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Abstract

Classifying products precisely and efficiently is a major chal-
lenge in modern e-commerce. The high traffic of new prod-
ucts uploaded daily and the dynamic nature of the categories
raise the need for machine learning models that can reduce
the cost and time of human editors. In this paper, we propose a
decision level fusion approach for multi-modal product clas-
sification based on text and image neural network classifiers.
We train input specific state-of-the-art deep neural networks
for each input source, show the potential of forging them to-
gether into a multi-modal architecture and train a novel pol-
icy network that learns to choose between them. Finally, we
demonstrate that our multi-modal network improves classi-
fication accuracy over both networks on a real-world large-
scale product classification dataset that we collected from
Walmart.com. While we focus on image-text fusion that char-
acterizes e-commerce businesses, our algorithms can be eas-
ily applied to other modalities such as audio, video, physical
sensors, etc.

Introduction

Product classification is a key issue in e-commerce busi-
nesses. A product is typically represented by metadata such
as its title, image, color, weight and so on, and most of
them are assigned manually by the seller. Once a product
is uploaded to an e-commerce website, it is typically
placed in multiple categories. Categorizing products helps
e-commerce websites to provide costumers with a better
shopping experience, for example by efficiently searching
the products catalog or by developing recommendation sys-
tems. A few examples of categories are internal taxonomies
(for business needs), public taxonomies (such as groceries
and office equipment) and the product’s shelf (a group of
products that are presented together on an e-commerce web
page). These categories vary with time to optimize search
efficiency and to account for special events such as holidays
and sports events. To address these needs, e-commerce
websites typically hire editors and use crowdsourcing
platforms to classify products. However, due to the high
amount of new products uploaded daily and the dynamic
nature of the categories, machine learning solutions for
product classification are appealing as means to reduce
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Figure 1: The printers & supplies shelf from Walmart.com.
Specific products (printers in this case) are presented using
meta data such as image, title, and price.

the time needed to classify products as well as cost. Thus,
precisely categorizing items emerge as a significant issue in
e-commerce domains.

In this paper, we refer to a shelf as a group of products
presented together on an e-commerce website page and usu-
ally contain products with a given category (see Figure 1 for
an example of the printers&supplies shelf on Walmart.com).
Product to shelf classification is a challenging problem
due to data size, category skewness, and noisy metadata
and labels. In particular, it presents three fundamental
challenges for machine learning algorithms. First, it is
typically a multi-class problem with thousands of classes.
Second, a product may belong to multiple shelves making
it a multi-label problem. And last, a product has both an
image and a text input making it a multi-modal problem.
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Figure 2: E-commerce classification diagram.

Products classification is typically addressed as a text
classification problem because most metadata of items are
represented as textual features (Pyo, Ha, and Kim 2010).
Text classification is a classic topic for natural language pro-
cessing, in which one needs to assign predefined categories
to text inputs. Standard methods follow a classical two-stage
scheme of extraction of (handcrafted) features, followed by
a classification stage. Typical features include bag-of-words
or n-grams, and their TF-IDF. On the other hand, Deep
Neural Networks use generic priors instead of specific
domain knowledge (Bengio, Courville, and Vincent 2013)
and have been shown to give competitive results on text
classification tasks (Zhang, Zhao, and LeCun 2015). In par-
ticular, Convolutional neural networks (CNNs) (Kim 2014;
Zhang, Zhao, and LeCun 2015; Conneau et al. 2016) and
Recurrent NNs (Lai et al. 2015; Pyo, Ha, and Kim 2010;
Xiao and Cho 2016) can efficiently capture the sequen-
tiality of the text. These methods are typically applied
directly to the distributed embedding of words (Kim 2014;
Lai et al. 2015; Pyo, Ha, and Kim 2010) or characters
(Zhang, Zhao, and LeCun 2015; Conneau et al. 2016;
Xiao and Cho 2016), without any knowledge on the syn-
tactic or semantic structures of a language. However, all
of these architectures were only applied on problems with
a few labels (∼ 20) while e-commerce shelf classification
problems typically have thousands of labels with multiple
labels per product.

