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Abstract

We consider a market setting in which buyers are individu-
als of a population, whose relationships are represented by
an underlying social graph. Given buyers valuations for the
items being sold, an outcome consists of a pricing of the ob-
jects and an allocation of bundles to the buyers. An outcome
is social envy-free if no buyer strictly prefers the bundles
of her neighbors in the social graph. We focus on the rev-
enue maximization problem in multi-unit markets, in which
there are multiple copies of a same item being sold and each
buyer is assigned a set of identical items. We consider the four
different cases arising by considering different buyers valua-
tions, i.e., single-minded or general, and by adopting different
forms of pricing, that is item- or bundle-pricing. For all the
above cases we show the hardness of the revenue maximiza-
tion problem and give corresponding approximation results.
All our approximation bounds are optimal or nearly optimal.
Moreover, we provide an optimal allocation algorithm for
general valuations with item-pricing, under the assumption
of social graphs of bounded treewidth. Finally, we determine
optimal bounds on the corresponding price of envy-freeness,
that is on the worst case ratio between the maximum revenue
that can be achieved without envy-freeness constraints, and
the one obtainable in case of social relationships. Some of
our results close hardness open questions or improve already
known ones in the literature concerning the classical setting
without sociality.

Introduction

The choice of the prices a firm has to set for goods or ser-
vices put on sale is a non-trivial issue that has to be faced
in setting up a business. One of the main aims of the sell-
ers is to find pricing policies that maximize their revenue,
while guaranteeing good levels of customer satisfaction. In
this respect, the fair allocation of goods, resources or ser-
vices is a crucial matter, especially when selling items avail-
able in a limited amount, like for instance in bandwidth al-
location. In such a setting, one of the most used concepts to
describe fairness is the so called envy-freeness. This notion
was already introduced in the second half of the past century
(Foley 1967; Varian 1974), and can be intended in different
ways. In the field of combinatorial auctions, two basic ver-
sions have been mostly considered:
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• An envy-free allocation is an allocation in which each
buyer receives a bundle of goods among the ones that
maximize her utility.

• A pair envy-free allocation is an allocation in which no
buyer finds convenient to switch the bundle she receives
with the one of any other buyer.

Several works in the literature addressed the problem of
pricing and envy-free allocations (Guruswami et al. 2005;
Briest 2008; Chen and Deng 2010; Hartline and Koltun
2005; Brânzei et al. 2016). Similarly, different papers con-
sidered the notion of pair envy-freeness (Colini-Baldeschi
et al. 2014; Feldman et al. 2012; Fiat and Wingarten 2009;
Monaco, Sankowski, and Zhang 2015).

As future market scenarios are predicted to become more
and more decentralized and pervasive, new and more realis-
tic constraints need to be introduced in our models. A ma-
jor concern is the assumption of full information about the
context possessed by the buyers, like the awareness of the
existence of all the other buyers and, more important, of
their allocations. In fact, when dealing with online, highly
dynamic and distributed environments, such a global knowl-
edge might be unfeasible. The issue of modeling the local-
ity of mutual influences in game theory was already con-
sidered in graphical games (Kearns, Littman, and Singh
2001) and explicitly taken into account in (Bilò et al. 2010;
2011), where the authors introduced the existence of a social
graph of the players, under the assumption that the payoff of
each player is affected only by the strategies of the adja-
cent ones, representing somehow her neighborhood. Simi-
larly, several works in fair allocations of goods in absence
of pricing assumed an individuals view of the subjective
well-being as based on a comparison with peers, that is re-
stricting (pair) envy-freeness constraints to social neighbors
(Abebe, Kleinberg, and Parkes 2017; Chevaleyre, Endriss,
and Maudet 2007). In this setting, the price of envy-freeness
has been defined as the worst case ratio between the total
utility reachable by any allocation of goods and the one that
can be achieved satisfying envy-freeness constraints (Abebe,
Kleinberg, and Parkes 2017).

Our contribution

We focus on the notion of sociality in the pricing prob-
lem. Namely, we consider the social envy-freeness setting
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in which buyers are members of a social population, whose
relationships are modeled by means of an undirected social
graph. In such a graph, nodes represent buyers, edges mutual
knowledge between the corresponding endpoints, and each
buyer can only be envious of the bundles received by her
neighbors. We can notice that social envy-freeness is a re-
laxation of the notion of pair envy-freeness, which is in this
respect a relaxation of envy-freeness. Thus, if we consider
the spaces of pricings and allocations, according to these so-
lution concepts we can highlight the following hierarchy:

envy-free ⊆ pair envy-free ⊆ social envy-free.
Besides investigating the time complexity of determining

social envy-free revenue maximizing outcomes and good
approximate solutions, we investigate the increase of rev-
enue due to the incomplete knowledge of buyers by provid-
ing proper bounds on the price of envy-freeness, defined as
the worst case ratio between the maximum revenue that can
be achieved without envy-freeness constraints, that is with-
out social relationships between the buyers, and the one ob-
tainable in case of social relationships that require the ful-
fillment of the respective envy-freeness constraints. We fo-
cus on multi-unit markets, that is on the problem of pric-
ing and allocating m identical items to n different buyers,
so that each buyer is assigned a given bundle or subset of
item copies. This particular setting, in which the valuation
of each buyer depends only on the number of goods she re-
ceives, is well suited to model all of those real-world sce-
narios in which the items put on sale are homogeneous, like
for example commodity markets. We consider two different
hypotheses on buyers valuations: single-minded, in which
each buyer has a strictly positive valuation only for bundles
of a given fixed size, called preferred bundles, and general
valuations, in which she has a different unrestricted valua-
tion for each possible size. For what concerns pricing, we
consider two kinds of non-discriminatory pricing policies:
item-pricing, where a unique price p equal for the all identi-
cal items must be set, and bundle-pricing, where the seller is
allowed to assign different non-proportional price for each
bundle size.

