 q

k . So w.p. 1, the expected competitive ratio

is at least 1− 8e
−2mq2

M2k − 36 q
k .
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All our analysis so far holds simultaneously for every q <
k
2 . Now, we select q to maximize the expected competitive
ratio. With some tedious calculations we find that, when k is
sufficiently large, we can select q such that the competitive
ratio is at least:

1− 36M

2
√
mk

(
1 +

√
ln

(
162mk

362M2

))

=1−O

(
M

√
lnmk

mk

)

The analysis for Vickrey-MUDA is obtained by replacing 36
with 18; the asymptotic behavior is the same.

6 Simulations

To complement our theoretic analysis, we simulated MUDA
on traders with valuations sampled both from a synthetic dis-
tribution and an empirical distribution based on real stock-
exchange data.

6.1 Uniform distribution

In the first experiment, for each agent, we sampled M/m
values from a uniform distribution with support [V −A, V +
A]. We considered each of these values as the marginal-
value of m virtual-traders, so that each agent has M virtual-
traders. We ordered the values in decreasing order to get
DMR valuations. In the experiments, we took m = 100 and
V = 500 and varied the noise-amplitude A between 50 and
450. Here we show the results for A = 250; varying A did
not have much effect on the results. We repeated each exper-
iment 100 times and averaged the results.

In the first sub-experiment, we kept M constant (at
100, 000) and varied the number of real traders between 0
and 1000. The results are shown in Figure 2/Left. The com-
petitive ratios of all variants of MUDA increase towards 1
when the number of traders grows.

In the second sub-experiment, we kept constant the total
number of units held by all sellers. We increased M from
100 to 108, and decreased the number of traders accordingly
so that the total number of units remains constant. The re-
sults are shown in Figure 2/Right. The competitive ratios
decrease when M increases and the same number of units
are concentrated in the hand of fewer traders. When M is
very large we effectively have one buyer and one seller, and
then the impossibility result of (Myerson and Satterthwaite
1983) implies that no positive competitive ratio is possible.

Both plots show that the GFT of Lottery-MUDA is ap-
proximately middle-way between the total-GFT and the
agents-GFT of Vickrey-MUDA. This fact has a practical
implication regarding the choice of mechanism: if the mar-
ket is managed by a monopolist (e.g. the government), then
Vickrey-MUDA is better since its total-GFT is higher; but if
the market competes with other markets (e.g. stock trading
platforms), then Lottery-MUDA is better since its agents-
GFT is higher.

We found that, when the number of units per trader is
fixed, the performance is determined by the number of

Figure 2: Competitive ratio of MUDA when traders’ valua-
tions are drawn from a uniform distribution. Legend:
* Downward-wedges = agents-GFT of Vickrey-MUDA;
* Discs = Lottery-MUDA;
* Upward-wedges = total-GFT of Vickrey-MUDA.
Left: maximum number of units per trader (M ) is fixed, and
number of traders (and total number of units) increases.
* Agents-GFT of Vickrey-MUDA ranges from 0.58 to 0.86.
* GFT of Lottery-MUDA ranges from 0.74 to 0.92.
* Total-GFT of Vickrey-MUDA ranges from 0.897 to 0.991.
Right: total number of units is fixed, and maximum number
of units per trader increases (so the total number of traders
decreases).

traders in the market. Therefore, the plot at the left of Fig-
ure 2 remains the same even when we set e.g. m = 1 and
M = 10. As for the plot at the right of Figure 2, if we set the
total number of units to e.g. 1000, then the plot approaches
zero already when M = 1e3, since in this case there is a
single buyer and a single seller.

6.2 Empirical stock-exchange distribution

In the second experiment, we used the TORQ database (Has-
brouck 1992; Lee and Radhakrishna 2000). It contains buy
and sell orders given for a sample of 144 NYSE stocks for
the three months 1990-11 through 1991-01. In the NYSE,
each day before the continuous trade begins, there is a phase
of “start-of-day auctions”. For each stock, a separate multi-
unit double-auction is conducted in the following way. All
buy and sell orders given for that stock before the start of
day are collected. An equilibrium price is calculated. All
buy-orders above the price and all sell-orders below the price
are executed. As explained in the introduction, this mecha-
nism is efficient but not truthful. Therefore, the orders may
not represent the true values of the traders. While there are
econometric methods for estimating the true values from the
reported values, these are beyond the scope of the present
paper, since we do not need to know the true value of every
trader — all we need is a distribution of values. Our results
are valid as long as the empirical distribution of reported
values resembles the distribution of values in the real world.

