
Classification of Malware by Using
Structural Entropy on Convolutional Neural Networks

Daniel Gibert
Blueliv, Leap in Value

Barcelona, Spain

Carles Mateu
University of Lleida

Lleida, Spain

Jordi Planes
University of Lleida

Lleida, Spain

Ramon Vicens
Blueliv, Leap in Value

Barcelona, Spain

Abstract

The number of malicious programs has grown both in num-
ber and in sophistication. Analyzing the malicious intent of
vast amounts of data requires huge resources and thus, ef-
fective categorization of malware is required. In this paper,
the content of a malicious program is represented as an en-
tropy stream, where each value describes the amount of en-
tropy of a small chunk of code in a specific location of the file.
Wavelet transforms are then applied to this entropy signal to
describe the variation in the entropic energy. Motivated by
the visual similarity between streams of entropy of malicious
software belonging to the same family, we propose a file ag-
nostic deep learning approach for categorization of malware.
Our method exploits the fact that most variants are gener-
ated by using common obfuscation techniques and that com-
pression and encryption algorithms retain some properties
present in the original code. This allows us to find discrim-
inative patterns that almost all variants in a family share. Our
method has been evaluated using the data provided by Mi-
crosoft for the BigData Innovators Gathering Anti-Malware
Prediction Challenge, and achieved promising results in com-
parison with the State of the Art.

Introduction

To evade detection, malware authors employ a variety of
obfuscation techniques to hide malicious code inside exe-
cutables. The most common are encryption and compres-
sion which are employed in most of the malware samples.
In the information security industry, a common practice to
detect the presence of encrypted or compressed segments
hidden beneath portable executables is entropy analysis. In
general, segments of code that have been compressed or en-
crypted tend to have higher entropy than native code (Lyda
and Hamrock 2007).

In information theory, entropy (more specifically, Shan-
non’s entropy) is the expected value of the information con-
tained in each message. Generally speaking, the entropy of a
bytes sequence refers to the amount of disorder(uncertainty)
or its statistical variation. If occurrences of all values are the
same, the entropy will be largest. On the contrary, if certain
byte values occur with high probabilities, the entropy value
will be smaller.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, the use of simple entropy statistics may not be
enough to detect sophisticated malware. Authors sometimes
try to conceal encrypted or compressed code in a way that
they pass through high entropy filters. For instance, they may
add additional padding to reduce the mean file entropy. Any-
way, native, encrypted or compressed segments and padding
tend to differ markedly having distinct entropy levels. Thus,
researchers (Sorokin 2011) started analyzing what is defined
as the structural entropy of a file. In other words, each ex-
ecutable file is represented as a stream of entropy values,
where each value describes the amount of entropy over a
small chunk of code in a specific location of the file. Fig-
ure 1 displays the structural entropy of various malware ex-
ecutables belonging to two different families. It can be ob-
served that the entropy streams extracted from malware sam-
ples belonging to the same family appear to be similar while
distinct from those belonging to different families.

Figure 1: Entropy time series from malicious software. Sam-
ples from the first row belong to the Ramnit family, whereas
samples from the second row belong to the Gatak family.
Note the variation of the stream of entropy values between
families.

By representing executable files as a stream of entropy
values, the task of malware classification can be described
as a time series classification problem (Fu 2011; Xing, Pei,

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7759



and Keogh 2010; Bagnall et al. 2017).
The approaches most studied have been (1) Time domain

distance based classifiers and (2) Shapelet based classifiers.
On the one hand, Dynamic Time Warping (DTW) has been
widely used as the preferred method to measure the sim-
ilarity between two temporal sequences that may vary in
length. (Ding et al. 2008), evaluated 8 different distance met-
rics on 38 time series datasets and found that DTW jointly
with 1-Nearest Neighbor (NN) outperformed most of them.
However, the NN is limited by its space complexity and its
classification time complexity. On the other hand, time se-
ries shapelets were first used for classification in (Ye and
Keogh 2009). Shapelets are discriminant subsequences of
time series. The idea is that different classes of time series
can be distinguished by their local variations instead of their
global structure. Nevertheless, the computational complex-
ity for the brute force search algorithm is polynomial, for
best cases, O(n2m3), where n is the number of time series
in the dataset and m is the average length of each time se-
ries. (Grabocka et al. 2014) introduced a more efficient alter-
native to learn shapelets. In their method, instead of search-
ing among possible candidates from time series segments,
they proposed a method to directly learn optimal shapelets
without exploring all possible candidates. Their approach,
starts by guessing a set of initial shapelets. Then, it itera-
tively learns the shapelets by minimizing an error function.