For all the four different arising cases we show the hard-
ness of the revenue maximization problem and determine
corresponding approximation results (see Table 1). All our
approximation bounds for single-minded valuations are op-
timal. For general valuations, in case of item-pricing, we
provide a polylogarithmic lower bound on the achievable
approximation ratio for pair envy-freeness (and thus also
for social envy-freeness), while the O(log n)-approximation
algorithm provided in (Monaco, Sankowski, and Zhang
2015) for pair envy-freeness directly extends to social envy-
freeness. As in (Briest 2008; Monaco, Sankowski, and
Zhang 2015), our hardness result relies on a weaker conjec-
ture with respect to P �= NP , i.e., on the R3SAT -hardness
of the problem (see (Feige 2002)). Moreover, we give an
optimal allocation algorithm for bounded-treewidth social
graphs. For general valuations under bundle-pricing, while
a polylogarithmic lower bound on the achievable approxi-
mation ratio was already known (Monaco, Sankowski, and
Zhang 2015), we give an O(log n)-approximation algorithm
for social (and thus pair) envy-freeness, thus improving upon

the previous O(log n · logm) bound for pair envy-freeness
given in (Monaco, Sankowski, and Zhang 2015). Finally,
for all the cases we provide optimal bounds on the price
of envy-freeness (Table 2). Some of our results close hard-
ness open questions or improve already known approxima-
tion ones concerning the classical pair envy-freeness setting.

Single-minded General Valuations
Classical Social Classical Social

Item-pricing NP-hard NP-hard (strong) Ω(logεn)
FPTAS PTAS O(log n)

Bundle-pricing NP-hard Ω(logε n)
FPTAS O(log n logm) O(log n)

Table 1: General hardness and approximation results.

Single-minded General Valuations
Item-pricing 2 Θ(log n)

Bundle-pricing 1 Θ(log n)

Table 2: The price of envy-freeness bounds.

Related Works

There is an extensive literature concerning envy-free pric-
ing. For the revenue maximization, (Guruswami et al. 2005;
Hartline and Yan 2011; Cheung and Swamy 2008; Bal-
can, Blum, and Mansour 2008; Briest and Krysta 2006)
designed logarithmic approximation algorithms for vari-
ous special cases of the problem. Related hardness re-
sults were given by (Briest 2008; Chalermsook et al. 2012;
Chalermsook, Laekhanukit, and Nanongkai 2013b; 2013a;
Demaine et al. 2008). Further variants were considered by
(Chen and Deng 2010; Chen, Ghosh, and Vassilvitskii 2011;
Feldman et al. 2012; Anshelevich, Kar, and Sekar 2015;
Bilò, Flammini, and Monaco 2017; Chen et al. 2016).

In (Monaco, Sankowski, and Zhang 2015) authors gave
hardness and approximation results on revenue maximiza-
tion in markets with multi-unit items under both notion of
envy-freeness and pair envy-freeness when allowing both
item- and bundle-pricing. We remark that for single-minded
buyers they admitted the free disposal feature, in which buy-
ers have the same valuation for all the bundles of size at
least equal to their preferred one. However, our results for
single-minded buyers and pair envy-freeness are related to
the canonical version in which free disposal is not admitted.

The price of envy-freeness was defined in (Caragiannis
et al. 2009) in the context of fair allocation of divisible and
indivisible goods without pricing and suitably bounded un-
der different assumptions. Such a notion was extended in
(Abebe, Kleinberg, and Parkes 2017) to the social case, that
is when envy-freeness constraints must be satisfied only be-
tween neighbors in the social graph.

Distributed mechanisms for allocating indivisible goods
under the absence of central control where investigated in
(Chevaleyre, Endriss, and Maudet 2007; Chevaleyre et al.
2007; Chevaleyre, Endriss, and Maudet 2017). In such a
setting, given an underlying social structure, agents can lo-
cally agree on deals to exchange some of the goods in their
possession, again under the assumption of envy-freeness
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restricted only to social neighbors. The authors studied
the convergence properties for such distributed mechanisms
when used as fair division procedures.

Finally, (Bilò, Flammini, and Monaco 2017) considered
the possibility of limiting the view of some buyers, not ad-
mitting them in the market. This might be seen as a related
to a social envy-freeness setting in which such buyers are
isolated in the social graph.