In Image classification, CNNs are widely considered
the best models, and achieve state-of-the-art results on
the ImageNet Large-Scale Visual Recognition Chal-
lenge (Russakovsky et al. 2015; Krizhevsky, Sutskever,
and Hinton 2012; Simonyan and Zisserman 2014;
He et al. 2015). However, as good as they are, the
classification accuracy of machine learning systems is often
limited in problems with many classes of object categories.
One remedy is to leverage data from other sources, such
as text data. However, the studies on multi-modal deep
learning for large-scale item categorization are still rare to
the best of our knowledge.

In this work, we propose a multi-modal deep neural
network for product classification. Our design principle is
to leverage the specific prior for each data type by using the
current state-of-the-art classifiers from the image and text
domains. The final architecture has 3 main components:

a text CNN (Kim 2014), an image CNN (Simonyan and
Zisserman 2014) and a deep policy network that learns to
choose between them. We collected a large-scale data set of
1.2 million products from the Walmart.com website. Each
product has a title and an image and needs to be classified
to a shelf (label) with 2890 possible shelves. Examples
from this dataset can be seen in Figure 3 and are also
available online at the Walmart.com website. For most of
the products, both the image and the title of each product
contain relevant information for customers. However, it is
interesting to observe that for some of the products; both
input types may not be informative for shelf prediction (See
Figure 3 for examples). This observation motivates our
work and raises interesting questions: which input type is
more useful for product classification? Is it possible to forge
the inputs into a better architecture?

Our experiments suggest that the text information is
more informative than the images for shelf classification.
However, for a relatively large number of products (∼ 8%),
the image CNN is correct while the text CNN is wrong,
indicating a potential gain from using a multi-modal
architecture. We also show that we can train a deep policy
to choose between the two models and give a performance
improvement over both state-of-the-art networks.

To the best of our knowledge, this is the first work that
achieves a performance improvement on classification ac-
curacy by using multi-modality on a large-scale classifica-
tion problem (see Table 1 for more details). In particular,
our main contributions are: (1) We solve a challenging real-
world e-commerce classification problem using state-of-
the-art CNNs and demonstrate that text-based classification
is better than image-based for this dataset. (2) We propose
a new algorithm that learns a decision fusion rule using
a deep network. And (3), we demonstrate that our multi-
modal architecture improves classification accuracy over
both input-specific networks.

Multi-Modality

Over the years, a large body of research has been devoted to
improving classification using ensembles of classifiers (Kit-
tler et al. 1998; Hansen and Salamon 1990). Inspired by their
success, these methods have also been used in multi-modal
settings, e.g., (Guillaumin, Verbeek, and Schmid 2010; Poria
et al. 2016), where the source of the signals, or their modal-
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Figure 3: Shelves from Walmart.com. Left: a product that has both an image and a title that contain useful information for
predicting the product’s shelf. Center, top: the boots title gives specific information about the boots but does not mention that
the product is a boot, making it harder to predict the shelf. Center, bottom: the baby toddler shirt’s title only refers to the text on
the toddler shirt and does not mention that it is a product for babies. Right, top: the umbrella image contains information about
its color, but it is hard to understand that the image is referring to an umbrella. Right, bottom: the lips pencil image looks like a
regular pencil, making it hard to predict that it belongs to the moisturizers shelf.

ities, are different. Some examples include audio-visual
speech classification (Ngiam et al. 2011), image and text re-
trieval (Kiros, Salakhutdinov, and Zemel ), sentiment analy-
sis and semi-supervised learning (Guillaumin, Verbeek, and
Schmid 2010).

Combining classifiers from different input sources
presents multiple challenges. First, classifiers vary in their
discriminative power; thus, an optimal unification method
should be able to adapt itself for specific combinations
of classifiers. Second, different data sources have differ-
ent state-of-the-art architectures, typically deep neural
networks, which vary in depth, width, and optimization
algorithm; making it non-trivial to merge them. Moreover, a
multi-modal design potentially has more local minima that
may give unsatisfying results. Finally, most of the publicly
available real-world big data classification datasets, an
essential building block of deep learning systems, typically
contain only one data type.

