
DarkEmbed: Exploit Prediction with Neural Language Models

Nazgol Tavabi
USC Information Sciences Institute

nazgolta@isi.edu

Palash Goyal
USC Information Sciences Institute

palashgo@usc.edu

Mohammed Almukaynizi
Arizona State University

malmukay@asu.edu

Paulo Shakarian
Arizona State University

shak@asu.edu

Kristina Lerman
USC Information Sciences Institute

lerman@isi.edu

Software vulnerabilities can expose computer systems to
attacks by malicious actors. With the number of vulner-
abilities discovered in the recent years surging, creating
timely patches for every vulnerability is not always feasi-
ble. At the same time, not every vulnerability will be ex-
ploited by attackers; hence, prioritizing vulnerabilities by
assessing the likelihood they will be exploited has become
an important research problem. Recent works used ma-
chine learning techniques to predict exploited vulnerabil-
ities by analyzing discussions about vulnerabilities on so-
cial media. These methods relied on traditional text process-
ing techniques, which represent statistical features of words,
but fail to capture their context. To address this challenge,
we propose DarkEmbed, a neural language modeling ap-
proach that learns low dimensional distributed representa-
tions, i.e., embeddings, of darkweb/deepweb discussions to
predict whether vulnerabilities will be exploited. By captur-
ing linguistic regularities of human language, such as syn-
tactic, semantic similarity and logic analogy, the learned em-
beddings are better able to classify discussions about ex-
ploited vulnerabilities than traditional text analysis methods.
Evaluations demonstrate the efficacy of learned embeddings
on both structured text (such as security blog posts) and un-
structured text (darkweb/deepweb posts). DarkEmbed out-
performs state-of-the-art approaches on the exploit predic-
tion task with an F1-score of 0.74.

Introduction

Vulnerabilities in software expose computer systems to at-
tacks by cybercriminals. The consequences of an attack can
be severe, as demonstrated on May 12, 2017, when Wan-
nacry ransomware (Martin, Kinross, and Hankin 2017), ex-
ploiting a vulnerability in Microsoft Windows operating
system, crippled hundreds of thousands of computer sys-
tems worldwide, including critical systems used by hospi-
tals and others health services (Kostov, Neumann, and Woo
2017). To avoid attacks on their software, vendors need
to create patches for discovered vulnerabilities. However,
not every vulnerability is equally critical to patch. While
a growing number of vulnerabilities are discovered each
year—in the first four months of 2017 alone more than
5,000 vulnerabilities were disclosed by National Vulnerabil-

Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All
rights reserved.

ity Database (NVD)1—fewer than 3% of these have exploits
that exist in the wild (Sabottke, Suciu, and Dumitras 2015;
Allodi and Massacci 2014). Given that so few vulnerabili-
ties are exploited, how should vendors prioritize which ones
to patch? To address this problem, researchers have recently
turned to machine learning techniques to analyze different
data sources about vulnerabilities for clues to exploitability
(Bozorgi et al. 2010; Edkrantz and Said 2015). Along this
approach (Sabottke, Suciu, and Dumitras 2015) used terms
appearing in Twitter posts associated with vulnerabilities, as
features to train a classifier to predict which ones will be
exploited. However, traditional text mining approaches fail
to capture the context of the discussions, and thereby have
a hard time distinguishing between potentially threatening
posts and non-malicious discussions of vulnerabilities. The
two posts below illustrate these differences.

• “. . . first advertise of this kit after several months of
shutdown. rates for wm are 20/30%prices:100$/day600$/
week2000$/ month. . . exploits:cve-2015-5122cve-2015-
5119cve-2015-3043cve-2015-2419cve-2015-2445cve-
2015-0311cve-2014-6332 . . . ”

• “. . . this is a really dangerous security flaw. poc of cve-
2014-0476 is available lookup google linux kernel vul-
nerable to privilege escalation and dos attack”

The first post advertises an exploit kit for sale on a dark-
web marketplace with a considerable price, which is a lead-
ing indicator of an attack. In contrast, the second post sim-
ply talks about a vulnerability. Given the words in the two
posts, the second post seems more likely to be connected
to a threat, but this is actually not the case. Traditional text
mining methods that do not capture the context of words
will fail to detect the differences. Another disadvantage is
that they use sparse, high-dimensional features, which may
lead to suboptimal performance in a classification task.

