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Abstract

The unrelenting threat of poaching has led to increased devel-
opment of new technologies to combat it. One such example
is the use of long wave thermal infrared cameras mounted on
unmanned aerial vehicles (UAVs or drones) to spot poachers
at night and report them to park rangers before they are able
to harm animals. However, monitoring the live video stream
from these conservation UAVs all night is an arduous task.
Therefore, we build SPOT (Systematic POacher deTector), a
novel application that augments conservation drones with the
ability to automatically detect poachers and animals in near
real time. SPOT illustrates the feasibility of building upon
state-of-the-art Al techniques, such as Faster RCNN, to ad-
dress the challenges of automatically detecting animals and
poachers in infrared images. This paper reports (i) the design
and architecture of SPOT, (ii) a series of efforts towards more
robust and faster processing to make SPOT usable in the field
and provide detections in near real time, and (iii) evaluation
of SPOT based on both historical videos and a real-world
test run by the end users in the field. The promising results
from the test in the field have led to a plan for larger-scale
deployment in a national park in Botswana. While SPOT is
developed for conservation drones, its design and novel tech-
niques have wider application for automated detection from
UAV videos.

Introduction

Poaching has recently been on the rise, particularly poach-
ing of elephants and rhinoceroses in Africa (Great Ele-
phant Census 2016). With elephant and rhino numbers drop-
ping rapidly, it is imperative that we swiftly act before they
are hunted to extinction. Multiple strategies exist to com-
bat poaching, including park ranger patrols, and more re-
cently, the use of unmanned aerial vehicles (UAVs or drones)
(Ivosevi¢ et al. 2015). In particular, UAVs equipped with
long wave thermal infrared (hereafter referred to as thermal
infrared) cameras can be used for nighttime surveillance to
notify park rangers of poaching activity because there is in-
creased poaching activity at night, and because animals and
humans are warm and emit thermal infrared light even at
night. However, the video stream from these UAVs must
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Figure 1: Example UAV and thermal frames from UAV, with
white boxes surrounding poachers.

be monitored at all times in order to notify park rangers
of poachers. Monitoring of streaming footage is an ardu-
ous task requiring human supervision throughout the night,
and is also prone to systematic lapses in quality as human
detection often degrades with fatigue (Porikli et al. 2013).
Furthermore, as more drones are added to the system, more
resources are required to monitor the additional videos.

Whereas previous work in Al has focused on game the-
ory for patrol planning (Xu et al. 2017; Wang, Zhang, and
Zhong 2017) and machine learning-based poaching predic-
tion (Gholami et al. 2017; Critchlow et al. 2015) to assist
human patrollers in combating poaching, little effort has fo-
cused on decision aids to assist the UAV crew in detecting
poachers and animals automatically. Given the tedious work
of monitoring UAV videos, such a decision aid is in high
demand. It could help reduce the burden of the monitoring
personnel and the probability of missing poachers by simply
notifying personnel or park rangers of a detection. In the fu-
ture, the decision aid could also be integrated with existing
tools that predict poaching activity and guide human patrols.
For example, the system could scout ahead for poachers to
protect park rangers, monitor in other directions than human
patrollers, or gather more information about the location of
wildlife for better predictions. The integration would lead to
a new generation of machine learning and game theoretic
tools to guide rangers and UAVs simultaneously.

In building this decision aid, there are several major chal-
lenges. First, automatic detection in thermal infrared videos



captured aboard UAVs is extremely difficult, because (i) the
varying altitude of the UAV can lead to extremely small hu-
mans and animals, possibly less than 20 pixels in the images,
(i1) the motion of the UAV makes stabilization, and conse-
quently human and animal motion detection, difficult, and
(iii) the thermal infrared sensor itself leads to lower resolu-
tion, single-band images, much different from typical RGB
images. Second, we must provide notification in near real
time so the UAV can immediately start following humans in
order to provide park rangers with current locations. Real-
time detection is an especially difficult challenge because
we have limited computing power and Internet in the field.

