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Abstract 

We investigate the issues of undergraduate on-time gradua-
tion with respect to subject proficiencies through the lens of 
representation learning, training a student vector embed-
dings from a dataset of 8 years of course enrollments. We 
compare the per-semester student representations of a co-
hort of undergraduate Integrative Biology majors to those of 
graduated students in subject areas involved in their degree 
requirements. The result is an embedding rich in infor-
mation about the relationships between majors and path-
ways taken by students which encoded enough information 
to improve prediction accuracy of on-time graduation to 
95%, up from a baseline of 87.3%. Challenges to prepara-
tion of the data for student vectorization and sourcing of 
validation sets for optimization are discussed. 

 Introduction  
We propose a novel approach to representing students’ 

course paths by applying word vector models to course 

enrollment sequences. Students’ per-semester vectors, 

which represent their course history, are then used as input 

to train a predictive models of on-time graduation. We ex-

plore if the semantics of the space allow for diagnosing 

student gaps in proficiencies through their vector similarity 

to representations of subject degree requirements.  

Related Work 
Keeping time to degree near the four-year expected norm 

is a priority of colleges and universities as extending be-

yond that time stresses the finances of both the student and 

financial aid departments and can reflect poorly on the 

institution’s educational mission. Various reports, includ-

ing from Higher Education Research Institution at UCLA 

(2004), show that this problem is widespread, with only 

38.9% of undergraduate student across the country com-
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pleting a degree after four years and 56.4% after five. The 

problem is worse among public institutions (37.1%) com-

pared with private (64%). A more recent national survey 

by the National Student Clearinghouse Research Center 

(2016) shows the situation has not changed for four-year 

public institutions, with 37.5% students graduating within 

the intended four-year period.  

 College completion has long since been a focus of re-

searchers. Much of the academic groundwork around stu-

dent dropout was done in the 1970s-1980s. Tinto (1975) 

distinguished different types of dropout, such as dropout 

resulting from academic failure or voluntary withdrawal 

and permanent or temporary dropout and a theoretical 

model to explain the process. Bean (1980) developed a 

causal model to investigate the determinants of student 

attrition in institutions of higher education. They found that 

institutional commitment (loyalty to the organization) and 

routinization were two of the most significant factors that 

affected dropout. Recently, with readily available compu-

ting resources and the ubiquity of data, the student dropout 

problem has been revived, analytically. Dekker et al. 

(2009) use a host of machine learning approaches to pre-

dict student dropout among a group of 648 students in the 

Electrical Engineering department at the Eindhoven Uni-

versity of Technology using the first semester’s grades. 

They have shown that a simple and intuitive classifier 

could give a result with accuracies between 75%-80%. In 

Bayer et al. (2012)’s work, they have shown a significant 

increase of prediction accuracy of drop out by taking stu-

dents’ social behavior into consideration. Aulck et al. 

(2016) modeled student drop out using the largest known 

dataset on higher education attrition, which tracks over 

32,500 students’ demographics and transcript records. 

They found that GPA in Math, English, Chemistry and 

Psychology classes were among the strongest individual 

predictors of student retention. If those factors are known, 

a hypothesis has been that an early warning system could 

be instituted to deploy appropriate interventions before the 

student drops out. Jayaprakash et al. (2014) trialed such an 
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effort called the Open Academic Analytics Initiative 

(OAAI). They found that relatively simple intervention 

strategies designed to alert students early in a course can 

positively impact student learning outcomes, but the inter-

vention could also have unintended consequences such as 

triggering students to withdraw from the course, often ear-

ly in the semester, as a means to avoid academic and finan-

cial penalties. 

 Dropout research has similarly been revitalized in appli-

cation to the informal post-secondary context of Massive 

Open Online Course (MOOCs), where drop out prediction 

can utilize the clickstream data collected from learner in-

teractions with the course. Whitehill et al. (2017) computed 

the accuracy of a standard logistic model of drop out pre-

diction using features engineered from such clickstream 

data. Yang et al. (2013) explored the effect of students’ 

behavior and social positioning on their drop out and found 

that forum posting behavior and social centrality measures 

had significant influence on drop out. 

