The Eighth AAAI Symposium on Educational Advances in Artificial Intelligence 2018 (EAAI-18)

Introducing Machine Learning Concepts by
Training a Neural Network to Recognize Hand Gestures™

Alessandro Giusti, David Huber, Luca M. Gambardella
Dalle Molle Institute for Artificial Intelligence (IDSIA), USI-SUPSI, Lugano, Switzerland

Abstract

We present an interactive guided activity to introduce super-
vised learning by training a deep neural network (treated as a
black box) to recognize “rock paper scissors” hand gestures
from unconstrained images. The audience is actively involved
in acquiring a varied and representative dataset, on which the
rest of the activity is based. Covered concepts include the
training/evaluation split, classifier evaluation, baseline accu-
racy, overfitting, generalization, data augmentation.

Introduction

Machine Learning (ML) techniques play an increasingly im-
portant role in society and everyday life, yet most people,
with the exception of practitioners of the field, are unaware
of ML’s main ideas, capabilities and limits. We present an
interactive, guided experimental activity which assumes no
background knowledge, during which the audience is intro-
duced to supervised deep learning and some of its core con-
cepts in a learning-by-doing fashion. The activity consists in
building from scratch a system that solves a challenging vi-
sual pattern recognition task, namely classifying “rock paper
scissors” hand gestures from pictures; the process encoun-
ters unanticipated setbacks and challenges, which prompt
the discussion of core ML concepts (bold in the description
below).

The activity can be easily tuned to different levels of de-
tail, requires from 30 minutes to 2 hours, and has been tested
successfully on small groups (10-20 people each) ranging
from secondary education students to adults. The audience
participates in the activity by shooting training pictures with
cellphones, and testing the classifier once it’s learned. In
the proposed form, the activity does not involve coding, but
could be easily adapted to a longer, hands-on experience for
university Computer Science students.

Downloads and extra material related to this activity are
available at http://bit.ly/2iW7zaA.

*This project has been partially supported by the Swiss Na-
tional Center of Competence Research (NCCR) Robotics through
the Swiss National Science Foundation
Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7950

Activity Description

1. Initially, a short (5-10 minutes) presentation introduces
what a classification problem is, and how a supervised clas-
sification pipeline works i.e.: we obtain a training dataset
comprised by many instances with known ground truth, use
this dataset to train a classifier, and once this classifier is
trained, apply it to unseen instances to estimate their class.
2. We introduce the problem we want to solve: given a
picture of a hand, estimate its class as one of: rock, paper or
scissors. We show a set of 100 pictures to be classified (our
evaluation set), and quickly scroll through them to: show
that this problem is generally easy for humans; show that
the three classes are evenly represented, so the baseline ac-
curacy would be 33%; exemplify the expected framing (the
hand is always well centered in the photograph and in the
foreground); show that rotation of the hand is arbitrary, the
background may be uneven, lighting and subjects are het-
erogeneous (adults and kids, male and female, different skin
colors).

3. Inorder to train a classifier, we need a training dataset,
which we don’t yet have: so we ask the audience to acquire
it. We underline that for each picture they shoot we need
to know the class, and in practice we want to end up with
three folders full of pictures, one for each. We remark the
importance of having a large, correct, and representative
training dataset: the pictures they shoot should be as varied
as possible and cover the range of conditions represented
in the evaluation pictures. The time required to acquire the
data is at least 10 minutes (motivated users shoot up to 20
pictures per minute per device, but on average we observe
about 5 pictures per minute per device), but can become a
longer assignment if there is a coffee break in the middle or
the activity is split in two days. We show the audience that
we collected their pictures in three folders', one for each
class, and show how large the dataset is. We expect between
80 and 200 images per class.

4. 'We now switch to a Jupyter notebook (Kluyver and oth-
ers 2016) running Python, in which the rest of the activity
takes place; we don’t write code live nor discuss the code
contents, but we execute one cell at a time and discuss re-
sults.

'supplementary material includes software to facilitate the lo-
gistics of this step

Accuracy

0.4 H

03 -

S Vel e na A - — - —
0 No augmentation - eval

T T
0 200 400

T
600

training epoch

T 1
800 1000

Figure 1: Left: example training images. Center: training (black) and evaluation (blue) accuracy without (dashed) and with
(continuous) data augmentation. Right: visualization of results on evaluation images (1 wrong, 3 correct).