To address these challenges, we describe a neural lan-
guage model that analyzes discussions about vulnerabilities
to predict whether they will be exploited in the wild. Specif-
ically, we use paragraph vector (Le and Mikolov 2014), an
unsupervised algorithm that embeds variable-length texts in
a low-dimensional vector space, to learn distributed repre-
sentations of discussions on the darkweb/deepweb (D2Web).

1https://nvd.nist.gov

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7849



We then train a classifier to recognize posts discussing vul-
nerabilities that will be exploited in the wild.

The paragraph vector is effective, because it captures the
meaning of discussions and their other characteristics, such
as language, and indicator words. Evaluations show that it
outperforms classifiers which use word frequencies by 10%
in predicting exploited vulnerabilities. The method also de-
creases the dimension of the feature space by 0.001 of the
original values. Moreover, we show that adding other fea-
tures, such as CVSS score of the vulnerability and whether
it appeared in ExploitDB, improves prediction performance
by 12%.

Overall, our paper makes the following contributions:

• We propose DarkEmbed, an efficient algorithm which uti-
lizes neural language models to learn features of conver-
sations on the D2Web.

• We use DarkEmbed to predict whether a vulnerability dis-
cussed on D2Web will be exploited.

• We extend DarkEmbed to use other features of vulnerabil-
ities, such as CVSS score, and evaluated how much these
features improve predictions.

• We use the same approach of DarkEmbed on security blog
posts to detect new exploited vulnerabilities at the earliest
opportunity.

• Using DarkEmbed, we identify keywords in D2Web in-
dicative of exploit probability, i.e., words which are asso-
ciated with high and low rates of exploitation.

The rest of the paper is organized as follows. We first re-
view existing research on estimating the likelihood that a
vulnerability will be exploited. We then review neural lan-
guage model which learns distributed representations of text,
as well as the data set we use. We evaluate the learned repre-
sentations of D2Web posts on the task of exploit prediction
and conclude with the discussion of the implications of the
results.

Related work

A great deal of the current research on cybersecurity defense
has focused on detecting emerging cyber threats. Although
limited, the work on predicting cybersecurity incidents is
gaining larger attention in recent years (Liu et al. 2015;
Soska and Christin 2014; Hao et al. 2016; Sabottke, Su-
ciu, and Dumitras 2015) - along the same line comes our
work. Several approaches to evaluating the severity of soft-
ware vulnerabilities and predicting whether they will be ex-
ploited have been pursued. The National Institute of Stan-
dards and Technology, NIST, uses Common Vulnerability
Scoring System (CVSS) to assess the severity of the vul-
nerability (Quinn et al. 2010). This metric assigns a score
to vulnerabilities, which is formulated using different char-
acteristics, such as ease of exploit and scale of damage it
may cause if exploited (Scarfone and Mell 2009). Unfortu-
nately, this metric was proven not to be very effective, since
it marks many vulnerabilities as exploitable though majority
of them will never be attacked (Allodi and Massacci 2014).

Figure 1: The framework of DarkEmbed.

This is also the shortcoming of other standard scoring sys-
tems, such as Microsoft's exploitability index 2 and Adobe
Priority Rating 3.