Preliminaries

A multi-unit market μ can be represented by a tuple
(N,M, (vi)i∈N ), where N = {1, . . . , n} is a set of n buy-
ers, M is a set of m identical items and for every buyer
i ∈ N , vi = (vi(1), . . . , vi(m)) is a valuation function or
vector which expresses, given a subset of items X ⊆ M of
size j, the amount of money vi(j) ∈ R that buyer i would
be willing to pay for buying X . We assume that vi(0) = 0
and vi(j) ≥ 0 for every j, 1 ≤ j ≤ m and buyer i ∈ N .

We distinguish the following two different cases, ac-
cording to the imposed restrictions on the valuation func-
tions: single-minded, with buyers interested only in a certain
amount of items and thus having positive valuation only for
that bundle size, and general valuations, i.e., the unrestricted
case. In the sequel, when dealing with single-minded valu-
ations, we call preferred by a buyer i the unique bundle for
which i has a strictly positive valuation, and denote by mi

its size. Moreover, we let nj be the number of buyers with
preferred bundles of size j and J = {j|nj > 0}.

A price vector is an m-tuple p = (p(1), . . . , p(m)) such
that, for every j, 1 ≤ j ≤ m, p(j) ≥ 0 is the price of a
bundle of size j. Given a price vector p and a set of items
X ⊆ M , ui(X, p) = vi(|X|)−p(|X|) is the utility of buyer
i when buying X .

Since items in M are identical, we consider the follow-
ing two different pricing schemes, called item-pricing and
bundle-pricing, respectively. In the former, the seller must
assign a single non-negative price p ∈ R to all the identical
items, so that the price owed by each buyer for a bundle X
is p(|X|) = |X| · p. In the latter, the seller has the freedom
to give different (non-proportional) prices p(j) ∈ R to bun-
dles of size j. Therefore, the only constraint is that the prices
owed by buyers receiving bundles of the same size must be
coincident. In the following, in item-pricing we denote an
outcome simply as (X, p), that is by specifying the single
price assigned to each of the identical items.

An allocation vector is an n-tuple X = (X1, . . . , Xn)
such that Xi ⊆ M is the set of items sold to buyer i.
A feasible outcome of market μ is a pair (X, p) satisfying
the following conditions:

1. supply constraint:
∑n

i=1 |Xi| ≤ m;
2. individual rationality: ui(Xi, p) ≥ 0 for every i ∈ N .

We assume that buyers in N are individuals of a popu-
lation, whose relationships are represented by an underlying
undirected social graph G = (N,E). In such a setting, given
an outcome (X, p), each buyer i ∈ N is aware only of the
bundles assigned to the other buyers she knows, that is be-
longing to the subset N(i) = {j ∈ N |{i, j} ∈ E} of her
neighbors in G.

Definition 1. A feasible outcome (X, p) for market μ is
social envy-free or simply stable under G if ui(Xi, p) ≥
ui(Xj , p) for every buyer i ∈ N and j ∈ N(i).

Thus, an outcome is stable if no buyer strictly prefers the
bundles assigned to the buyers she knows. Notice that, if G
is complete, the above definition corresponds to the classical
notion of pair envy-freeness defined in the literature.

The revenue raised by the seller due to an outcome (X, p)
is r(X, p) =

∑n
i=1 p(|Xi|). The pricing problem consists

in determining an outcome (X, p) for μ stable under G of
maximum revenue.

Let opt(μ,G) be the maximum possible revenue achiev-
able by a stable outcome for μ under G and opt(μ) be the
highest possible revenue achievable by a feasible allocation
for μ without considering envy-freeness constraints.

Definition 2. Given a set of market instances M and a fam-
ily of social graphs G, the price of envy-freeness c(M,G) of
M and G is the worst case ratio between the maximum rev-
enue that can be achieved in the markets in M without con-
sidering envy-freeness constraints, and the one induced by
the outcomes that are stable according to the social graphs
in G, that is c(M,G) = supμ∈M,G∈G

opt(μ)
opt(μ,G) .

For the sake of brevity, in the following we call
(SINGLE,ITEM)-pricing (resp. (GENERAL,ITEM)-,
(SINGLE,BUNDLE)- and (GENERAL,BUNDLE)-pricing)
the classical pricing problem restricted to the instances
of multi-unit markets with single-minded valuations and
item-pricing (resp. general valuations and item-pricing,
single-minded valuations and bundle-pricing, and general
valuations and bundle-pricing). Moreover, we will call
such problems social, when considering a social graph of
knowledge of the buyers. So for instance, in the social
(SINGLE,ITEM)-pricing problem, we are given in input a
single-minded multi-unit market μ and a social graph G and
we want to determine a revenue maximizing outcome with
item-pricing for μ which is stable under G.

Clearly, since the classical problem corresponds to the
restriction to complete social graphs, every hardness result
concerning the classical problem extends to the social ver-
sion, while every approximation algorithm for the social
problem also applies to the classical version.

We will often reduce the pricing problem to a vari-
ant of the knapsack problem called MULTIPLE-CHOICE
KNAPSACK. In such a problem, we are given t classes
{O1, . . . , Ot} of objects to pack in a knapsack of capacity
k. Each object oj,h ∈ Oj has a profit zj,h and a weight wj,h,
and we must pick at most one object from each class so as to
maximize the sum of the profits of the selected objects with-
out exceeding the knapsack capacity k. As shown in (Lawler
1979), MULTIPLE-CHOICE KNAPSACK is NP-hard, but it ad-
mits an FPTAS.