In this paper, we present SPOT (Systematic POacher de-
Tector), a novel Al-based application that addresses these
issues and augments conservation drones with the ability to
automatically detect humans and animals in near real time.
In particular, SPOT consists of (i) offline training and (ii)
online detection. During offline training, we treat each video
frame as an image, and use a set of labeled training data col-
lected for this application (Bondi et al. 2017) to fine-tune a
model which has shown success in detecting objects of in-
terest in images, Faster RCNN. During online detection, the
trained model is used to automatically detect poachers and
animals in new frames from a live video stream, showing
that modern computer vision techniques are capable of con-
quering difficulties that have not been addressed before.

We also use a series of efficient processing techniques to
improve the online detection speed of SPOT in the field. On-
line detection can be completed either on the cloud or on a
local computer. Therefore, we have experimented with sev-
eral architectures that trade off between local and remote
computers, depending on network strength. Finally, we eval-
uate SPOT on both historical videos and a real-world test run
in the field by the end users, a conservation program called
AirShepherd (AirShepherd 2017). The promising field test
results have led to a plan for larger-scale deployment, and
encourage its use in other surveillance domains.

Problem Domain and Current Practice

Conservation programs such as AirShepherd (AirShepherd
2017) send crews to fly UAVs (Fig. 1) in national parks
in Africa, including Liwonde National Park in Malawi and
Hwange National Park in Zimbabwe, in order to notify park
rangers of poaching activity. Teams of people are required
for UAV missions, including several UAV operators and per-
sonnel capable of repairing the UAVs should anything hap-
pen. The UAV is a fixed-wing aircraft with a range of 50
km and a flight time of 5 hours with one battery. It carries a
FLIR 640 Vue Pro thermal infrared camera. The UAV flight
path is pre-programmed based on typical poaching hotspots
or tips. While flying at night, the UAV operators monitor the
live video stream, transmitted via radio waves, for any signs
of poachers. Should anyone be spotted, the team will man-
ually take control to follow the suspects, notify nearby park
rangers, who are sometimes on patrol or in a van with the
team, and guide them to the poachers.

However, as we already mentioned, monitoring these
videos all night is difficult. Several example frames from
thermal infrared videos are shown in Fig. 1, with objects of
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Figure 2: Traditional computer vision techniques. (a): orig-
inal image, (b): thresholded, where white pixels are above
the threshold, (c): stabilized frame difference. Original re-
sults (left), manually added transparent white boxes around
true poachers (right). These figures illustrate the difficulty
these techniques face in locating poachers.

interest highlighted in transparent white boxes on the right.
Notice that these frames are grayscale, with few pixels on
objects of interest and many objects that look similar to those
of interest. It is often difficult for humans to recognize ob-
jects in these videos because of this, leading to recognition
errors and hours of tedious work. As such, there is great
need for a tool that automatically detects poachers and ani-
mals, the objects of interest in these videos for conservation.
This tool should provide detections with as much accuracy
as possible in near real time speeds on a laptop computer in
the field with a potentially slow Internet connection.

There has been some effort towards automatic detection.
EyeSpy (Hannaford 2017), the application that is used in
current practice, detects moving objects based on edge de-
tection. When in use, it first asks the monitoring personnel
to provide parameters such as various edge detection thresh-
olds and sizes of humans in pixels. EyeSpy then requires in-
formation such as altitude and camera look angle throughout
the flight to complete detection. Three limitations restrict the
use of this tool as a result. First, EyeSpy relies heavily on a
well-trained expert who can manually fine-tune the parame-
ters based on the UAV and camera information. Novices are
often unable to find the correct settings. Second, the param-
eters need to be compatible with flight altitude and camera
look angle. To make this tool usable, the UAV crew either
needs to restrict the way the UAV flies by keeping the flight
altitude and camera look angle almost the same throughout
the mission, or have the expert monitoring personnel man-
ually adjust the parameters from time to time as the set-
tings change. Third, this tool cannot differentiate between
wildlife and poachers, and thus cannot highlight the detec-
tion of poachers to the monitoring personnel or the patrol
team. We will examine this tool further in Evaluation.