With the ever growing number of vulnerabilities discov-
ered and the threats they pose, different data sources have
been generated and are publicly available to help enhance
cybersecurity. Some previous works have combined these
different data sources to get more accurate predictions (Bo-
zorgi et al. 2010; Edkrantz and Said 2015), specially since
machine learning algorithms can easily combine these dif-
ferent sources to achieve best results. NVD and ExploitDB
are among those data sources used in different methods.
NVD: NIST provides this database which has a list of vulner-
abilities disclosed, it also contains descriptions, CVSS score
and other metrics for each vulnerability. ExploitDB 4: It is
a repository for exploits, reported by security researchers. It
provides proof of concept exploits which shows the vulner-
ability is exploitable but not necessary exploited. Another
data source is blog posts written by cyber security experts,
security analysts as well as white hat hackers, which has not
been used in previous works and provides news and updated
information about cyber security topics.

In other previous works it has been proposed that using
discussions surrounding a vulnerability in social media like
Twitter (Mittal et al. 2016) or marketplaces on the darkweb
(Marin, Diab, and Shakarian 2016; Samtani et al. 2016) can
help predict exploitation. Specifically, (Sabottke, Suciu, and
Dumitras 2015) was able to predict exploited vulnerabilities
more accurately than existing methods. However, it looks at
the words surrounding that vulnerability which fails to cap-
ture semantics of the words and leads to data sparsity and
high dimensionality. The approach discussed in the current
paper addresses some of the problems of existing methods
by using neural embeddings of discussions about vulnera-
bilities.

Methodology

Our framework for exploit prediction consists of two com-
ponents: (1) learning embeddings of D2Web posts, and (2)
exploit classifier. Figure 1 illustrates the juxtaposition of
these components. We learn the distributed representations
of the D2Web posts and use them as features, potentially
with other features, such as CVSS score and exploitDB, in a

2https://technet.microsoft.com/en-us/security/cc998259.aspx
3https://helpx.adobe.com/security/severity-ratings.html
4https://www.exploit-db.com

7850



classifier which predicts whether vulnerabilities mentioned
in the posts will be exploited.

D2Web Crawling Infrastructure

To collect data, we use the infrastructure for crawling the
darkweb and deepweb originally introduced in (Robert-
son et al. 2017; Nunes et al. 2016). In this context, dark-
web refers to sites accessed through anonymization proto-
cols such as Tor and I2P, while deepweb refers to non-
indexed sites on the open Internet (Shakarian, Gunn, and
Shakarian 2016). The crawling infrastructure handles sites
of both types. The framework consists of an infrastructure
that enables lightweight crawlers and parsers that are fo-
cused on specific sites. At the time of this writing, we have
created crawlers and parsers for a manually-compiled list of
over 200 sites relating to malicious hacking and/or online fi-
nancial fraud, including fishing, spear-fishing, ransomware,
credit card frauds, etc. This framework also helps ensure
that the obtained data remains relevant to cyber-security: in-
deed, many darkweb and deepweb sites also create forums
for other illicit activities, such as drug markets and the sale
of stolen goods.

Learning Embeddings

Recent works in natural language processing popularized
distributed representation learning and introduced a family
of neural language models (Bengio et al. 2003; Mnih and
Hinton 2007) to model sequences of words in sentences
and documents. These models embed words in a fixed-
dimension vector space, such that words in similar con-
texts tend to produce similar representations in vector space.
These distributed representations of words capture many lin-
guistic regularities of human language, such as syntactic, se-
mantic similarity and logical analogy. We learn a context-
based representation of D2Web posts in two steps. First, we
learn distributed representations of words using word em-
bedding. To go from distributed representations of words to
distributed representations of variable-length D2Web posts,
we could simply aggregate vectors of all the words contained
in a post and compute their average. However, this meth-
ods does not work as well as using paragraph embedding to
learn the global context of words in the entire post. We de-
scribe these methods below. An embedding projects words
in a lower-dimensional vector space with d dimensions, so
that each word wi is represented by a d-dimensional vector
vi. Words that are used in similar contexts will be closer to
one another in this vector space. While context usually im-
plies semantic or meaning of the word, here it simply cap-
tures how the word is used within a sequence of words. For
example, given two sentences—“The cat sat on the mat.”
and “The dog sat on the floor.”—“dog” and “cat” are used in
similar contexts, and thus, may be similar.