Nevertheless, the potential performance boost of multi-
modal architectures has motivated researchers over the

years. Frome et al. 2013, combined an image network
(Krizhevsky, Sutskever, and Hinton 2012) with a Skip-
gram Language Model in order to improve classification
results on ImageNet. However, they were not able to
improve the accuracy prediction, possibly because the
text input they used (image labels) didn’t contain a lot of
information. Other works, used multi-modality to learn
good embedding but did not present results on classifica-
tion benchmarks (Lynch, Aryafar, and Attenberg 2015;
Kiros, Salakhutdinov, and Zemel ; Gong et al. 2014). Kan-
nan et al. 2011, suggested to improve text-based product
classification by adding an image signal, training an image
classifier and learning a decision rule between the two.
However, they only experimented with a small dataset and a
low number of labels, and it is not clear how to scale their
method for extreme multi-class multi-label applications that
characterize real-world problems in e-commerce. Table 1
summarizes the contribution of prior works on multi-modal
classification. The Table implies that our work is the first
that shows improvement in classification accuracy on a
large scale dataset.
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Data
size

# labels Multi-
Modality

Classification
improvement

Krizhevsky, Sutskever, and Hinton 1M 1K �1

Pyo, Ha, and Kim 5M 500 �2

Poria et al. 30k 100 3

Ngiam et al. 10k 100 �4

Kannan et al. 30K 17
Frome et al. 1M 1K �5

Ours 1M 3K

Table 1: Previous works on multi-modal classification. Comments: 1-2 use pre-defined decision level fusion rules. 1 and 2 do
fusion from the same modality. 4,5 show improvement in classification but not on accuracy (4 on a noisier test set and 5 on
hierarchical accuracy).

Most unification techniques for multi-modal learning
are partitioned between feature-level fusion techniques and
decision-level fusion techniques (Figure 4, left).

Decision-level fusion. In this approach, an input-specific
classifier is learned for each modality, and the goal is to find
a decision rule that selects one from them. The decision rule
is typically a pre-defined rule (Guillaumin, Verbeek, and
Schmid 2010) and is not learned from the data. For example,
Poria et al. 2016, chose the classifier with the maximal
confidence, while Krizhevsky, Sutskever, and Hinton 2012,
average classifier predictions. However, in our setting,
there is a significant difference in discriminative power
between the text and image networks. Thus, pre-defined
rules suffer from bias and do not perform well. In this work,
we suggest to solve this problem by learning the decision
rule with a deep neural network and demonstrate that it
yields significantly better results on our data.

Feature level fusion. In the deep learning context, there
are two standard approaches. In the first method, we learn
an end-to-end deep NN; the NN has multiple input-specific
pipes that include a data source followed by input-specific
layers. After a certain depth, the pipes are concatenated fol-
lowed by additional layers such that the NN is trained end-
to-end. In the second approach, step-by-step, input specific
deep NNs are learned first, and a multi-modal representation
vector is created by concatenating the data specific feature
vectors (e.g., the neural network’s last hidden layer). Then,
an additional classifier learns to classify from the multi-
modal representation vector.

Methods and architectures

Multi label cost function. We use the weighted sigmoid
cross entropy with logits, a common cost function for multi-
label problems. Let x be the logits, z be the targets, q be a
positive weight coefficient, used as a multiplier for the posi-
tive targets, and σ(x) = 1

1+exp(−x) . The loss is given by:

Cost(x,z;q) = − qz · log(σ(x))− (1− z) · log(1− σ(x)) =

(1− z) · x+ (1 + (q − 1) · z) · log(1 + exp(−x)).

The positive coefficient q, allows one to trade off recall
and precision by up- or down-weighting the cost of the
positive error relative to the negative error.