 Drop out and pathway modeling (Lin, 2009; Imbrie et 

al., 2008) are both topics which relate to the study of on-

time graduation. Research directly on time to degree (TTD) 

completion has not been investigated as comprehensively. 

Herzog (2006) did investigate the issue and used neural 

networks, decision trees, and logistic regression to predict 

time to degree with seventy-nine variables and achieved an 

accuracy around 83% for completion times three years or 

less and 93% for completion times six years or more.  

 Representation learning, our chosen model of analysis, 

is an emerging mainstay in computational linguistics. One 

of the most popular methods is the skip-gram (Mikolov et 

al., 2013a), coined “word2vec” after the name of its open 

sourced package (Mikolov et al., 2013b). Recently, the 

concept of distributed representations has been expanded 

beyond word representation to many other fields such as 

graph structure (Perozzi et al., 2014), e-commerce (Grbo-

vic et al., 2015), fashion, and online tutoring systems (Par-

dos & Dadu, 2017). In our research, we continue the work 

of representing courses as vectors (Pardos & Nam, 2017) 

to, instead, construct student representation and depict their 

learning path. Using student continuous vector representa-

tions as features, we then predict time to degree using 

leave-one-out cross-validation. 

Dataset 
We used a dataset from the University of California at 

Berkley (UCB) which contained anonymized student 

course enrollments information from the Fall of 2008 

through Fall 2015. The dataset consisted of per-semester 

course enrollment information for 99,971 undergraduates, 

38,466 graduates and 22,814 visiting summer exchange 

students with a total of 3.6M course enrollment records. A 

course enrollment meant that the student was still enrolled 

in the course at the end of the semester. Some records of 

student enrollment data are shown in Table 1. In Table 2 

we show the on-time1 graduation statistics of all freshman 

undergraduates entering school in Fall 2008, 2009, and 

2010. 

ANON ID Semester Year Undergraduate/ 
Graduate Dept. Course 

Number Major 

x028224 Spring 2014 Undergrad Law 178 Law 

x028224 Summer 2014 Undergrad Law 165 Law 

x028224 Fall 2014 Undergrad Math 140 Math 

x028224 Fall 2014 Undergrad Math 121 Math 

Table1.  Example of source dataset of student enrollments. 
 

Year On-time graduates  Overtime graduates  
2008 3,226 758 

2009 3,225 711 

2010 3,227 529 

Table 2. Number of on-time and overtime graduation for Fall 

2008-2010 freshman undergraduates. 

 

In Table 3, we give the top five majors with the highest 

number of overtime undergraduates for this set of students 

and the within-major percentage this represented. 

Major Overtime graduate number 
Integrative Biology 87 (12%) 

61 (14%) 

55 (11%) 

49 (9%) 

44  (9%) 
 

Interdisciplinary Studies 

American Studies 

Political Economy 

Sociology 

Table 3. Top 5 majors by overtime graduations. 

 

From Table 3, we can see that Integrative Biology had the 

largest number of students who graduated overtime. In this 

paper, these students serve as our case study for overtime 

analysis. The detailed graduation status by year of Integra-

tive Biology majors is shown in Table 4. 

 

Integrative biology 2008 2009 2010 
On-time graduate (<= 4 years) 277 258 250 

Overtime graduate (> 4 years) 36 27 24 

Table 4. Number of on-time and overtime graduation undergrad-

uates from 2008 to 2010. 

Methods 

Skip-gram Model 
In natural language processing (NLP), the training objec-

tive of the skip-gram model is to find word representations 

                                                 
1 On-time graduation refers to attaining a Bachelor degree within four 
years. Overtime refers to attaining the degree in more than four years. 
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that are predictive of the surrounding words in a sequence 

of natural language. The sequence of words can be symbol-

ized as X1,X2,X3,...XT, with the objective of the model be-

ing to minimize the average log loss: 

 

where c is the size of the training context, or window size 

(a hyper parameter). The probability of a context word, 

Xt+j, is determined by a softmax function: 

)  

where Xo and XI are output and input words; vX and vX
’ are 

“input” and “output” vector representation of X, and W is 

the number of words in the vocabulary. The product of the 

input word vector multiplied by the context word vectors 

(learned via backpropagation) creates the activations which 

are normalized into probabilities via the softmax function.  