Before concluding the section let us remark that in multi-
unit markets, while the size of the representation of instances
with general valuations is polynomial in m, as different valu-
ations must be specified for different bundle sizes, in single-
minded instances the dependence is logarithmic in m, as for
each buyer it is sufficient to specify the size of her unique
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preferred bundle, together with the corresponding valuation.

Single-minded valuations

In this section we consider single-minded multi-unit mar-
kets. Let us first focus on item-pricing. The following fact
will be useful in the sequel.
Lemma 3. The price popt of an optimal stable item-pricing
outcome (X

opt
, popt), that is maximizing the seller’s rev-

enue, belongs to the set P := { vi(mi)
mi

|i ∈ N}.

The following positive result concerns the classical case.
Theorem 4. The (SINGLE,ITEM)-pricing problem is NP-
hard but admits an FPTAS.

For the social version of the problem the following
stronger hardness result holds.
Theorem 5. The social (SINGLE,ITEM)-pricing problem is
strongly NP-hard.

Proof. In order to prove the claim, we provide a polynomial-
time reduction from DENSEST K-SUBGRAPH. An instance of
such a problem is given by an undirected graph H = (V, F )
and an integer k, and we want to find a subset S ⊆ V of
cardinality |S| ≤ k that maximizes the number of edges in
the subgraph induced by S. Given an instance of DENSEST
K-SUBGRAPH, we construct an instance (μ,G) of the social
(SINGLE,ITEM)-pricing problem as follows.

In the market μ we associate a set Nu of |F | + 1 buyers
to each u ∈ V , in such a way that vi(1) = 1 + ε for each
i ∈ Nu, where ε = k

|V |+1 ; for each e ∈ F there is a buyer
ie with vie(1) = 1; there is a distinguished buyer w with
vw (|V | (|F |+ 1)) = |V | (|F |+ 1); finally, there are m =
(|V |+ k) (|F |+ 1) + |F | items.

In the social graph G = (N,E) there is an edge {i, i′} ∈
E for every pair of buyers i, i′ such that i, i′ ∈ Nu for some
u ∈ V , and an edge {i, ie} ∈ E for every i ∈ Nu and edge
e ∈ F incident to u in H .

It is possible to show that H admits a subgraph of size k
with h edges if and only if μ has an outcome stable under G
of revenue (|V |+ k)(|F |+ 1) + h.

By the above theorem, an FPTAS for the problem does
not exist, unless P=NP. On the other hand, we now show
an optimal result concerning the approximability, that is the
existence of a PTAS.

Before providing the algorithm, let us describe the main
involved ideas. Given an instance (μ,G) of the pricing prob-
lem, a fixed price p, j ≤ m and h ≤ n, assume we can
efficiently solve the restricted subproblem of determining a
feasible allocation of bundles of size j to h buyers stable un-
der G, if it exists. Recalling that J is the set of the at most n
bundle sizes for which there exists at least one buyer with a
preferred bundle of that size, under the above assumption we
could even obtain an FPTAS resorting on a proper instance
K(μ,G, p) of MULTIPLE-CHOICE KNAPSACK, where the
knapsack capacity is fixed to k = m, for each bundle size
j ∈ J there is a class Oj = {oj,h| there exists an alloca-
tion of bundles of size j to h buyers stable under G}, and
zj,h = wj,h = j · h.

Clearly, such an instance of MULTIPLE-CHOICE KNAP-
SACK has size polynomial in the one of (μ,G), as there are
at most n classes, each of at most n objects. Any solution S
for the instance of value r can be associated to an outcome
of revenue r · p simply by adding in the outcome, for each
object oj,h ∈ S, the stable allocation under G of bundles of
size j to h buyers. Therefore, by Lemma 3, running the FP-
TAS for all the candidate optimal prices p = vi(mi)

mi
, i ∈ N ,

and selecting the best returned outcome in terms of revenue,
we get a (1 − ε)-approximation of the optimum solution in
time polynomial in the size of (μ,G) and in 1/ε, i.e., an
FPTAS for the social (SINGLE,ITEM)-pricing problem.

Unfortunately, according to Theorem 5, the basic assump-
tion underlying the algorithm cannot be feasible, that is the
restricted subproblem cannot be solved in polynomial time
(as it would imply an FPTAS for a strong NP-hard problem).
However, the following approximation result holds.

Lemma 6. Given an instance (μ,G) of the (SINGLE,ITEM)-
pricing problem, a fixed price p, j ≤ m and h ≤ n, the
problem of finding a revenue maximizing feasible allocation
of bundles of size j to at most h buyers stable under G admits
a PTAS.

According to the above lemma, for each fixed price
p, we can efficiently determine an instance Kε(μ,G, p)
of MULTIPLE-CHOICE KNAPSACK which suitably approx-
imates K(μ,G, p): the knapsack capacity is fixed to k = m;
for each bundle size j ∈ J there is a class Oj = {oj,l| the
above PTAS run on some h, 1 ≤ h ≤ n, returns an alloca-
tion of bundles of size j to l ≤ h buyers stable under G};
zj,l = wj,l = j · l.