In the present paper we assume that the empirical distri-
bution of the orders is similar to the empirical distribution of
the true values.

For the experiment, we considered only the start-of-day
orders. These orders are given in the format (Symbol, Date,
Order date, Side, Price, Quantity) where Symbol is the three-
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Figure 3: Competitive ratio of MUDA when traders’ val-
uations are drawn from an empirical distribution based on
NYSE orders. Discs = Lottery-MUDA; upward/downward-
wedges = total/agents-GFT of Vickrey-MUDA. At the left,
each order is assumed to belong to a different trader (so
all traders are additive). At the right, orders from the same
order-date are merged to a single trader.

letter acronym of the stock; Date is the day of the auction.
Order date is the day the order was made, which may be ear-
lier than Date; Side is BUY or SELL; and Price and Quantity
are the actual bid. The dataset contains 144 symbols, 7914
different symbol-date combinations and ≈ 210000 orders.

The dataset does not contain the identities of the traders.
We made two experiments: in the first we treated each or-
der as a separate trader, so that all traders are additive (each
trader values a certain quantity of units for the same price-
per-unit). In the second experiment, we simulated traders
with non-additive valuations by merging bids based on the
order-date. I.e, we heuristically assumed that two bids with
the same symbol, date, order-date and side belong to the
same trader. We ordered the bids of the same trader in de-
scending order to create DMR valuations, similarly to the
uniform experiment. In average, each merged bidder con-
tained 10 different orders. The number of units per order
ranges between 100 and 99000, so m = 100. The number
of units per trader, after combining orders from the same
order-date, ranges between 5000 and 12000000 with median
148000, so M = 12000000.

For each symbol, we created a collection of all traders in
all days to represent the empirical distribution of this sym-
bol. Then, in each experiment we sampled n traders, where
n = 10, 20, . . . , 990. All in all we simulated 99 · 144 auc-
tions and averaged the 144 auctions for each n. The results
are shown in Figure 3.

6.3 Discussion

It is interesting that the plots in Figure 3 look almost the
same, i.e, the non-additivity had little effect on the results.
The reason might be that stock-traders have many different
bids with very similar prices, so that they are almost additive.

The competitive ratio in the TORQ experiment is some-
what lower than in the uniform case. We attribute this to the
large variation in the number of units: while some traders
hold only 5000 units, others hold as many as 12 million.

Source code for reproducing the experiments is available
at https://github.com/erelsgl/economics.

7 Future Work

It is interesting whether MUDA can be extended to agents
with general valuations (not DMR). This poses two chal-
lenges. First, in step 1, a price-equilibrium might not ex-
ist (the existence of a price-equilibrium is guaranteed only
when the agents have DMR). Second, in step 2, material bal-
ance might fail. For example, if there is one buyer who only
wants to buy 2 units and one seller who only wants to sell 3
units, then with DMR we can assume that both agree to trade
2 units, but without DMR this assumption might be false —
the seller might have negative utility from selling 3 units.

Another challenge is handling double auctions with multi-
ple types of items. Preliminary results in this direction were
presented by Segal-Halevi, Hassidim, and Aumann (2016a).

We will also be happy to compare MUDA to other double-
auction mechanisms. In particular, an interesting practical
question is when would MUDA’s truthfulness actually mat-
ter — how does its GFT compare to the GFT in Nash equi-
librium of the standard (non-truthful) market mechanism?
As far as we know, the Nash-equilibrium GFT of the non-
truthful market mechanism (i.e, its “price-of-anarchy”) is
still an open question. The closest reference we found is by
Babaioff et al. (2014), who consider the price-of-anarchy of
the market mechanism in a single-sided market. We are not
aware of analogous results for double-sided markets.

But non-truthful market mechanisms have disadvantages
beyond the price-of-anarchy. First, the players need to spend
resources to obtain information about other players and cal-
culate their best response. Second, the players may not even
play an equilibrium. It is possible that players do not know
the correct state of the market and hence play best-response
to a fictitious state. This can bring social welfare to zero.
Consider any mechanism that sets a single price clearing the
market. For every active buyer(seller), it is a best response
to bid below(above) the market price in order to push the
price down(up). If all agents play these best responses, the
outcome is that nothing gets sold. Such market failures are
prevented by the truthfulness of MUDA.
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