Inspired by the recent advances in the deep learning field
and the work of (Grabocka et al. 2014), in this paper we
propose a file agnostic end-to-end deep nonlinear feature
learning and classification based method for categorization
of malicious software based on its structural entropy. Our
approach has been evaluated using the dataset provided by
Microsoft for the Big Data Innovators Gathering (BIG 2015)
Anti-Malware Prediction Challenge.

The rest of the paper is organized as follows. Firstly, we
introduce our deep learning approach for malware classifi-
cation. Then, the results of the performance evaluation for
our method are presented. And lastly, the paper concludes
with our remarks.

Classification of Software’s Structural

Entropy via Deep Learning

As can be observed in Figure 1, there exists empirical ev-
idence that entropy time series from a given family are vi-
sually similar and distinct from those belonging to a differ-
ent family. This is perhaps the result of reusing the code to
create new malware variants. Consequently, this visual sim-
ilarity motivated us to apply convolutional neural networks
for time series classification to automatically learn good fea-
ture representations from both time and frequency domains
jointly. To do this, a given executable is transformed into a
recognizable input by applying the following two-step pro-
cess:

1. Structural entropy calculation. The entropy of an exe-
cutable file is computed by splitting its hexadecimal rep-
resentation (00h–FFh) into non-overlapping chunks of
fixed size. In the literature, a common value is 256 bytes.

For each chunk of code, the entropy is then computed us-
ing Shannon’s formula defined as:

H(X) = −
n∑

i=1

p(i) · logbp(i)

where H(X) is the measured entropy value of a discrete
random variable X with values x1, . . . , xj , j is the num-
ber of values in X, p(i) refers to the probability of appear-
ances of the byte value i in X and n is equal to 255, i.e.
byte code values are in the range of [0, 255].

2. Discrete Wavelet Transform. The single-level discrete
wavelet transform is applied to the entropy time series in
order to compress the signal and reduce the noise. The
original vector of length N is transformed into two vec-
tors of length N/2, named the approximation coefficients
and the detail coefficients. In this work, the Haar wavelet
transform (Haar 1910) has been used, instead of any other
transforms such as Daubechies or Morlet, due to its effi-
ciency in computation.

Network Architecture

The overall architecture of the network is illustrated in Fig-
ure 2. The input is a multivariate time series M , defined as
M = {m1,m2}, where each element mi is a univariate
time series. A univariate time series is a sequence of data
points measured at successive points in time. It is denoted
as T = {t1, t2, . . . , tn}, where n is the length of T . At any
time stamp t, mt = {m1,t,m2,t} where m1,t and m2,t are
the values of the Haar approximation and Haar coefficient
values at time stamp t.

The core of the convolutional neural network consists
of three convolutional layers plus two fully-connected lay-
ers. The convolutional layers perform feature learning on
both univariate series jointly. Then a normal feed-forward
network is concatenated at the end of feature learning to
perform classification. Specifically, the input is fed into a
3-stage feature extractor which learns hierarchical features
through convolution, activation and pooling layers.

Convolution is an operation that takes an input signal and
a feature map and produces one output signal. A convo-
lution operation involves a filter wk ∈ R

ij where i ≤ w
and j ≤ h and i and j are the width and the height of
the an input 2D signal. The output of convolving the k-th
kernel of the convolutional layer l, wl,k over a 2D signal
is defined as c = wl,k × x + bl,k, where bl,k is the bias
of the k-th kernel in layer l. The kernel slides over each
value of the input signal, multiplies the corresponding en-
tries of the input signal and the kernel and adds them up.
The convolutional layers are composed of 50, 70 and 70
feature maps with 3 by 2, 3 by 50 and 3 by 70 receptive
fields for the first, second and third convolutional layers,
respectively.

Activation function introduces non-linearity into the net-
work. It takes a single value x and performs a mathemati-
cal operation on it. In particular, we adopt the ReLU func-
tion max(0, x) in all activation layers.

7760



Figure 2: Convolutional network architecture for malware classification. It is composed by 3 convolutional layers followed by
2 fully-connected layers. The input of the network are two univariate time series, the average and the details vector generated
by transforming an entropy stream with Haar wavelets. The output of the network is the predicted class of the malware sample.