Constructing Student Representations 
As shown in Pardos & Nam (2017), it is straightforward to 

construct “sentences” of courses for use with word2vec by 

tokenizing them based on subject_course# and sequencing 

them based on the time a student enrolled, randomizing the 

tokens of courses taken by a student within a single semes-

ter. In this pre-processing, one sentence is constructed per 

student and then presented to word2vec for training. This 

approach learned vector representations of courses. The 

research question at hand is how to apply this paradigm to 

represent students. Using RNNs would be a reasonable 

approach, as they have been used in education contexts to 

predict the correctness of future exercises in a tutor (Piech 

et al., 2015) and the next page which will be visited in a 

MOOC (Tang, Peterson, & Pardos, 2017). Given the effi-

cient computational implementation of word2vec and the 

scrutable vector space it creates which allows for arithme-

tic and scalar manipulation of the representations, we 

chose to continue to adopt this model to the task of student 

vector representation. The key to the construction is to cre-

ate “sentences” with student IDs as the tokens, instead of 

course IDs. To achieve this, we first group students by 

each course concatenated with the semester and year it was 

offered in, along with the grade received in the course. 

Table 5 shows an example of this formatting. 

Data for CS100 Fall’10 
Skip-gram training data format 

(each row is “sentence”) 

stu1 A, stu2 B, stu3 C, 

stu4 A, stu5 C, stu6 B,  

stu7 B, stu8 C 

stu4 stu1 

stu2 stu6 stu7 

stu5 stu8 stu3 

Table 5. Example of student token formatting for training with 

word2vec. 

Finally, we randomize the list of student IDs in each group 

and then concatenate it with other ID lists in the same 

course with same grade by chronological order, such as 

Fall 2010 CS100’s student ID list which is concatenated 

with Fall 2011 CS100’s list and so on. The end result is 

that for each grade on a particular course, we get one “sen-

tence.” The source of signal in this formatting is three fold.  

First, it has chronological structure such that students who 

take the same courses in the same semester are closer to 

one another, which can be learned in the representation. 

Second, students who are in the same major are more like-

ly to share courses with one another. It is this network of 

shared courses that will produce the embedding of students 

based on the collection of courses they took and when they 

took them. Lastly, by grouping courses by grade, we allow 

for paths to be described in the dimension of student suc-

cess in those courses, and not just courses taken. Word2vec 

can now be run on these course_semester_grade groupings 

to produce the representations of students given their pro-

gress, thus far, in their undergraduate career. 

Constructing Intermediary Semester Representations 
The student representation method previously explained 

can represent a student’s entire course history, but in this 

work, we want to follow several cohorts of Integrative Bi-

ology students one semester at a time, evaluating their pro-

ficiencies and estimating their chances of on-time gradua-

tion according to a shared vector space. To do this, we 

need representations of those students at every semester, 

not just a compilation of their entire course history at their 

last semester. In this section, we introduce how we allowed 

word2vec to represent students at each semester. 

 We consider an on-time student, “A,” and an overtime 

student, “B,” to illustrate the construction process. First, in 

order to get student A and B’s representation after the first 

semester, we create two copies named A_ontime_sem1 and 

B_overtime_sem1 in the original data. A_ontime_sem1 has 

only student A’s first semester’s courses and 

B_overtime_sem1 only has student B’s first semester’s 

courses. After using the technique to create the modified 

word2vec training data, the learned vector of 

A_ontime_sem1 and B_overtime_sem1 would represent 

student A and B’s vector after the first semester. We con-

tinue with this duplication process for each semester, 

which would end at the eighth semester for on-time student 

A and would continue until the graduating semester for 

student B. 