Clearly, if T = {oj1,h1
, . . . , ojt,ht

} is a feasible solution
for K(μ,G, p), then there exists a feasible solution Tε =
{oj1,l1 , . . . , ojt,lt} for Kε(μ,G, p) such that (1 − ε)hq ≤
lq ≤ hq for each q, 1 ≤ q ≤ t. Therefore, if opt(K)
is the measure of the optimal solution of K(μ,G, p) and
opt(Kε) the one of Kε(μ,G, p), we have that opt(Kε) ≥
(1 − ε)opt(K). Notice moreover that Tε is feasible also for
K(μ,G, p) and again yields a corresponding outcome for μ
stable under G of proportional revenue.

We are now ready to prove the following theorem.

Theorem 7. The social (SINGLE,ITEM)-pricing problem
admits a PTAS.

Proof. Consider the algorithm that, for all the candidate op-
timal prices p ∈ P established in Lemma 3, constructs a
corresponding instance Kε/2(μ,G, p) exploiting the PTAS
of Lemma 6 with accuracy parameter ε/2, and then runs
on Kε/2(μ,G, p) the FPTAS of MULTIPLE-CHOICE KNAP-
SACK with accuracy ε/2. Among all the returned solutions,
it selects the one yielding the outcome (X, p) of maximum
revenue and provides such an outcome in output.

The complexity of the algorithm is polynomial in the
input size (and exponential in 1/ε), and recalling that
opt(μ,G) is the revenue of an optimal stable outcome
for (μ,G), the revenue of (X, p) is r(X, p) = p ·
(1 − ε/2)opt(Kε/2) ≥ (1 − ε/2)2opt(K) ≥ (1 −
ε)opt(μ,G).
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We now focus on bundle-pricing. The same reduction of
Theorem 4 shows the following negative result.
Theorem 8. The (SINGLE,BUNDLE)-pricing problem is
NP-hard.

However, an optimal approximation can be achieved.
Theorem 9. The social (SINGLE,BUNDLE)-pricing admits
an FPTAS.

Proof. Consider a fixed bundle size j ≤ m and let
ij,1, . . . , ij,nj be an ordering of the buyers with preferred
bundles of size j such that vij,1(j) ≥ . . . ≥ vij,nj

(j).
Given any h ≤ nj , setting price vij,h(j) for bundles of

size j allows the stable allocation of h bundles to the first h
buyers in the ordering.

Since single-minded buyers can envy only buyers with the
same preferred bundle size, the above allocation can be in-
dependently performed for each different bundle size with
at least one preferred player. Therefore, again the problem
reduces to a proper instance of MULTIPLE-CHOICE KNAP-
SACK where the insertion of an object oj,i,h in the knapsack
corresponds to the stable assignment of h bundles of size j
to the first h buyers ij,1, . . . , ij,h in the ordering.

Notice that the algorithm of Theorem 9 is independent
of the social graph G, as the returned allocation is stable
under any graph. In fact, as shown in the following theorem,
sociality in (SINGLE,BUNDLE)-pricing does not affect the
quality of the optimal stable outcomes.
Theorem 10. The price of envy-freeness is 2 for
(SINGLE,ITEM)-pricing and 1 for (SINGLE,BUNDLE)-
pricing.

General valuations

In this section we consider multi-unit markets with general
valuations. Again, we first focus on item-pricing. For such
a case, the tractability in the classical setting was an open
problem raised in (Monaco, Sankowski, and Zhang 2015).
However, we are now able to answer this question by show-
ing the following approximation hardness result.
Theorem 11. Approximating (GENERAL,ITEM)-pricing
within O (logε n), for some ε > 0, is R3SAT -hard.

Proof. In order to prove the claim, we give an approxima-
tion preserving polynomial time reduction from MES (Max-
imum expanding sequence) (Briest 2008). In such a prob-
lem, we have a universe set U and an ordered collection of
its subsets C = (S1, S2, ..., Sm). An expanding sequence
φ = (φ(1) < ... < φ(�)) of length |φ| = � is a selection
of sets Sφ(1), ..., Sφ(�), such that for each y, 1 ≤ y ≤ �,
Sφ(y) �

⋃y−1
l=1 Sφ(l). We want to find the expanding se-

quence of maximum length.
An instance of MES is said κ-separable if the sequence of

the subsets C can be partitioned in the order into κ subse-
quences or classes C1, ..., Cκ, where each subsequence does
not contain intersecting sets. In (Briest 2008) it has been
shown that there exists an ε > 0 such that MES is R3SAT -
hard to approximate within O (f(m)ε), when restricted to
f(m)-separable instances.