Related Work and Design Choices

We arrive at the current framework of SPOT after several
rounds of trials and errors. As humans and animals are typ-



ically warmer than other objects in the scene, and conse-
quently brighter, we first consider automatic thresholding
techniques such as Otsu thresholding (Otsu 1979). However,
other objects such as vegetation often have similar digital
counts and lead to many false positives (Fig. 2(b)). Because
humans and animals tend to move, we also consider mo-
tion using algorithms such as the Lucas-Kanade tracker for
optical flow (Lucas, Kanade, and others 1981) and general
correlation-based tracking (Ma et al. 2015). Again, other
objects such as vegetation look similar to the objects we
want to track, which often leads to lost or incorrect tracks
(Fig. 1). Assuming a planar surface, small moving objects
can also be detected by a background subtraction method
after applying video stabilization (Pai et al. 2007). Mo-
tion is unfortunately detected incorrectly by this method in
the case of complex terrain such as tall trees (Fig. 2(c)).
More complex algorithms to track moving objects through-
out videos rely on high resolution, visible spectrum videos
or videos taken from a fixed camera (Kristan et al. 2015;
Milan et al. 2016).

Given the limitations of these traditional computer vision
techniques and the great strides in object detection using
convolutional neural networks, we turn to deep learning-
based approaches. We treat each frame of the video as an
image, and apply techniques to localize and classify the ob-
jects of interest in the images. Faster RCNN and YOLO (Ren
et al. 2015; Redmon et al. 2016) are two state-of-the-art al-
gorithms suitable for this purpose. They both propose re-
gions automatically for classification. Faster RCNN tends to
have higher accuracy than YOLO, particularly for smaller
objects, although YOLO tends to be faster (Redmon et al.
2016). A newer version, YOLOvV2, (Redmon and Farhadi
2016), has improved performance over YOLO and could be
used as an alternative to Faster RCNN. In this work, we fo-
cus on using Faster RCNN for detection.

Other emerging techniques such as deep learning-based
optical flow or tracking (Zhu et al. 2017; Fan and Ling
2017) may fail due to drastic UAV motion and low reso-
lution frames, and they do not classify the objects, only lo-
calize. Tubelets (Kang et al. 2017) propose bounding boxes
over time, but are not yet performing in real time even on
GPUs. Recently, there has also been some work on auto-
matic wildlife detection and counting based on videos from
UAVs using other traditional computer vision or machine
learning techniques, but they either rely on RGB images in
high resolution (Olivares-Mendez et al. 2015) or do not con-
sider real-time detection (van Gemert et al. 2014). Due to the
unique challenges of our problem, these techniques cannot
be applied to detecting poachers during flights at night.

SPOT
Overview

SPOT includes two main parts: (i) offline training and (ii)
online detection (Fig. 3). In this section, we introduce both
parts in detail, with an emphasis on the robust and faster pro-
cessing techniques we use to improve the online detection
efficiency and provide detections in near real time.

Offline Online
Preprocess : Capture live
training/testing video stream (via
videos : radio from UAV)
Label '
training/test Preprocessing
videos
‘ H Good Internet connection Bad Internet connection
Transfer labels to ! Keep on local
Faster RCNN Send to Azure P on
H machine
format |
Train Faster ‘ Faster RCNN to H
RCNN - AzureBasic ] AzureAdvanced [l ﬁnd;n;:ler;dmg -;
Display

Figure 3: SPOT Overview.

Offline Training

In our problem, detection means to localize the objects of
interest in the scene, and classify them as poachers or an-
imals. We choose a state-of-the-art object detection algo-
rithm, Faster RCNN, to serve our purpose. Faster RCNN
is composed of a region proposal network (RPN) and Fast
Region-based Convolutional Network method (Fast RCNN)
(Girshick 2015), which is used to classify regions from the
RPN, thereby giving us the location and class of objects. The
RPN shares the convolutional layers of Fast RCNN, which
is VGG-16 (Simonyan and Zisserman 2014) in our system.