Model Training 
For word embeddings, model selection based on hyper 

parameters is done according to the model’s score on se-

mantic and syntactic sets of word relationship validation 

sets. Pardos & Nam (2017) do model selection in the 
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Course Assignment (Hungarian) Accuracy 

Validation Accuracy 

course context by minimizing the nearest neighbor ranks of 

pairs of cross-listed courses. For optimizing student repre-

sentations, as is the focus of this paper, it is not clear where 

a reasonable validation might come from given our dataset, 

which did not contain any student demographic infor-

mation. In order to address this problem, we use an intui-

tion from the course vector context and optimize for stu-

dent vector groupings by their declared major.  

 We first develop an intuition for the correlation between 

course vector clustering by subject and the performance of 

a course embedding on an acceptable validation set (cross-

listings). We ran k-means clustering for course vectors 

using cosine as the distance metric, and set the cluster 

number equal to the number of course subjects2 in the da-

taset. We then optimized assigning each cluster to one sub-

ject by using the Hungarian (Kuhn et al., 1955) method. 

Specifically, the gain of assignment of one cluster to the 

subject of ‘Mathematics’ is the number of students who are 

in the Math major in that particular cluster. So after iterat-

ing for all clusters and subjects, we can get the gain matrix 

for the Hungarian method. After we find the best assign-

ment, we could then calculate its assignment accuracy. Say 

there were N different subjects and N clusters of courses. 

For each course in each cluster, if it belongs to the assigned 

subject of that cluster, the number of correct answers, Y, is 

incremented by one. After iterating all courses in all clus-

ters, the course assignment accuracy equals to Y divided 

by the total number of courses. 

 
 

Figure 1. Scatter plot of course assignment accuracy and cross-list 

validation set accuracy 

 

We found that there is a positive relationship between 

course assignment accuracy and cross-listed accuracy 

(Figure 1). Running a regression, we calculated a coeffi-

cient of 0.499 and p-value of 0.00062, allowing us to reject 

                                                 
2 A “Subject” is the smallest category of academic unit in the University 

the null hypothesis and suppose there is a positive relation-

ship between course assignment accuracy and the cross-

listed validation set. We then make a jump in assuming 

that if maximizing course clustering by subject in model 

selection resulted in a quality embedding, then, given no 

better alternatives, selecting a model by maximizing stu-

dent clustering by major may similarly result in a quality 

student embedding. We proceeded to train 130 models, 

varying the vector length between 48 and 192 and the win-

dow size between 10 and 130 and selected the model with 

highest accuracy according to the Hungarian method. 

Visualization and Proficiency Estimation 
In our research, we wish to show the richness of infor-

mation contained in the student representation, visually. To 

do so, we chose t-SNE for dimensionality reduction 

(Maaten, Hinton; 2008). Default parameters of perplexity 

30, PCA to initial dim of 50, and theta 0.50 were used. 

 In the previous sections, we introduced methods to con-

struct the students’ enrollment paths in order to generate 

per semester vector representations of them. The purpose 

in doing this was to be able to relate the vectors of our In-

tegrative Biology cohorts, at each semester, to notions of 

proficiency in the vector space. In this section, we talk 

about the process of creating these notions of proficiency 

from average student major vectors and using cosine simi-

larity to evaluate a student’s semester vector with respect 

to those averages. We use the full enrollment sequence of 

freshman entering in 2008-2009 to generate averages of 

those students by major and use the per semester vectors of 

Integrative Biology freshman entering in Fall 2009 to re-

late to those average major vectors. The assumption is that 

the average graduated major was at an advanced stage of 

proficiency in their major area at graduation, at least com-

pared to non-majors. Integrative Bio (IB) majors who are 

“more like” the average graduated student in a particular 

major, are perhaps more likely to have that major’s profi-

ciencies than students who are “unlike” them. Using the IB 

students entering in Fall 2008 and graduating on-time, we 

created an average of their student major vectors as of 

Spring 2012, named Ave_On. This would be used to com-

pare the progress, by semester, of IB students entering in 

Fall 2009 to graduated IB students. The Integrative Biolo-

gy major has courses in Physics, Chemistry and Math 

listed3 as required for the major, thus we calculated the 

average vectors Ave_Phy, Ave_Che, Ave_Math of on-

time graduated students in those majors who entered in 

Fall 2008. The semester vectors for 2008 IB freshman 

could then be compared to those subjects and to the vector 

                                                 
3 http://guide.berkeley.edu/undergraduate/degree-programs/integrative-
biology/#majorrequirementstext 
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of IB students in the previous year’s cohort who graduated. 