Of the many proposed models for learning distributed
representations (Mikolov et al. 2013a; 2013b; Bengio et
al. 2003; Collobert and Weston 2008), we use Skip-Gram
with Negative Sampling (SGNS) (Mikolov et al. 2013b).
The model takes as input a tokenized text corpus C =
{w1, w2, . . . , wn} and creates a context for each word wi

Figure 2: Framework for learning paragraph vectors.

as {wi−k, . . . , wi−1, wi+1, . . . , wi+k} where k is the con-
text length. Given the embedding of word wi, vi, the
model aims to reconstruct the embedding of the con-
text, {vi−k, . . . , vi−1, vi+1, . . . , vi+k}. It randomly samples
“negative” examples i.e. words which do not co-occur to-
gether and maximizes (minimizes) the probability of observ-
ing positive (negative) examples from the data.

To learn the distributed representation for the entire post,
we follow the intuition of learning word embeddings. Here,
instead of predicting a context for a particular word, the
model samples multiple contexts from the paragraph and
predicts the next word given the context (Figure 2). The
context is obtained using a sliding window of length k over
the paragraph. The representation is learned using stochas-
tic gradient descent (Rumelhart, Hinton, and Williams 1988)
and gradients are calculated using back propagation.

We use all the posts to learn distributed representations,
since having a larger corpus helps to learn better embed-
dings. One of the advantages of using the paragraph vec-
tor is that it simplifies the task of handling multiple lan-
guages. Posts in different languages are embedded in the
same vector space, making their comparison easier. In ad-
dition, since they may naturally fall into different clusters
within this space, it is easy to identify the language of the
post, which may help learn the language bias in D2Web vul-
nerability posts leading to more accurate exploit prediction.

Classification

We formulate exploit prediction as a classification task.
Given a set of posts discussing vulnerabilities and ground
truth containing positive examples (vulnerabilities for which
exploits exist in the wild), we train a classifier to recog-
nize posts that discuss exploited vulnerabilities. As features
for the classifier, we use vectors representing post embed-
dings and number of times a vulnerability was mentioned in
D2Web. Then, given a new post mentioning a vulnerability,
the classifier decides whether that vulnerability is exploited.

For this problem Support Vector Machines (SVM) (Cortes
and Vapnik 1995) with Radial basis function (RBF) kernel
performs better than other examined classifiers. SVM is a
supervised learning model which finds a set of hyperplanes
that best separate different classes by having the largest mar-
gin. We also explored using Random Forest classifier, a
combination of decision trees (Quinlan 1986), in which ran-

7851



Figure 3: Comparison of the performance of classifiers for
vulnerability exploit prediction.

dom selection of features are given and the final output is
decided by taking a vote from individual tree predictors.

Results

We used a dataset containing almost 2,500,000 messages
posted on a variety of darkweb and deepweb sites over the
period from 2010 through August 2017. These posts were
in 17 different languages, with English, Arabic and Russian
being the most common languages. We identified vulnera-
bilities mentioned in D2Web posts using regular expression
patterns to match CVEs, the unique identifiers of vulnera-
bilities. Since our goal is to predict vulnerabilities that are
likely to be exploited, the posts referencing vulnerabilities
after the exploitation date were removed from the data. This
filtering step left 4898 posts mentioning 1886 distinct CVEs,
some vulnerabilities were mentioned in more than one post.
For the posts mentioning more than one vulnerability, we
only considered the less frequently mentioned CVE. The
ground truth was obtained from two sources: (1) Symantec's
anti-virus 5 and Intrusion Detection Systems 6 attack signa-
tures and (2) a database of the exploits deployed for Metas-
ploit.