To train the Faster RCNN model, we first initialize the
VGG-16 network in the Faster RCNN model with pre-
trained weights from ImageNet. Then, we use a set of videos
in this application domain with annotated labels for each
frame, collected using a framework described in (Bondi et
al. 2017). A small team of students (not Amazon Mechanical
Turk users in order to protect sensitive information such as
flight locations and strategies) used this framework to label
all frames in 70 videos containing animals and poachers. Be-
cause consecutive frames are similar, we do not have enough
heterogeneous data samples to train VGG-16 from scratch.
This is the reason we start with pre-trained weights and fine-
tune VGG-16 by treating each video frame as a separate im-
age. Furthermore, we fine-tune different models for poacher
and animal detection, so that depending on the mission type,
whether monitoring a park for poachers or counting animals,
for example, the user may choose a model to provide better
detection results. For the poacher-specific model, we fine-
tuned using 4,183 frames, and for the animal-specific model,
we used 18,480 frames, as we have more animal videos.

Online Detection

Preprocessing Thermal infrared images can be “black-
hot” or “white-hot”, meaning warm objects are darker or
lighter, respectively. During the online detection, we first ask
the user if the video is white-hot, and if the answer is no, we
will invert every frame we receive from the UAV. In addition,
there is occasionally a border or text on the videos, consist-
ing of date, flight altitude, and other metadata. We ask users



(b)

Figure 4: GUI created for SPOT for use in the field. 4(a):
inquiries about video, 4(b): detection.
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Figure 5: AzureBasic and AzureAdvanced overview.

to provide the area of interest at the beginning and only dis-
play detections in this area of interest throughout the flight.

Detection We treat each frame of the video stream as an
image and input it to Faster RCNN. The trained model com-
putes regions and classes associated with each region.

User Interface Fig. 4 shows the user interface of SPOT for
online detection. A file can be selected for detection, or a live
stream video. In Fig. 4(a), we gather preprocessing informa-
tion about the video, and then begin detection in Fig. 4(b).

Architectures and Efficiency Faster RCNN runs at 5
frames per second (fps) on a K40 GPU (Ren et al. 2015).
Efficiency and computation speed are paramount for similar
performance in the field where there may be limited com-
puting power, especially since videos are 25 fps. We there-
fore examine different Microsoft Azure architectures (Fig.
5), and discuss techniques to improve performance in the
field and trade off between local and remote compute.

The first and simplest cloud architecture we investigate,
which we will refer to as AzureBasic, is an NC-6 Series Vir-
tual Machine (VM) with a Tesla K80 NVIDIA GPU hosted
on Microsoft Azure. We simply transfer frames from the lo-
cal laptop to this VM using Paramiko, a Python SFTP client.
Once frames are transferred to the remote machine, we de-
tect objects in the frame using our stored, fine-tuned Faster
RCNN model in a running Python instance on the remote
machine. We then display the annotated frame locally using
X forwarding. For the purposes of testing, we send frames in
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batches, and we use Paramiko to transfer annotated frames
instead of displaying. Speed could be improved by transfer-
ring annotations instead of annotated frames.

Although AzureBasic allows us to improve our through-
put through cloud GPU acceleration over a CPU laptop,
it is limited to a single Azure GPU VM and a single lo-
cal laptop linked together by SFTP. To scale out SPOT, we
utilize Tensorflow Serving, a framework for efficiently op-
erationalizing trained Tensorflow computation graphs. Ten-
sorflow Serving provides a way to evaluate Faster RCNN
without the overhead of a running Python instance and file
10O from SFTP. Furthermore, Tensorflow Serving communi-
cates through Protocol Buffers, a flexible and efficient data
representation language that significantly reduces the size
of large tensors. For serving scenarios with large requests
and responses, such as video processing, this reduces net-
work communication and improves performance on slow
networks. Tensorflow Serving also supplies tools for creat-
ing multi-threaded clients. We use four threads for our test-
ing. Like AzureBasic, we also process images in batches to
ensure that there is no downtime between uploading frames
and downloading the results. Finally, we use azure-engine
to create a cluster of NC-6 series GPU VMs managed with
Kubernetes, a fault tolerant load balancer for scalable cloud-
based services. This keeps the latency of SPOT low in po-
tential compute intensive multi-UAV scenarios. It also pro-
vides a single REST endpoint so the client code can use a
single web URL for sending images regardless of the num-
ber of machines in the cluster. We deploy on a GPU-enabled
docker image with Tensorflow Serving, and add tools for
convenient re-deployment of models hosted on Azure Blob
Storage. We refer to this architecture as AzureAdvanced.