Consider the following reduction. Given a κ-separable in-
stance of MES with subsets S1, ..., Sm ⊆ U of correspond-
ing classes C1, ..., Cκ, we construct an instance μ of (GEN-
ERAL,ITEM)-pricing as follows: for each o ∈ U and Ck, 1 ≤
k ≤ κ, let Bk

o =
{
2κ−h|U |+ o

∣
∣ h ∈ N, k ≤ h ≤ κ

}
; we

associate to each Sy ∈ Ck a set Iy of 2k buyers such that
each i ∈ Iy has valuation function vi(j) = 2κ−k|U | + |U |
if j ∈ ⋃

o∈Sy
Bk

o , while vi(j) = 0 otherwise.
We prove that the claim holds even in case of unlimited

supply, or analogously by setting the total number of items
in μ equal to m · 2κ · 2κ · |U |.

In the following for the sake of simplicity we will say that
a set Iy associated to a given Sy ∈ Ck is of class k.

We can immediately observe that each buyer belonging to
a given set Iy of class k is only interested in bundles of cardi-
nality in

⋃
o∈Sy

Bk
o and, regardless of the price, she always

prefers the smallest one. Therefore, in any stable outcome,
either all the buyers in Iy do not receive any bundle, or they
all receive bundles of the same fixed size j. In this case we
say that Iy supports size j.

Notice also that for any q �= o we have Bk
q ∩ Bh

o = ∅.
Therefore, there is not any bundle size with strictly positive
valuation for both the buyers in two sets Iy and Iy′ when
Sy and Sy′ are disjoint. In particular, by definition of κ-
separability, this implies that Iy and Iy′ cannot support the
same bundle size if Sy and Sy′ belong to the same class Ck.
In other words, every bundle size can be supported by at
most one set Iy per class.

In order to prove that the reduction is approximation-
preserving, we resort on the following lemmata.

Lemma 12. If the reduced instance μ admits a stable out-
come (X, p) with revenue r and p �= 1, then it also admits a
stable outcome (X

′
, 1) with revenue r

4 .

Lemma 13. If μ admits a stable outcome (X, 1) with rev-
enue r, then it also admits a stable outcome (X

′
, 1) with

revenue at least r that satisfies the following property P: ”
for each bundle of size 2κ−k|U |+ o allocated in X

′
, there is

a subset Iy of class k that supports 2κ−k|U |+ o ”.

We are now ready to prove our main claim. To this aim,
it is sufficient to show that (⇒) if the MES instance admits
an expanding sequence of length �, then μ admits a solution
with revenue at least �2κ|U | and (⇐) if μ admits a solution
with revenue �2κ|U |, then the corresponding MES instance
admits an expanding sequence of length �

16 .
(⇒) Suppose that the MES instance admits an expanding

sequence Sφ(1), ..., Sφ(�) of length �. Let Ny be the set of the
elements newly covered by Sφ(y) in the sequence. Consider
the following set of bundle sizes B. For each Sφ(y) ∈ Ck in
the expanding sequence, put in B integer 2κ−k|U | + o, for
an arbitrarily chosen o ∈ Ny .

Let then (X, p) be an outcome where p = 1 and X gives
to each buyer her preferred bundle with size in B. Clearly,
in such a solution no buyer can be envious, so that (X, p)
is stable. Then, as p = 1, it remains to prove that at least
�2κ|U | items are sold.
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Since p = 1, every buyer in Iφ(y) with Sφ(y) ∈ Ck has
non negative utility for all (and only) the bundles sizes in⋃

o∈Sφ(y)
Bk

o , so that her preferred assigned bundle is the

one with least cardinality in B∩⋃o∈Sφ(y)
Bk

o . We now prove

that such a bundle has size at least 2κ−k|U |. By construction,
we know that B contains size 2κ−k|U | + o for some o in
Sφ(y). Hence, it is enough to show that B does not contain
any other size 2κ−h|U | + o′ with h > k and o′ ∈ Sφ(y).
Assume by contradiction that B contains such an integer.
Then, since k < h, it must be that o′ is a newly covered
element by a subset Sφ(y′) ∈ Ch in the expanding sequence
with φ(y) < φ(y′): an absurd, since o′ has been previously
covered by Sφ(y).

In conclusion, we have that, for any Sφ(y) ∈ Ck in the
expanding sequence, at least |Iφ(y)| = 2k buyers receive a
bundle of size at least 2κ−k|U |. Therefore, in (X, p) globally
at least �2κ|U | items are sold.
(⇐) Suppose that the reduced instance admits a stable

outcome (X, p) of revenue �2κ|U |. Then, by Lemma 12 and
Lemma 13, there exists a stable outcome (X

′
, 1) of revenue

r(X
′
, 1) at least �

42
κ|U |, where any allocated bundle of size

j = 2κ−k|U | + o is supported by a subset Iy of class k.
By the definition of the valuation functions of the buyers
and by the above observations on the reduction, size j can
be supported by at most one set Iy′ for each class h, 1 ≤
h ≤ k. Since each such Iy′ of class h has cardinality 2h,
this implies that at least half of all the players supporting
j are contained in Iy , so that at least half of the revenue
contributed to r(X

′
, 1) by the bundles of size j is due to Iy .

Let us call maximal any such a subset Iy , that is supporting
size 2κ−k|U |+o for some o ∈ U , and let Imax be the family
of all the maximal sets Iy . We now to prove that |Imax| ≥
�
16 .