Symantec attack signatures report exploits detected in the
wild and their corresponding vulnerabilities, along with the
time the exploit was discovered. Metasploit is a popular
open source penetration testing framework which allows us-
age of install-and-test exploits developed by the cybersecu-
rity community and a company called Rapid77. Each Metas-
ploit's exploit is reported with the date it was deployed. The
vulnerabilities mentioned on D2Web were labeled positive,
if they have a corresponding attack signature in Symantec's
list or exploits available on Rapid7's site, and negative other-
wise. Of the CVE mentioned on D2Web, only 149 are clas-
sified as exploited - these represent only 8% of the vulnera-
bilities in our dataset.

5https://www.symantec.com/security response/landing/azlisting.jsp
6https://www.symantec.com/security response/attacksignatures/
7https://www.rapid7.com/db/modules/

Exploit Prediction

We train a classifier to recognize vulnerabilities discussed in
posts that will be subsequently exploited. We use F1 score
and AUC (area under the ROC-curve) to evaluate classifi-
cation performance. To optimize performance, we tune pa-
rameters to the data. Most of the parameters are for learning
the embeddings, including dimension of the representations,
window size, the degree of negative sampling, and frequency
threshold for words. Having a high dimension space gives
the model the ability to better represent the posts; however,
it takes more space and might lead to sparse representations.
Window is the context referred to in previous sections, used
for predicting the next word. Higher window sizes takes
longer to train but it might be able to better capture the con-
text. Negative sampling means randomly sampling words
which do not co-occur together, and minimizing the prob-
ability of observing those words together.

Comparison to Baseline

As an alternative to word embeddings, we use TF-IDF-based
representation of D2Web posts as the baseline for compar-
ing performance. This approach is similar in spirit to exist-
ing work that predicts exploits based on online discussions
of vulnerabilities (Sabottke, Suciu, and Dumitras 2015). TF-
IDF approach represents posts as vectors with the same
length as the vocabulary of the entire text corpus, i.e., posts.
Each entry in the vector corresponds to a unique word, and
its weight gives the frequency of that word in the post (TF)
divided by its document frequency (IDF), i.e., the number
of posts in which the word appears. Since the TF-IDF vec-
tors can be quite large, classification methods using them
would experience slow processing time and large memory
usage. To reduce the size of document vectors, instead of
the entire vocabulary, often a subset of the most frequent
words is used to represent the documents. These document
vectors are then used in the classification task. Also since
TF-IDF results in high dimensional representations, random
forest can usually perform better in these problems, hence
we used both classifiers (SVM and Random Forest) on TF-
IDF features. Figure 3 reports the performance of (1) the ran-
dom forest classifier and (2) the SVM classifier on TF-IDF
vectors as features. The TF-IDF vectors were constructed
for words appearing more than once in the dataset (61,995
words). Finally, the figure also reports the performance of
DarkEmbed using a 101 dimensional embedding space and
SVM classifier. DarkEmbed outperforms baseline.

Adding Features

Post embeddings can be combined with other features of
vulnerabilities to improve performance of exploit prediction.
For example a binary feature indicating whether the vulnera-
bility appears in ExploitDB, or its CVSS scores from NVD,
can be used by the classifiers to improve performance. To
illustrate, we combined CVSS score for each vulnerability
and a binary feature for ExploitDB with D2Web post's em-
beddings. The added features improved classification perfor-
mance from F1 measure of 0.66 to 0.74. Figure 4 shows that
incrementally adding each feature improves classifier per-
formance.

7852



Figure 4: Performance of classifiers using additional features
on the vulnerability exploit prediction task. Each new fea-
ture is added incrementally.

Table 1: Classification results on different methods
Method F1 AUC

Baseline methods
TF-ID(RF) 0.54 0.69
TF-IDF(SVM) 0.60 0.78

DarkEmbed
101 dimensions 0.66 0.84

Adding features to DarkEmbed(101 dim)
+ExploitDB 0.66 0.87
+CVSS-Score 0.74 0.92
Using blogs to detect exploited vulnerabilities
Blogs 0.80 0.87

Using Security Blogs

As mentioned earlier, the ground truth for this task was ob-
tained from Symantec and Metasploit penetration tools. Al-
though most cyber attacks are caused by a handful of vul-
nerabilities, which are already included in our ground truth,
there are other exploited vulnerabilities that are not included
in these sources. To address this gap in the ground truth, we
used blogs written by cyber security experts to identify new
exploited vulnerabilities. We collected blog posts from 218
cyber security experts, covering period from 2001 to 2017.