We note that this IB to IB comparison would not be possi-

ble in real-time, since 2008 students’ graduated vectors 

would not be available for comparison in 2009. We suggest 

that if more prior year’s data were available, an IB vector 

of graduated students could have been produced based on 

students who graduated in 2009, albeit with more differ-

ences in pathway, due to changing course offerings. The IB 

to IB analysis will nevertheless serve as a proof-of-

concept, for comparing this cohort to successful students in 

a past cohort. 

Prediction 
With IB students’ semester vectors in hand, we attempted 

to predict whether the student, at each semester, could 

graduate on-time. We used two algorithms to conduct the 

prediction; logistic regression and neural networks. The 

candidate features serving as input were the student’s se-

mester vector representations and the cosine similarity, dot 

product, and Euclidian distance to each of the four average 

major vectors (Integrative Biology, Physics, Chemistry, 

Math). The label was a binary variable representing wheth-

er the student graduated on-time. The evaluation was con-

ducted using leave-one-out cross-validation (to maximize 

training set size) at the student level, such that when a stu-

dent was left out of training, all of his or her semester vec-

tors would be the target of prediction in that phase of the 

cross-validation. For the neural network, we used a single 

hidden layer with 200 nodes, sigmoid activation function, 

and Adagrad optimizer. The loss function was binary 

cross-entropy with a max epoch of 10. 

Results 

Student Embedding Visualization 
The best trained student embedding, according to the Hun-

garian method, had a window size of 90, vector dimension 

of 96 (with 30 iterations and min student count of 3). The 

t-SNE projection of this embedding can be seen in Figure 2 
where each circle represents one student, colored by de-

clared major. We can first observe that students are gener-

ally clustered together by major. This was the explicit ob-

jective of the Hungarian method optimization in the higher 

dimensional space, but it is also a logical expectation re-

gardless of optimization, as it was seen that courses cluster 

by subject without explicitly optimizing for that. The larg-

est cluster of students is the orange in the lower left which 

represents those who have not yet declared a major. In the 

upper left a cluster of natural sciences and engineering can 

be seen, consisting of Chemical Engineering, Mechanical 

Engineering, Electrical Engineer and Computer Science 

(EECS), and Bioengineering. We can also observe that 

Figure 2. t-SNE projection of the embedding of all students in the dataset. Major labels are colored by their 

respective cluster of data points. Majors relating to Integrative Biology degree requirements are underlined. 

Undeclared

Mechanical
Engineering

EECS

Bioengineering

Chemical Engineering

Civil & Environmental
Engineering

Architecture

Economics

StatisticsMathematics

Political Science

History

Anthropology

Economics

Sociology

Business
Administration

Integrative Biology

Molecular Environmental Biology

Psychology

English
Rhetoric

Art

History of Art

Summer Session
Undeclared

Physics

Chemistry
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many Applied Mathematics and Computer Science stu-

dents are near one another with the Engineering students. 

Another interesting observation is that we can find Eco-

nomics students at two modal locations in the space. The 

first location is on the right side, near the Social Science 

student group, and on the left side, near the Mathematics 

and Engineering group. This is reasonable given the two 

major foci in undergraduate Economics. Lastly, at the very 

right side, we can find an isolated group of students who 

are summer visitors. We present these observations, which 

only scratch the surface of what can be found, as sanity 

checks on the semantics of the plot4. 

Subject Proficiency Analysis 
In this section, we show the results of Integrative Biology 

student’s cosine similarity with graduated student averages 

from Physics, Math, Chemistry, and Integrative Biology 

itself (from the prior year’s eventual on-time graduates). In 

Figure 3, the cosine similarity of each IB student at each 

semester is calculated with respect to the subject averages 

with eventual on-time students colored green, and overtime 

students, red.  

  
Figure 3. On-time and overtime student-semester cosine similari-

ty with averaged subject vectors relevant to the IB major. 