Text classification. For the text signal, we use the text
CNN architecture of Kim (Kim 2014). The first layer
embeds words into low-dimensional vectors using random
embedding (different than the original paper). The next
layer performs convolutions overtime on the embedded
word vectors using multiple filter sizes (3, 4 and 5), where
we use 128 filters from each size. Next, we max-pool-over-
time the result of each convolution filter and concatenate all
the results together. We add a dropout regularization layer
(0.5 dropping rate), followed by a fully connected layer, and
classify the result using a softmax layer.

Image classification. For the image signal, we use the
VGG Network (Simonyan and Zisserman 2014). The input
to the network is a fixed-size 224 x 224 RGB image. The
image is passed through a stack of convolutional layers with
a small receptive field: 3 x 3. The convolution stride is fixed
to 1 pixel; the spatial padding of the convolutional layer is
1 pixel. Spatial pooling is carried out by five max-pooling
layers, which follows some of the convolutional layers.
Max-pooling is performed over a 2 x 2 pixel window,
with stride 2. A stack of convolutional layers is followed
by three Fully-Connected (FC) layers: the first two have
4096 channels each, the third performs 2890-way product
classification and thus contains 2890 channels (one for each
class). A ReLu non-linearity follows all hidden layers.

Multi-modal architectures. We experimented with four
types of multi-modal architectures. (1) Learning decision-
level fusion policies from different inputs. (1a) Policies that
use the text and image CNNs class probabilities as input
(Figure 4, right). For this input type, we experimented with
architectures that have one or two fully connected layers
(the two-layered policy is using 10 hidden units and a ReLu
non-linearity between them). (1b) Policies that use the text
and/or image as input. For these policies, the architecture
of the policy network was either the text CNN or the VGG
network. The labels for the policy training were collected
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Figure 4: Left: multi-modal approaches. Right: The proposed, decison-level multi-modal fusion architecture.

from the image and text networks predictions, i.e., the label
is 1 if the image network made a correct prediction while
the text network made a mistake, and 0 otherwise. On eval-
uation, we used the policy predictions to select between the
models, i.e., if the policy prediction is 1 we use the image
network, and use the text network otherwise. (2) Pre-defined
policies that average the predictions of the different CNNs
or choose the CNN with the highest confidence. (3) End-
to-end feature-level fusion, each input type is processed by
its specific CNN. We concatenate the last hidden layers of
the CNNs and add one or two fully connected layers. All
the layers are trained together end-to-end (we also tried to
initialize the input specific weights from pre-trained single-
modal networks). (4) Multi-step feature-level fusion. As in
(3), we create shared representation vector by concatenat-
ing the last hidden layers. However, we now keep the shared
representation fixed and learn a new classifier from it.

Experiments

In this Section, we provide experimental results for deep
multi-modal fusion. We start by describing our dataset
and presenting exploratory analysis results for training
single-modal deep neural nets on it. These results are
summarized in Table 2. We then present results on multi-
modal fusion techniques. We start by describing results
on learning decision-level rules with neural networks
(Table 3), which is the method that performed best in
practice. For completeness, we also present results for using
pre-defined decision rules and feature-level fusion (Table 4).

Setup. Our dataset contains 1.2 million products (title
image and shelf) that we collected from Walmart.com and
were deemed the hardest to classify by the current produc-
tion system. We divide the data into training (1.1 million)
validation (50k) and test (50k). We train both the image
network and the text network on the training dataset and
evaluate them on the test dataset. The policy is trained on the
validation dataset and is also evaluated on the test dataset.

The objective is to classify the product’s shelf, from 2890
possible choices. Each product is typically assigned to more
than one shelf (3 on average), and the network is considered
accurate if its most probable shelf is one of them. Our code
was implemented using TensorFlow and is available online
at 〈https://github.com/TomZahavy/multi modality〉.

Exploratory analysis

Text Preprocess: each word is embedded into a random
vector in R100 using a dictionary of the 100k most common
words in the training data. Titles with more than 40 words
are trimmed, and shorter titles are padded with nulls.
Results: The best CNN that we trained classified 70.1% of
the test set products correctly (Table 2). The best architec-
ture was chosen after experimenting with different batch
sizes, dropout rates, and filters strides. We found that this
architecture is not sensitive to hyperparameters, which is
consistent with the results of Zhang and Wallace 2015. We
also tuned the cost function positive coefficient parameter
q, and found out that the value 30 performed best.