Evaluation

To provide a working prototype system, SPOT needs to meet
two major criteria: (i) detection accuracy and (ii) efficiency.
Detection accuracy is most important for poacher identifica-
tion, particularly to make sure we have few false negatives
and false positives. Speed is critical to being able to quickly
notify monitoring personnel and the ranger team. In this sec-
tion, we evaluate SPOT in the lab using six historical videos,
consisting of 15,403 frames in total, as test video streams.
We will first evaluate the performance of the object detec-
tion, and then the efficiency, where we compare the different
methods discussed in earlier sections.

EyeSpy (Hannaford 2017), the application that is used in
current practice, requires users to tune eight parameters to
correctly identify objects of interest, plus six flight meta-
data parameters such as altitude and camera angle. Because
of so many parameters, it is often difficult to successfully
tune all of these parameters as a novice. On the other hand,
our application does not require the user to fine-tune any pa-
rameters — it can be used as is. We therefore consider Eye-
Spy as used by a novice (ESN). Of our six test videos, only
the three animal videos have average flight metadata records
(i.e., not flight metadata per frame). For analysis of ESN, we
use flight metadata parameters if present, and make educated
guesses for altitude if not, because this is the baseline only.
Otherwise, we utilize default values for all parameters. We



Table 1: Precision-Recall for SPOT and EyeSpy Novice
(ESN) for animals.

Precision Recall
Video | SPOT ESN SPOT ESN
SA 0.5729 | 0.1536 | 0.0025 | 0.0072
MA | 0.1497 | 0.0008 | 0.0073 | 0.0004
LA 0.5584 | 0.0235 | 0.2293 | 0.0694

Table 2: Precision-Recall for SPOT and EyeSpy Novice
(ESN) for poachers.

Precision Recall
Video | SPOT ESN SPOT ESN
SP 0 0.00003 0 0.0007
MP 0.0995 | 0.0004 | 0.0073 | 0.0009
LP 0.3977 | 0.0052 | 0.0188 | 0.0159

also include results from EyeSpy as used by an expert (ESE).
These parameters are adjusted by our collaborators at Air-
Shepherd who created EyeSpy. We do not make educated
guesses for ESE because a lack of exact parameters could
drastically reduce performance of EyeSpy, which would not
be a fair comparison. We record the output from EyeSpy,
which is a video with red outlines around objects of interest,
and place bounding boxes around any red outlines obtained.
We then use an IoU threshold of 0.5 as is typical in (Ren
et al. 2015). Finally, we choose a low confidence threshold
for SPOT because missing a poacher detection is extremely
undesirable, and we report the precision and recall.

We compare the performance of SPOT and ESN on
videos containing animals or poachers with labels of small,
medium, or large average sizes in Tables 1 and 2. We also
compare the performance of SPOT and ESE in Table 3. We
perform better than the novice in both precision and recall
for medium- and large-sized poachers and animals. We also
perform better than the expert for large-sized animals, and
comparably for small- and medium-sized animals. Because
we perform better than ESN and similarly to ESE, we thus
reduce significant burden. For small poachers, which is a
challenging task for object detection in general, both tools
perform poorly, with EyeSpy being able to identify a small
number of poachers correctly. Small animals also prove to
be a challenge for SPOT. To improve performance for small
objects in the future, we expect pooling the results of video
frames and incorporating motion will be beneficial.