Pooling is a function that reduces the spatial size of an in-
put signal. It helps to reduce the amount of parameters and
computation in the network as well as to control overfit-
ting. We applied max-pooling with filters of size 2 × 1
with stride 1, which reduces the input signal by half.

Convolutional layers can be seen as detection filters for
the presence of specific features or patterns present in the
data. The first layers detect low-level features whereas the
last ones detect increasingly complex features. At the end of
the extractor, the feature maps are flattened and combined as
the input of the subsequent feed-forward layers plus a soft-
max layer for classification. Particularly, the number of units
in the feed-forward layers is equal to 1000 and 300 for the
first and the second layer, respectively. To prevent overfit-
ting, dropout (Srivastava et al. 2014) was used and, to im-
prove the stability of our model, an ensemble algorithm was
used, named bootstrap aggregating (Breiman 1996).

Resilience to Obfuscation Techniques

By nature, the features learned by the convolutional neural
networks are invariant to translation. That is, CNNs are able
to detect patterns which may be displaced in space through
the convolution and max-pooling operations. The convolu-
tion operation provides equivariance to translation. In our
domain this means that signal patterns may be recognized
at any temporal space. Additionally, the max-pooling opera-
tion returns the largest value in its receptive field. Thus, the
location of this value, if it is still within the receptive field,
do not alters the output of the pooling operation. Thus, both
operations together provide invariance to translation. This
property is really helpful against detecting the changes pro-
duced by the following obfuscation techniques:

Dead-code insertion. This technique adds ineffective in-
structions, such as the NOP instruction, to the program to
change its appearance while maintaining the same func-
tionality. By adding NOP instructions, the average en-
tropy of the executable will decrease, but the entropy of
the adjacent chunks containing the actual code will differ

greatly from the chunks containing NOP instructions as it
can be observed in Figure 3.

Figure 3: Two samples belonging to the Simda family whose
code has been modified by the dead-code insertion technique
(chunks highlighted in red).

Code transposition. This technique reorders the sequence
of the instructions without changing the behavior of the
program. For instance, the instructions

1: ADD R1 R2 1: ADD R3 R4
2: ADD R3 R4 can be replaced by 2: ADD R1 R2

If the sequence of instructions is located inside the same
chunk of code as it was previously to the reordering, the
entropy of the chunk will still be the same.

Subroutine reordering. By applying this technique, the or-
der of the subroutines in the original code is changed ran-
domly. Cf. Figure 4. Being invariant to translation means
that the location of the subroutines will not affect the out-
come of the classifier, because the network is able to find
the patterns independent of their location.

Encryption and packing are the most common methods
employed to hide malicious code into executables. These
methods transform a series of original bytes into a series
of random-looking data bytes. In the information secu-
rity industry, to detect the presence of encrypted or com-

7761



Figure 4: Two samples belonging to the Kelihos ver3 family.
It can be observed that the actual code of the program (high-
lighted in red) has been reallocated from the start to the end
of the file.

pressed segments hidden beneath the executable, code en-
tropy analysis is commonly performed. Typically, files
with high entropy are relatively likely to have encrypted
or compressed sections inside them (Lyda and Hamrock
2007). Thus, by representing an executable as a stream of
entropy values, the presence of encrypted or compressed
segments hidden within portable executable files can be
detected. Figure 5 shows two samples belonging to the
Obfuscator.ACY family. It can be observed that the en-
tropy of different segments varies along the files. There-
fore, the local patterns learned by the CNN should be able
to detect these changes in the entropy values between en-
crypted or compressed chunks and the chunks containing
the rest of the code.

Figure 5: Two samples belonging to the Obfuscator.ACY
family. The red box highlights the possible encrypted or
compressed segments within the files.

Evaluation

The data used to evaluate our deep learning approach were
provided by Microsoft for the BigData Innovators Gather-
ing (BIG 2015) Anti-Malware Prediction Challenge. The
dataset is composed of 21741 samples, 10868 for training
and 10873 for testing, grouped into 9 different malware fam-
ilies (Cf. Table 1).