Test %
Text is correct 70.1
Image is correct 56.7
Text is correct, image is wrong 21.9
Image is correct, text is wrong 7.8
Both are correct 47.9
Both are wrong 22.4
At least one modality is correct 79.9

Table 2: Exploratory analysis.

Image: Preprocess: each image was re-sized to 224 x 224
pixels and the training set mean image was subtracted from
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Policy network input # layers q Policy Optimal
Policy

Policy
accuracy

Top-1 class probability 1 5 71.4 (+1.3) 77.5 (+7.8) 86.4
Top-1 class probability 2 5 71.5 (+1.4) 77.6 (+7.5) 84.2
All class probability 2 5 71.4 (+1.3) 77.6 (+7.5) 84.6
Top-3 class probabilities 2 5 71.8 (+1.7) 77.7 (+7.6) 84.2

Top-3 class probabilities 2 1 70.2 (+0.1) 77.7 (+7.5) 92.5
Top-3 class probabilities 2 7 71.0 (+0.9) 77.5 (+7.4) 79.1
Top-3 class probabilities 2 10 70.7 (+0.6) 77.6 (+7.5) 75.0
Image - 5 68.5(-1.6) 77.6 (+7.5) 80.3
Text - 5 69.0 (-1.1) 77.6 (+7.5) 83.7
Both - 5 66.1 (-4) 77.6 (+7.5) 73.7

Table 3: Decision-level fusion results. Each row presents a different policy configuration (defined by the policy input, the
number of layers and the value of q), followed by the accuracy % of the image, text, policy and the optimal policy (if available,
uses the correct modality) classifiers on the test dataset. The policy accuracy column presents the accuracy % of the policy in
making correct predictions, i.e., choosing the image network when it made a correct prediction while the text network didn’t.
Numbers in (+·) refer to the performance gain over the text CNN. Class probabilities refer to the number of class probabilities
(outputs of each single-modality networks last’s layer) used as input.

it.
Results: The best VGG network that we trained classified
56.7% (Table 2) of the test products correctly. The per-
formance of the VGG network on ImageNet, on the other
hand, is ∼ 75%. The following postulates may explain
this gap. First, Figure 3 implies that some of our images
are not informative for shelf classification. As we deal
with a real-world problem, there are no guarantees on
how easy it to classify products correctly based on images
alone. Imagenet, on the other hand, is a scientific dataset,
and each image is related to its actual category. Second,
our data has three times more classes and contains mul-
tiple labels per image, thus, making the classification harder.

Error Analysis: Looking at Table 2 (top), we observe that
the text network (70.1%) outperformed the image network
(56.7%) on our dataset, so maybe, an image does not worth
a thousand words after all. We note that similar results were
reported in other e-commerce domains (Pyo, Ha, and Kim
2010; Kannan et al. 2011). Next, we were interested in mea-
suring the potential of multi-modality. By analyzing the er-
rors of each single-modal network (Table 2 , bottom), we
can see that there is a relatively large potential (7.8%) to
harness via multi-modality. We note that this large gap is
an encouraging result for multi-modality, in particular since
different neural networks applied to the same input source
tend to make the same mistakes (Szegedy et al. 2013).

Multi-modal unification techniques

Our exploratory analysis experiments highlight the potential
of merging image and text inputs. Still, we found it hard to
achieve the optimal multi-modal fusion that was observed
in the error analysis experiment. We now describe in detail

the decision-level fusion policies that managed to reach the
best performance boost in accuracy. We then provide results
on pre-defined rules and feature-level fusion. Since these
methods did not provide an improvement in accuracy, we
only report the best configuration for each technique.