Next, we evaluate efficiency by comparing CPU perfor-
mance to the initial Azure system, to the improved Azure
system, and finally to the single GPU performance. The
GPU laptop is a CUK MSI GE62 Apache Pro, with Intel
Skylake i7-6700HQ, 32GB RAM, and the NVIDIA GTX
960M with 2GB RAM. It is deployed in the field. The CPU
laptop has an Intel i5-3230M CPU at 2.60GHz. In order to
compare the Azure systems, we time how long it takes from
the frame being sent to Azure, to the prediction, to the re-
turn back to the local machine, and finally to reading the fi-
nal image back into memory. We conducted these tests in
two different networking environments: 533.20 Mbps up-
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Table 3: Precision-Recall for SPOT and EyeSpy Expert
(ESE) for animals.

Precision Recall
Video | SPOT ESE SPOT ESE
SA 0.5729 | 0.6667 | 0.0025 | 0.0062
MA | 0.1497 | 0.1615 | 0.0073 | 0.0014
LA 0.5584 | 0.0433 | 0.2293 | 0.0832

Table 4: Timing Results for CPU, AzureAdvanced (AA),
AzureBasic (AB), and GPU.

# GPUs | Network | s/img
CPU 0 - 10.4354
AB 1 fast 0.5785
AB 1 slow 2.2783
GPU 1 - 0.3870
AA 2 fast 0.3484
AA 2 slow 0.4858

load and 812.14 Mbps download, which we will call “fast”,
and 5.33 Mbps upload and 5.29 Mbps download, which we
will call “slow”. We repeat the experiment for several im-
ages and show the final time per image in Table 4. The re-
sults show that both AzureAdvanced and the GPU laptop
perform detection almost 100 times faster than the CPU lap-
top, and AzureAdvanced drastically improves over Azure-
Basic when a slower network is present. Therefore, we can
achieve detection in near real time.

Implementation in the Field

We also evaluate the in-field performance of SPOT. So far,
these tests have been run by AirShepherd at a testing site
in South Africa, where training exercises take place. Fig.
6 shows a screenshot from a 30 minute test of AzureBa-
sic at the site. For a full video, sped up 20 times, please
visit http://bit.ly/SPOTVideo. Precision and recall results are
shown for this in Table 5, which shows that SPOT per-
forms better than both ESN and ESE. Our collaborators at
AirShepherd reported that SPOT performed poacher detec-
tion well during this test flight, and was so promising that
they want to move forward with further development and
deployment in Botswana. They also showed excitement be-
cause SPOT requires no tuning from the user. Although the
network connection was poor for some of the flight and
caused detection to occur slowly, especially because Azure-
Basic was used, AzureAdvanced will perform better in these
situations, and the GPU laptop can now provide consistent
detection speeds with slow networks, which our collabora-
tors found encouraging as well. With the promising results
from the field test, a wider deployment is being planned.

Lessons Learned and Conclusion

In conclusion, we developed a system, SPOT, to automati-
cally detect poachers as well as animals in thermal infrared
UAV videos taken at night in near real time, which shows
that modern computer vision techniques are capable of con-



Table 5: Precision-Recall for SPOT, EyeSpy Novice (ESN),
and EyeSpy Expert (ESE) for poachers in test video.

Precision Recall
SPOT ESN ESE SPOT ESN ESE
0.4235 | 0.0024 | 0.0573 | 0.3697 | 0.0432 | 0.2836

Figure 6: A screenshot of the field test environment with
annotated figures.

quering difficulties that have not been addressed before. This
system works in varying situations and does not require the
users to adjust any parameters when they use it. Thus, it is
easily accessible to non-expert users. Furthermore, the sys-
tem can detect poachers in near real time with either good
or bad network connectivity. The system has been tested in
the field, and will be deployed in the near future in sev-
eral national parks in Africa, including one in Botswana.
SPOT opens the door for exciting new research questions
in object detection in difficult videos, and for new anti-
poaching strategies utilizing UAVs in the field.
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