Experimental Setup

To estimate the generalization performance of our approach
we used K-fold cross validation, where K = 10. Addition-
ally, the best model was selected according to the F1 score.
That is because classification accuracy alone can be mislead-
ing. Sometimes, it may be desirable to select a model with a

Table 1: BIG 2015 dataset statistics.
Family Class ID #samples Average size Average length

(bytes) (256 bytes)
Ramnit 1 1541 1482169.56 1597.17
Lollipop 2 2478 5829531.16 6281.75
Kelihos ver3 3 2942 8982629.66 9679.56
Vundo 4 475 1120945.27 1207.90
Simda 5 42 4552326.09 4905.52
Tracur 6 751 1801152.85 1940.90
Kelihos ver1 7 398 5051900.48 5443.85
Obfuscator.ACY 8 1228 827118.28 891.29
Gatak 9 1013 2555072.57 2753.31

lower accuracy but with greater predictive power (a.k.a. ac-
curacy paradox). This is true in a problem like ours where
there is a large class imbalance, where a model can predict
the value of the majority class for all predictions and achieve
high classification accuracy while misclassifying samples
from the minority or critical classes. In particular, since the
task we are trying to solve is a multi-class classification
problem we used an adaptation of the score called macro-
averaged F1 score, defined as the average of the individ-
ual F1 scores obtained for each class. Macroaveraging gives
equal weight to each class. Thus, large classes will not dom-
inate small classes.

The experimentation has been divided into three phases.
In the first phase, it has been studied how the chunk size
influences the output of the network. In the second phase, it
has been analyzed how the Haar approximation of the initial
entropic signal impacts our classifier. In the third phase we
compared our best model with state of the art methods in the
literature.

Chunk Size Comparison The size of the malicious pro-
grams varies greatly between families. Thus, their corre-
sponding time series differ in length from one family to an-
other, independently of the chunk size, cf. Table 1.

To study which chunk size provides a better trade-off be-
tween accuracy and performance, we evaluated three net-
work models, by using as training data the time series ob-
tained after splitting an executable file into chunks of size
256, 1024 and 4096 bytes.

The network architecture is the same as the one described
in Figure 2, with the exception of the input layer. In this
case, networks are fed with univariate time series containing
the stream of entropy values representing an executable file.
The percentage of correctly predicted labels over all predic-
tions (accuracy) is 0.9626, 0.9720 and 0.9708 for 256, 1024
and 4096 bytes, respectively. On the contrary, the highest F1
score was achieved by the model trained on the time series
obtained after splitting the malicious programs into chunks
of 4096 bytes, which is 0.9314. In Table 2 and Table 3, it can
be observed that both models failed to predict most of the
samples belonging to the Simda family. Additionally, even
though the overall accuracy is higher, the number of mis-
classified samples (54.76%) belonging to the Ramnit family
has greatly punished the model trained on the time series
obtained after splitting the files in chunks of size 1024.

Haar Wavelet Transform. In the second phase, Haar
Wavelet Transform was used to decompose the initial sig-

7762



Table 2: 10-fold cross validation confusion matrix obtained
by training the CNN with the time series obtained by split-
ting a program into chunks of 1024 bytes.

Family 1 2 3 4 5 6 7 8 9
1 1499 8 1 3 0 8 2 15 5
2 14 2447 0 1 0 5 0 2 9
3 0 0 2940 0 0 2 0 0 0
4 8 3 0 455 0 4 0 4 1
5 19 2 0 3 14 0 1 2 1
6 16 5 0 4 0 715 4 6 1
7 5 2 0 0 0 3 388 0 0
8 59 9 4 9 1 23 2 1117 4
9 6 6 0 3 0 6 0 3 989

Accuracy 10564 / 10868 = 0.9720
F1 score 0.9127

Table 3: 10-fold cross validation confusion matrix obtained
by training the CNN with the time series obtained by split-
ting a program into chunks of 4096 bytes.

Family 1 2 3 4 5 6 7 8 9
1 1490 9 1 9 1 15 1 10 5
2 12 2445 0 2 0 5 1 2 11
3 0 0 2940 0 0 2 0 0 0
4 8 3 0 455 0 4 0 5 0
5 12 0 1 4 23 1 0 1 0
6 15 9 0 13 0 702 4 4 4
7 2 0 0 0 0 1 395 0 0
8 57 3 3 8 1 40 1 1114 1
9 5 6 0 5 0 9 0 1 987