Denoting by 2κ−ky |U | + oy the size supported by any
given Iy ∈ Imax of class ky , we then have

�
82

κ|U | ≤ r(X
′
,1)

2 ≤ ∑
Iy∈Imax 2ky

(
2κ−ky |U |+ oy

) ≤
≤ ∑

Iy∈Imax

(
2κ|U |+ 2kyoy

) ≤ 2 · 2κ|U ||Imax|,
and this implies that |Imax| ≥ �

16 .
It remains to prove that the sequence induced by Imax

is an expanding sequence. In fact, given any Iy ∈ Imax

supporting size 2κ−ky |U | + oy , we have that element oy
is newly covered by Sy in the sequence. If not, it means
that oy belongs also to some Sy′ ∈ Ck′

y
in the sequence,

with ky′ < ky . However, this is not possible, as otherwise
buyers in I ′y would have preferred bundle 2κ−ky |U | + oy ,
thus contradicting the maximality of Iy′ and consequently
the fact that Sy′ belongs to the sequence.

In order to have a polynomial time reduction we choose
f(m) = log(m), which completes the proof.

For what concerns the determination of approximated so-
lutions, we notice that the O(log n)-approximation algo-
rithm of (Monaco, Sankowski, and Zhang 2015) for the
classical pair envy-freeness problem, given in input any
market μ, returns an outcome whose revenue is at least a

log n fraction of the optimal revenue that can be achieved
without considering any envy-freeness constraint. More-
over, such an outcome guarantees that no buyer envies any
other buyer, and thus is stable with respect to any social
graph. Therefore, such an algorithm directly corresponds
to a O(log n)-approximation algorithm also for the social
(GENERAL,ITEM)-pricing problem.

Let now focus our attention to specific classes of graphs.
The following theorem provides a better bound for a re-
stricted class of social graphs.

Theorem 14. The social (GENERAL,ITEM)-pricing prob-
lem restricted to social graphs of bounded tree-width admits
an optimal polynomial time algorithm.

Proof. We provide a simplified construction for the case in
which the social graph G is a tree. Arbitrarily fixing a root r
in G, we can exploit the tree structure of the graph to derive
a recursive construction of an optimal stable outcome for a
given price. More precisely, once fixed a bundle size j with
0 ≤ j ≤ m and a supply bound b with 0 ≤ b ≤ m, we can
compute the revenue of an optimal restricted outcome for a
subtree T of G that assigns a bundle of size j to the root i
of T and globally at most b items to T . In order to properly
define the recursion, we allow the value j = 0, that is we
assume that not assigning any item to a buyer corresponds
to the assignment of a bundle of size 0.

Let M i
p(j, b) be the number of items sold in the above

optimal outcome, which in turns has revenue p · M i
p(j, b),

and let us use symbol ⊥ to denote unfeasibility, that is the
fact that under such restrictions a stable outcome for T does
not exist.

Then, if i is a leaf, M i
p(j, b) = j if vi(j) − jp ≥ 0 and

j ≤ b, while M i
p(j, b) = ⊥ otherwise.

If i is not a leaf, M i
p(j, b) can be recursively constructed

optimally combining the optimal restricted outcomes for its
subtrees in T that do not make i and its children envious and
globally satisfy the supply constraint. Such a problem can
be formulated as an instance of MULTIPLE CHOICE KNAP-
SACK, in which an object oi

′
p (j

′, b′) with utility M i′
p (j

′, b′)
and weight b′ represents an optimal restricted outcome as-
signing a bundle of size j′ to child i′ of i and at most b′ items
at the subtree rooted at i′, if such an outcome exists. Then,
we can associate to node i′ the class Oi

p(j, b, i
′) of all the ob-

jects oi
′
p (j

′, b′) not creating envies between i and i′ and not
exceeding budget b together with the bundle of size j of node
i. Namely, Oi

p(j, b, i
′) contains the objects oi

′
p (j

′, b′) such
that vi(j)− jp ≥ vi(j

′)− j′p, vi′(j′)− j′p ≥ vi′(j)− jp,
b′ ≤ b− j and M i′

p (j
′, b′) �= ⊥.

The knapsack capacity is set to b. The built instance of
MULTIPLE CHOICE KNAPSACK has all values polynomially
bounded in the size of the instance and thus admits an ex-
act polynomial-time algorithm (via dynamic programming).
If it has a feasible solution, we let OPTi

p(j, b) be its value,
otherwise we set OPTi

p(j, b) = ⊥.
We can then compute M i

p(j, b) for an intermediate node i
as M i

p(j, b) = ⊥ if vi(j) ≤ jp or OPTi
p(j, b) = ⊥, while
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M i
p(j, b) = j + OPTi

p(j, b) otherwise.
The maximum number of allocated items, given price p,

can then be expressed as M∗
p = maxj≤m Mr

p (j,m)
Exploiting the above formulas, we can compute in poly-

nomial time M∗
p . More precisely, for each node i, bundle j

and b ≤ m, we can compute each M i
p(j, b), according to a

post-order visit on G. This ensures that, when M i
p(j, b) is

computed, all the values M i′
p (j

′, b′) associated to the chil-
dren of i are already known. Keeping track of the bundles
chosen at every step, we can finally return the allocation
which realizes M∗

p .
In order to complete the algorithm, we recall that since

the number of candidate prices that can lead to an optimal
solution is polynomially bounded in the size of the instance
(Monaco, Sankowski, and Zhang 2015), we can repeat this
procedure for all such prices, returning the best computed
solution in terms of revenue, thus finally obtaining an exact
polynomial-time algorithm for tree social graphs.