5. Weload all pictures and display one with a viewer wid-
get, zooming in until individual pixels are visible; we discuss
how images are represented. We quickly scroll through the
images of the dataset, underlining that we know the class of
each.

6. We discuss whether we really need so many pixels to
represent an image, explaining that choking the classifier
with redundant data won’t help: we need a compact rep-
resentation. We scroll through the images at different res-
olutions and ask: are the classes still recognizable to us as
humans? We settle on 64x64 pixels as a choice that is com-
pact but still recognizable.

7. We are now ready to train a deep neural network on this
data. We don’t discuss the network internals, but treat it as a
black box with an input (64x64 RGB triplets) and an output
(3 activations for rock, paper, scissors respectively). We start
training the net (using the Keras (Chollet and others 2015)
high-level frontend) and while it trains, we briefly discuss
the concept of gradient descent.

8. We recall how the accuracy of a classifier is computed
on a dataset, then we show a live graph (black, dashed in Fig-
ure 1) of the accuracy of the network on the training data, as
the network is trained epoch-by-epoch. We verity its start-
ing point, which will be around 33%, is the baseline we can
expect when we just give chance answers. After a few min-
utes, the training accuracy reaches 100%. Everybody in the
audience seems satisfied.

9. We now apply the network on the 100 evaluation im-
ages, which the network has never seen. For each image, we
show the input of the net and its output. To the audience’s
dismay, many answers are wrong. We go through a few and
compute a numerical accuracy value on the whole evaluation
set (less than 50%). We reopen the plot of the training accu-
racy, which had reached 100% after a few epochs, and reveal
a new (blue, dashed in Figure 1) plot, which shows how the
evaluation accuracy changed during the training. It grows a
little then shows no signs of increase (or even starts decreas-
ing). We remark the importance of the training-evaluation
split. We explain what has happened: overfitting. The net-
work has memorized rules to classify correctly the training
samples (after all, they are not so many) but those rules are
instance-specific and do not capture the problem we want
to solve. One way to deal with overfitting is to train for a
shorter time, but in our case it would not work, as shown

7951

in the evaluation accuracy plot. We are dealing with a re-
ally hard task that probably requires 10x or even 100x more
training data. Should we spend some days acquiring more
pictures?

10. We introduce the idea of data augmentation: we
could generate more training examples synthetically, given
the limited ones we have. If we have a picture of “rock” and
rotate it 30 degrees, it will still be “rock”, but will be a new
instance for the net. Same if we flip the image, zoom in or
out a little, or perturb the color balance, brightness, or con-
trast. We propose that every time we show a picture to the
net, we will apply all these perturbations at random, so the
network will never see the same image twice. For a single
picture in the training set, we perturb it 50 times and quickly
scroll through the resulting images.

11. We train the network again, now with data augmenta-
tion. We show that the training accuracy (black line) grows
much more slowly than before, which is good news: the net
can not just memorize all training samples. More impor-
tantly, the evaluation accuracy (blue line) is now growing
steadily. After a few minutes, we stop the training.

12. We apply the trained net on the evaluation images;
now, about 75% are classified correctly. For each image, we
display the network outputs as three bars and discuss the
concept of probabilistic outputs. For images that are clas-
sified incorrectly, often one can find and discuss a good rea-
son (unclear picture content, confusing background, weird
lighting). We remark that given the difficulty of the prob-
lem, and the limited size of the training set, we are happy
with the result. If needed, we load a classifier that was pre-
viously pre-trained on a larger training set for a long time,
and demonstrate its results.

13. Finally, we leave the classifier running on the presen-
ter’s laptop and show the live classification from a camera
feed. The audience can freely experiment with the classifier
and discuss its performance.

References

Chollet, F,, et al. 2015. Keras: Deep learning library for
theano and tensorflow. https://keras.io.

Kluyver, T., et al. 2016. Jupyter notebooks-a publishing
format for reproducible computational workflows. In Posi-
tioning and Power in Academic Publishing: Players, Agents
and Agendas, 87-90.