Accuracy 10551/ 10868 = 0,9708
F1 score 0.9314

nals into two sequences describing an approximation of the
original signal, plus a set of details (coefficients) represent-
ing the localized changes. Then, two models were trained.
On the one hand, we trained a model using as input the re-
sulting signal approximations (hereinafter, Haar approxima-
tion model). On the other hand, the second model was fed
with the approximation of the original signal plus the de-
tails sequence (hereinafter, multiresolution model). The F1
score increased slightly from 0.9314 to 0.9621 and 0.9636
for the Haar approximation and multiresolution models, re-
spectively. Observe in Table 4 that the number of samples
misclassified belonging to the Simda family has been re-
duced by more than half (from 19 to 8). In addition, even
that the number of incorrectly classified samples belonging
to the Obfuscator.ACY family has been reduced from 114 to
70, it is still a major source of error. That’s because the Ob-
fuscator.ACY family comprises malware that has been ob-
fuscated by using compression and encryption techniques,
among others. In consequence, the malware that lies under-
neath this obfuscation can have any purpose and in some
cases, its structural entropy is very similar to those of sam-
ples from the rest of families.

State-of-the-Art Comparison. Many algorithms have
been developed for the task of time series classification.
From among them, the nearest neighbor (particularly 1-NN)
in combination with the Dynamic Time Warping (DTW)
similarity metric achieves the state of the art performance.
If applied to the training data provided by Microsoft, the
resulting 10-fold cross validation accuracy and F1 score

Table 4: 10-fold cross validation confusion matrix obtained
by training the CNN with both the approximation and the
coefficient signals of the entropy time series after applying
the Haar Wavelet Transform.

Family 1 2 3 4 5 6 7 8 9
1 1519 5 1 3 0 4 2 7 0
2 6 2457 0 2 0 1 0 5 7
3 0 0 2941 0 0 1 0 0 0
4 3 1 0 463 0 6 0 2 0
5 1 0 0 3 34 0 1 3 0
6 5 5 0 15 0 720 0 4 2
7 0 0 0 0 0 2 395 1 0
8 29 4 2 8 3 21 1 1158 2
9 2 6 0 4 0 4 0 3 994

Accuracy 10681 / 10868 = 0.9828
F1 score 0.9636

achieved by the 1-NN algorithm are higher than ours. On
the contrary, if both approaches are evaluated on the test set,
our model substantially outperforms the 1-NN algorithm.
Table 5 presents an overview of the results obtained by our
deep learning approach and the nearest neighbor algorithm
in both the training and the test data. The superior predic-
tive power of convolutional networks (CNN) can be ob-
served with respect to the nearest neighbor algorithm. In par-
ticular, the CNN reduced the logarithmic loss to 0.124431
while the logloss obtained by the nearest neighbor is equal
to 0.367724. Furthermore, if bagging is employed, by aver-
aging the predictions of the 10 models the test logarithmic
loss is reduced to 0.075081. Moreover, a great advantage of
the CNN over the nearest neighbor is that its prediction time
always remains constant (approximately 0.02 seconds per
sample). On the contrary, the prediction time of the nearest
neighbor grows linearly as the data set grows larger. That is
because to predict the label of an unknown sample, it has to
be compared with all individuals in the dataset.

Table 5: Comparison of the CNN with the nearest neighbor
algorithm.

Method 10-Fold accuracy F1 score Test logloss
DTW + K-NN 0.9894 0.9813 0.367724
Haar Transform + DTW + K-NN 0.9870 0.9710 0.458191
CNN Entropy 0.9708 0.9314 0.134624
CNN Multiresolution 0.9828 0.9636 0.124431
Bagging CNN Multiresolution - - 0.075081

Transfer Learning. Once trained, the model could be
used to generate domain-specific features based on the struc-
tural entropy of a malicious program. Instead of classify-
ing executable files into families, we could extract the fea-
tures learned by the network in the last feed-forward layer.
Then, these features could be integrated into a bigger clas-
sifier based on different subsets of features. Next, we prove
the suitability of this approach by transferring the features
learned into an XGBoost classifier and comparing with the
results obtained by (Ahmadi et al. 2015). In their work, they
extracted a wide range of hand-crafted features from the ma-
licious executables. The subset of features that achieved the
best results individually were:

Entropy (ENT). Statistical measures from the structural

7763



entropy of malicious programs such as quantiles, per-
centiles, mean, etc.

Opcodes (OPC). Use of a subset of 93 operation codes
based on their commonness or on their frequent use in
malicious applications.