 
From Figure 3, we can see that for Chemistry, Physics, and 

Integrative Biology, the cosine similarities of on-time stu-

dents are slightly higher than overtime students. For the 

Math subject, it seems there is no difference. Perhaps be-

cause Mathematics is less crucial a subject in IB or because 

                                                 
4 The d3 plot software: https://github.com/CAHLR/d3-scatterplot 

Mathematics students are so disjoint from IB that their 

vector shares few features with the IB students’ vectors. 

The general trend of on-time students having higher cosine 

similarity to a comparison group continues in Figure 4, 

where the comparison is to the average of the IB students’ 

own vectors. This trend perhaps works out due to the fact 

that most IB students graduate on-time.  

  
Figure 4. On time and overtime cosine similarity projection by 

semester on themselves (relative within cohort proficiency).  

On Time Graduation Prediction 
After creating representations for each student-semester of 

our 2009 IB cohort, the number of on-time samples was 

1,972 and the number of overtime samples was 288 (87.2% 

on-time). The total number of IB students was 285. After 

training the neural networks with a variety of feature com-

binations, the average accuracy results of predicting on-

time graduation by semester was evaluated and is shown in 

Table 6 and Figure 5.  

 

Method 
Input  

Vector Euclidian 
Cosine 

similarity 

Dot pro-

jection 

Ave. 

Acc. 

Logistic 

X    0.880 

 X   0.873 

  X  0.873 

   X 0.873 

X X X X 0.895 

Neural 

Network 

1 layer 

200 nodes 

X    0.955 

 X   0.873 

  X  0.874 

   X 0.873 

X X X X 0.956 

Table 6. On-time graduation prediction accuracy using two mod-

els with five input feature combinations. 
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From Table 6, we find that single layer neural network 

model is better than the logistic regression for extracting 

information from the representation alone (88% vs 95.5%). 

The vector representations alone performed better than the 

individual cosine similarity, dot product, and Euclidian 

distance statistics alone. Those statistics added a minor 

bump in performance when added to the representations 

for both logistic (88% vs 89.5%) and the neural network 

(95.5% vs 95.6%). In Figure 5, we can see that from se-

mester one to semester eight, the prediction performance of 

the neural network model consistently outperformed the 

logistic model, particularly in the overtime semesters 

where the logistic primarily predicts the majority class. A 

logistic regression with vectors as input is a dot product of 

the input vector with a learned positive class vector (the 

weight coefficients). The positive performance of the neu-

ral network classifier suggests that there is a distributed 

representation of overtime graduation in the embedding but 

that it is not encoded locally as simply magnitude or direc-

tion (angle), thus posing a challenge to the magnitude and 

direction (dot-product) based logistic classification. 

  
Figure 5. Prediction Accuracy of Best Logistic and Neural Net-

work Model by Semester. 

Conclusion 
This research introduced an exploratory methodology to 

study how a student’s state, representing their course histo-

ry, correlates to notions of proficiency, strictly keeping to 

manipulations in the vector space. In all but one of the 32 

on-time subject-semesters in the four proficiency plots, the 

student with the highest cosine value was an on-time stu-

dent; however, in 15 of the 32, the student with the lowest 

cosine was not an overtime student. This suggests that hav-

ing proficiencies is an indicator of on-time graduation but 

the absence of proficiencies is not necessarily an indicator 

to the contrary. Correlation of the student’s state to Math-

ematics was the lowest among the three required subject 

areas. It is an open question if this is due to the Mathemat-

ics vector being too far from Integrative Biology students 

to be compared to one another, or if Mathematics profi-

ciency is simply not well correlated with success in on-

time graduation in Integrative Biology. The second contri-

bution of the work was to introduce a method for vector 

space visualization of student enrollment pathways. We 

scratched the surface of analyzing this vector space visual-

ization which depicted logical major adjacencies at the 

University.  

Future work can focus both on unearthing additional 

findings from the visualization and potentially surfacing 

proficiency like dashboard analytics for advisors so they 

may be informed of the knowledge gaps of their cohort and 

can focus their efforts on correcting their students’ path. 

Additional future work includes consideration of all majors, 

their proficiencies, and time to degree prediction. 
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