To identify exploited vulnerabilities mentioned in blogs,
we applied the DarkEmbed approach to blogs by using em-
beddings of blogs, along with other features, to classify vul-
nerabilities. Here, we did not filter out posts published af-
ter exploit date as we aim to detect exploited vulnerabilities
instead of predicting them. Also, we only considered posts
mentioning a single vulnerability. We used embedding of
size 150 (blog posts are lengthier that darkweb posts), CVSS
score and number of times a vulnerability was mentioned
in this dataset as features. Note that the optimal embedding
size was obtained through cross validation. With 1613 blog
posts in our dataset, we were able to achieve F1 = 0.80 and
AUC = 0.87.

Table 2: Software related discriminative words identified by
DarkEmbed

Category Words # of vul. # of exploits % exploits
Flash 19 14 73.7%
Adobe 21 14 66.7%

Positive XP 16 10 62.5%
Microsoft 68 25 36.8%
Windows 42 13 31.0%

iOS 4 0 0%
Samba 7 0 0%

Negative Kernel 16 0 0%
Android 30 0 0%
Linux 38 6 15.8%

Distinctive Words

In order to better interpret DarkEmbed results, we identi-
fied key words in D2Web indicative of exploitability. Using
classifications of our final classifier, D2Web posts were sep-
arated into two classes: posts mentioning exploited vulnera-
bilities (positive) and other posts (negative). Frequencies of
words in a specific class relative to the size of the class were
calculated. The words with highest difference in relative fre-
quencies between the two classes were marked as distinctive
words of that class. Since D2Web posts are in different lan-
guages many of these words were not in English.

The distinctive words identified fall into two categories:
general purpose words and software related words. Some
general words indicative of exploitation identified by Dark-
Embed are “exploit”, “vulnerable” and “push” while those
associated with low exploitation probability are “long”,
“char” and “local”. Table 2 shows words related to software
identified by our model to positively and negatively impact
exploitability. We observe that the software detected corre-
late with the exploits in the wild. For example, more than
50% of the vulnerabilities of Flash, Adobe and Microsoft
were exploited whereas none of vulnerabilities associated
with iOS, Samba and Android were exploited.

Discussion and Future Work

Learning distributed representations of discussions on
D2Web, by embedding them in a lower-dimensional space,
leverages the ability of neural language models to capture
fine-grained statistical relationships between words. Instead
of treating each word independently, as traditional statistical
approaches to text analysis do, embeddings capture deeper
relationships between words that represent their meaning in
context. Another advantage of this approach is its compres-
sion: for example, we used it to represent a corpus with over
a million posts and tens of thousands of unique words using
vectors of length 100. In contrast, traditional text approaches
require large vectors to represent frequencies of all words.

We showed that post embeddings allow us to learn fea-
tures of discussions about vulnerabilities on the D2Web that
are useful for predicting whether the vulnerabilities will be
exploited in the wild. We did this by training a classifier
to use post embeddings to discriminate between discussions
about exploited vulnerabilities.

Further research is needed to understand the interpretation

7853



of features learned using distributed representations. An-
other direction is applying this approach to other discussion
forums where malicious actors may discuss software vulner-
abilities. For example, social media posts are an interesting
application domain that poses challenges to text analysis due
to the brevity of posts.

Acknowledgements

This work was supported by the Office of the Director of Na-
tional Intelligence (ODNI) and the Intelligence Advanced
Research Projects Activity (IARPA) via the Air Force Re-
search Laboratory (AFRL) contract number FA8750-16-C-
0112. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or im-
plied, of ODNI, IARPA, AFRL, or the U.S. Government.