Application Programming Interfaces (APIs). Frequency
of use of 794 APIs.

Section (SEC). Characteristics from sections such as the
total number of lines in each section, the proportion of
each section in comparison to the whole file, etc.

Registers (REG). Frequency of use of the registers.

Miscellaneous (MISC). Frequency of 95 manually chosen
words from the disassembled code.

Table 6 shows the results obtained in the training data after
performing 5-fold cross validation. It can be observed that
the model trained on the entropy-based features extracted
by the CNN achieved better accuracy and lower logloss than
most hand-crafted features, and in particular, the opposite
manually extracted entropy-based features.

Table 6: List of feature categories and their evaluation with
XGBoost

5-Fold Cross Validation
Feature Category #Features Accuracy Logloss
ENT 203 0.9862 0.0505
OPC 93 0.9907 0.0405
API 796 0.9843 0.0610
SEC 25 0.9899 0.0420
REG 26 0.9833 0.0695
MISC 95 0.9917 0.0306
CNN Multiresolution 300 0.9896 0.0369

Conclusions and Future Work

In this work, we presented a file agnostic deep learning sys-
tem for categorizing malware. As far as we know, it is the
first approach that applies deep learning to find discrimi-
nant patterns from executable files represented as streams of
entropy values. The proposed solution has a number of ad-
vantages that help to detect malicious programs efficiently
in an enterprise environment. First, it is file agnostic and is
based solely on the structural entropy of a file. Second, the
nature of the features learned by convolutional neural net-
works demonstrated robustness against the most common
obfuscation techniques. Third, neural networks scale well
with the data. In general, the more data provided the better
the quality of the model. Fourth, once the entropy values are
computed, the prediction time is minimal. The approach has
been compared with state-of-the-art methods in the literature
for time series classification and demonstrated the superior
predictive power of our deep learning approach.

A future direction of research is to study how differ-
ent mother wavelets affect the model. Applying any other
mother wavelet, such as the Daubechies or the Morlet,
might lead to higher accuracy. Additionally, the hierarchical
entropy-based features learned by the convolutional neural

networks could be useful as a subset of features for machine
learning models which attempt to identify malware based on
distinct types of file features.

Acknowledgements

We would like to thank the Blueliv Labs team, specially
Daniel Solı́s, and Àngel Puigventós for their support and
the feedback provided during the development of this work.
This work has been partially funded by the Spanish MICINN
Projects TIN2014-53234-C2-2-R, TIN2015-71799-C2-2-P
and ENE2015-64117-C5-1-R, and by AGAUR DI-2016-
091. This research article has received a grant for its linguis-
tic revision from the Language Institute of the University of
Lleida (2017 call).

References

Ahmadi, M.; Giacinto, G.; Ulyanov, D.; Semenov, S.; and
Trofimov, M. 2015. Novel feature extraction, selection and
fusion for effective malware family classification. CoRR
abs/1511.04317.
Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; and Keogh, E.
2017. The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery 31(3):606–660.
Breiman, L. 1996. Bagging predictors. Machine Learning
24(2):123–140.
Ding, H.; Trajcevski, G.; Scheuermann, P.; Wang, X.; and
Keogh, E. 2008. Querying and mining of time series data:
Experimental comparison of representations and distance
measures. Proc. VLDB Endow. 1(2):1542–1552.
Fu, T.-C. 2011. A review on time series data mining. En-
gineering Applications of Artificial Intelligence 24(1):164 –
181.
Grabocka, J.; Schilling, N.; Wistuba, M.; and Schmidt-
Thieme, L. 2014. Learning time-series shapelets. In
KDD’14, 392–401. ACM.
Haar, A. 1910. Zur theorie der orthogonalen funktionensys-
teme. Mathematische Annalen 69(3):331–371.
Lyda, R., and Hamrock, J. 2007. Using entropy analysis
to find encrypted and packed malware. IEEE Security and
Privacy 5(2):40–45.
Sorokin, I. 2011. Comparing files using structural entropy.
Journal in Computer Virology 7(4):259.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15:1929–1958.
Xing, Z.; Pei, J.; and Keogh, E. 2010. A brief survey on
sequence classification. SIGKDD Expl. New. 12(1):40–48.
Ye, L., and Keogh, E. 2009. Time series shapelets: A new
primitive for data mining. In KDD’09, 947–956. ACM.

7764