Decision-level fusion

Input type: We trained policies from the different data
sources, i.e., title, image, and the class probabilities (the
softmax probabilities) of the image and text CNNs as
inputs. Looking at Table 3, we can see that the best policies
were trained using class probabilities. The number of class
probabilities that were used (top-1, top-3 or all) did not
have a significant effect on the results, indicating that the
top-1 probability contains enough information to learn
good policies. This result makes sense since the top-1
probability can measure the confidence of the network in
making a prediction. Still, the top-3 probabilities performed
slightly better, indicating that the difference between the
top probabilities may also matter. We also tried to learn
policies from the text and/or the image input, using a policy
network which is either a text CNN, a VGG network or a
combination. For these policy networks, we experimented
with early stopping criteria, various regularization methods
(dropout, l1, l2) and reduced model size (best configuration
reported). However, working with the text and/or image
modalities as inputs to the policy network resulted in
policies that overfitted the data and performed worse than
the single-modal text network on the test data.

Hyperparameters: Looking at Table 3, we can see that
the 2-layer architecture outperformed the 1-layer, indicating
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that a linear policy is too simple, and non-linear policies can
yield better results.
q : the cost function coefficient that trades off recall and
precision, had a significant impact on the results. Recall that
the policy network implicitly optimizes the multi-modal
architecture accuracy, by explicitly learning to choose
between single modality networks. As q increases, the
policy networks learn to favor correct positive predictions
(selecting the text network) over negative predictions
(choosing the negative ones). Since the text network is
more accurate than the image network, this results in higher
accuracy of the multi-modal architecture but with a lower
accuracy of the policy network (Table 3, columns four and
six respectively).

Pre-defined rules:

we experimented with averaging the logits (Table 4,
Mean), following (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2014), and with choosing the
network with the maximal confidence (Table 4, Max)
following (Poria et al. 2016). Both of these experiments
yielded significantly worse results, probably due to the bias
in accuracy between the input specific networks.

Feature-level fusion.

Training a feature-level fusion architecture end-to-end is not
an easy task, as each input source has its best architecture,
learning rate, and optimization algorithm. Therefore, we ex-
perimented with training the network end-to-end (Table 4,
End-to-end), but also with first training each part separately
and then learning the concatenated parts (Table 4, Step by
step). We tried different unification approaches such as con-
catenating the features to one layer and using gating func-
tions (Srivastava, Greff, and Schmidhuber 2015) or cross
products between the embeddings of the two modalities. We
also experimented with different architectures, for example,
with the number of fully connected layers after the concate-
nation. Despite all of these experiments, the best results that
we achieved for feature-level fusion were inferior to those of
the text model. We do not claim that it is not possible to gain
improvement from such methods, only that we were unable
to find such. While this may seem surprising, the most suc-
cessful feature level fusion that we are aware of (Frome et
al. 2013), was not able to gain improvement in classification
accuracy.

Fusion method Text Image Policy

Fixed policy, mean 70.1 56.7 65.4 (-4.7)
Fixed policy, max 70.1 56.7 60.1 (-10)

Feature-level, end-to-end 70.1 56.7 69.1 (-1)
Feature-level, step by step 70.1 56.7 69.5 (-0.6)

Table 4: Pre-defined rules and feature-level fusion results.

Conclusions

In this work, we investigated a multi-modal multi-class
multi-label product classification problem and presented
results on a challenging real-world dataset that we collected
from Walmart.com. We discovered that the text network
outperforms the image network on our dataset, and demon-
strated that by learning a decision rule with a deep neural
network, it is possible to achieve better performance than
with single-modal architectures.

When using state-of-the-art deep neural networks in pro-
duction, practitioners are in a constant search for improving
classification accuracy. In this work, we explored a method
that is orthogonal to architecture search and demonstrated
that it could achieve further improvement. While we only
managed to reach 2% improvement in accuracy, we note
that such an increase has a tremendous significance when
deployed in production. Moreover, to the best of our knowl-
edge, this is the first work that achieves an improvement in
classification accuracy by using multi-modality on a large-
scale classification problem. We also hope that this work will
motivate others to explore the potential of multi-modal clas-
sification further. Indeed, after a workshop version of this
paper was published, there have been successful attempts to
use our methods on other e-commerce classification prob-
lems (Eskesen 2017).
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