References

Allodi, L., and Massacci, F. 2014. Comparing vulnerability
severity and exploits using case-control studies. ACM Trans.
Inf. Syst. Secur. 17(1):1:1–1:20.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of Machine
Learning Research 3:1137–1155.
Bozorgi, M.; Saul, L. K.; Savage, S.; and Voelker, G. M.
2010. Beyond heuristics: Learning to classify vulnerabilities
and predict exploits. In KDD2010, 105–114.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In ICML, 160–167.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Mach. Learn. 20(3):273–297.
Edkrantz, M., and Said, A. 2015. Predicting cyber vulnera-
bility exploits with machine learning. In SCAI.
Hao, S.; Kantchelian, A.; Miller, B.; Paxson, V.; and Feam-
ster, N. 2016. Predator: Proactive recognition and elimina-
tion of domain abuse at time-of-registration. In CCS2016,
1568–1579.
Kostov, N.; Neumann, J.; and Woo, S. 2017. Cyberattack
victims begin to assess financial damage. Wall Street Jour-
nal.
Le, Q., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In Xing, E. P., and Jebara, T.,
eds., ICML, volume 32, 1188–1196.
Liu, Y.; Sarabi, A.; Zhang, J.; Naghizadeh, P.; Karir, M.; Bai-
ley, M.; and Liu, M. 2015. Cloudy with a chance of breach:
Forecasting cyber security incidents. In Usenix Security.
Marin, E.; Diab, A.; and Shakarian, P. 2016. Product offer-
ings in malicious hacker markets. In ISI, 187–189.
Martin, G.; Kinross, J.; and Hankin, C. 2017. Effective
cybersecurity is fundamental to patient safety.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Mittal, S.; Das, P. K.; Mulwad, V.; Joshi, A.; and Finin, T.
2016. Cybertwitter: Using twitter to generate alerts for cy-
bersecurity threats and vulnerabilities. In ASONAM, 860–
867.
Mnih, A., and Hinton, G. 2007. Three new graphical models
for statistical language modelling. In ICML, 641–648.
Nunes, E.; Diab, A.; Gunn, A.; Marin, E.; Mishra, V.;
Paliath, V.; Robertson, J.; Shakarian, J.; Thart, A.; and
Shakarian, P. 2016. Darknet and deepnet mining for proac-
tive cybersecurity threat intelligence. In ISI, 7–12. IEEE.
Quinlan, J. R. 1986. Induction of decision trees. Mach.
Learn. 1(1):81–106.
Quinn, S. D.; Scarfone, K. A.; Barrett, M.; and Johnson,
C. S. 2010. Sp 800-117. guide to adopting and using the se-
curity content automation protocol (scap) version 1.0. Tech-
nical report, Gaithersburg, MD, United States.
Robertson, J.; Diab, A.; Marin, E.; Nunes, E.; Paliath, V.;
Shakarian, J.; and Shakarian, P. 2017. Darkweb Cyber
Threat Intelligence Mining. Cambridge University Press.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988.
Neurocomputing: Foundations of research. Cambridge,
MA, USA: MIT Press. chapter Learning Representations
by Back-propagating Errors, 696–699.
Sabottke, C.; Suciu, O.; and Dumitras, T. 2015. Vulnerabil-
ity disclosure in the age of social media: Exploiting twitter
for predicting real-world exploits. In USENIX, 1041–1056.
Samtani, S.; Chinn, K.; Larson, C.; and Chen, H. 2016.
Azsecure hacker assets portal: Cyber threat intelligence and
malware analysis. In ISI, 19–24.
Scarfone, K., and Mell, P. 2009. An analysis of cvss version
2 vulnerability scoring. In SESM, 516–525.
Shakarian, J.; Gunn, A. T.; and Shakarian, P. 2016. Explor-
ing malicious hacker forums. In Cyber Deception. Springer.
261–284.
Soska, K., and Christin, N. 2014. Automatically detecting
vulnerable websites before they turn malicious. In Usenix
Security, 625–640.

7854