The extension to bounded treewidth graphs will be given
in the full version of the paper.

Let us now consider bundle-pricing. For such a case, an
inapproximability Ω(logε n) result for some ε > 0 in the
classical setting was proven in (Monaco, Sankowski, and
Zhang 2015), together with a O(log n logm)-approximation
algorithm. However, we are able to prove the following
nearly optimal approximation bound, holding also for the
more general social instances.

Theorem 15. There exists a logn
1−e−1 -approximation algo-

rithm for the social (GENERAL,BUNDLE)-pricing problem.

Proof. Given an instance (μ,G) with μ = (N,M, (vi)i∈N )
of the social (GENERAL,BUNDLE)-pricing problem, con-
sider the instance η of a market with unit demand buyers
constructed as follows. The set of buyers in η is N , i.e. the
same of μ, and we include, for each bundle size j in μ, a set
of n items Bj = {bj,1 . . . , bj,n}, under the understanding
that assigning item bj,l to buyer i in η corresponds to allo-
cating a bundle of size j to i in μ. The n copies in each Bj

guarantee that the possibility of assigning a bundle of size j
to every buyer is taken into account in η. Every buyer i has
valuation vi(j) for each item bj,l ∈ Bj .

We can represent η by means of a complete bipartite graph
KN,B with node set N ∪ B, B = B1 ∪ . . . ∪ Bm, and all
possible edges between N and B, where each edge {i, bj,l}
has weight w({i, bj,l}) = j and value z({i, bj,l}) = vi(j).
Any matching in KN,B then corresponds to an allocation of
items in η and of bundles in μ to the buyers in N .

By a little abuse of notation, given two subsets N ′ ⊆ N
and B′ ⊆ B, let us denote by z(N ′, B′) the maximum value
of a matching between N ′ and B′. A stable outcome for
η can be obtained by exploiting the algorithm presented in
(Guruswami et al. 2005), which guarantees a revenue which
is at least z(N,B)/ log n, that is at least equal to the value of
any possible allocation of buyers to item in η that can be ob-
tained even without considering envy-freeness constraints.
By construction, such an outcome corresponds to an out-
come for μ which is stable under G, as it prevents envies

between every possible pair of buyers. However, unfortu-
nately such an outcome might not be feasible, because it
completely ignores the supply constraints, that is it might
assign more than m items.

In order to solve this problem, we now show how to suit-
ably preselect a subset B′ ⊆ B of items having the prop-
erty that the overall weight

∑
bj,l∈B′ w({i, bj,l}) ≤ m and

the value of the maximum matching between N and B′ is
close to optimality. Namely, if B∗ ⊆ B is an optimal se-
lection of items, that is such that

∑
bj,l∈B∗ w({i, bj,l}) ≤

m and z(N,B∗) is maximized, B′ has the property that
z(N,B′) ≥ (1 − e−1)z(N,B∗). Then, by applying the al-
gorithm of (Guruswami et al. 2005) to the submarket of η
containing only the items in B′, we get a stable outcome
for η that this time corresponds to a feasible stable outcome
for μ under G and has revenue at least z(N,B′)/ log n ≥
(1−e−1)z(N,B∗)/ log n ≥ (1−e−1)opt(μ,G)/ log n, thus
proving the claim.

To this aim, it is possible to show that z(N,B′) (with
fixed argument N ) is a non decreasing submodular set func-
tion with respect to B′, i.e., that z(N,B′) ≤ z(N,B′′) if
B′ ⊆ B′′ and Z(N,B′) + Z(N,B′′) ≥ Z(N,B′ ∪ B′′) +
Z(N,B′ ∩ B′′) for every B′, B′′ ⊆ B. We can then see
the problem of determining a subset B′ yielding a matching
of maximum value while not exceeding overall weight m as
an instance of the problem of maximizing a non decreasing
submodular set function subject to a knapsack constraint, for
which a (1−e−1)-approximation algorithm was provided in
(Sviridenko 2004).

We conclude the section providing optimal asymptotic
bounds for the price of envy-freeness for general valuations.

Theorem 16. The price of envy-freeness is Θ(log n) both
for (GENERAL,ITEM)-pricing and (GENERAL,BUNDLE)-
pricing.

Conclusions and Future Work

A major open question concerns general valuations. In
fact, similarly to the item-pricing case, for bundle-pricing
it would be interesting to characterize the approximability
of the problem for specific social topologies, like bounded
treewidth graphs. Moreover, both for item- and bundle-
pricing, it would be worth investigating other relevant re-
stricted families of social graphs, such as bounded-degree
ones. Another nice research direction is that of consider-
ing other market scenarios, like unit-demand markets, or ob-
tained by properly restricting the classes of valuation func-
tions. Finally, it would be nice to consider other forms of
social influence, or determining how limiting buyers visibil-
ity might increase the achievable revenue.
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