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Abstract

We detect and localize obstacles in front of a mobile robot by
means of a deep neural network that maps images acquired
from a forward-looking camera to the outputs of five proxim-
ity sensors. The robot autonomously acquires training data in
multiple environments; once trained, the network can detect
obstacles and their position also in unseen scenarios, and can
be used on different robots, not equipped with proximity sen-
sors. We demonstrate both the training and deployment
phases on a small modified Thymio robot.

Overview

We propose a learning-based approach (Muller et al. 2006)
for perceiving obstacles in the images acquired by a
forward-facing camera mounted on a small robot. Other than
detecting whether an obstacle is present, the system also es-
timates its position.

Instead of attempting to reconstruct the 3D structure of
the environment in front of the robot, we follow a concep-
tually simpler and computationally lighter approach which
considers each frame independently and does not rely on a
sophisticated computer vision pipeline. As humans, when
we observe a single picture, we can instinctively infer where
an obstacle is present and which areas are free; this is be-
cause we have a prior expectation (learned from experience)
on the appearance of free space and obstacles, not because
we performed a multi-view 3D reconstruction of the scene.

In order to achieve a similar goal, our approach works
by acquiring training datasets on a robot that is equipped
with both a camera and a number of proximity sensors that
can detect obstacles in the same area imaged by the camera,
and thus produce a ground truth. For dataset generation, the
robot autonomously explores a scenario unattended, driven
by an ad-hoc controller that maximizes the amount of useful
information acquired. The quality of the resulting classifiers
and their generalization ability to different environments is
quantitatively measured using a cross-validation scheme on
multiple datasets acquired in disjoint scenarios.

Our demonstration uses a modified Thymio1 robot, which
is equipped with 5 forward-facing infrared proximity sen-

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"https://www.thymio.org

8220

sors and one forward-looking webcam (Fig. 2 Left); our ap-
proach however is general and would directly apply when
using different robot platforms or sensing modalities.

At a given time ¢, the camera acquires an image ()
and each of the five proximity sensors either detects an ob-
stacle or not; we represent the sensor outputs by means
of a vector y(t) containing Boolean values (1 if the sen-
sor detected an obstacle, 0 otherwise). In our case, y(t) =
[yLL, YL, YC, YR, YRR ], TEPresenting the output of the leftmost,
center-left, center, center-right, and rightmost proximity sen-
sors, respectively.

Our goal is to gather training data, in the form of a set of
pairs (I(¢),y(t)) and then build a classifier that given I(t)
estimates ¢(t); 4(t) will be a vector of real-valued numbers
in the range [0, 1], representing the probability that the cor-
responding element of y(¢) is 1.

Figure 1: Images paired with corresponding proximity sen-
sor data (groundtruth)

Automated acquisition of training datasets

Data gathering is automated by a smart controller which
drives our robot inside an environment following three sim-
ple rules for obtaining a varied dataset. 1) The robot drives
forward if no obstacles are detected by the sensors. 2) When
an obstacle is detected by a sensor, the robot starts rotating
in place towards the obstacle, so that the obstacle is seen
at different positions in the camera field of view. 3) When
the detected obstacle exits from the sensors’ range, the robot
continues rotating for a random angle between 0 and 180
degrees, which ensures a non-repetitive coverage of an un-
known environment.
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Figure 2: Left: custom Thymio used in this experiments, Center: performance of our neural network: AUC of binary predictions
for each sensor (black - center, light blue - left, light green - right), Right: example of the robot’s behavior

Experimental validation
Datasets, cross-validation and data augmentation

The dataset was built by autonomously exploring 8 different
scenarios, each with a different floor, set of obstacles and
lighting. The resulting dataset contains 53560 images sam-
pled from 106 minutes of recording.

We implement a leave-one-scenario-out cross validation
scheme: in each fold, 7 scenarios are used for training and
the remaining one for testing.

During training, every image is resized to 60260 and aug-
mented by: applying a random gain perturbation (10%) on
red, green and blue channels separately (to simulate different
white balance); overlaying a random semitransparent gra-
dient (to simulate smoothly-uneven lighting); with a 50%
probability, mirroring around the vertical axis, which im-
plies reversing the order of sensors in the ground truth.

Classifier

Our approach is based on a convolutional neural network
with: a 60 x 60 RGB input; 3 pairs of 3 x 3 convolutional
and 2 x 2 maxpooling layers, with 10 maps and ReLU ac-
tivation; a 128-neuron densely-connected layer with ReLU
activation; a 5-neuron densely-connected output layer with
sigmoid activation, where each neuron corresponds to one
sensor; note that this is not the same as a 5-class classifier,
since we don’t expect that one and only one output is ac-
tive at a time (thus we don’t implement a softmax layer);
instead, the architecture corresponds to 5 binary classifiers
which share everything except the last layer. Given an input
frame, we obtain 5 values corresponding to the probability
that an obstacle is in front of each sensor.

The net is built with the Keras framework (Franois Chollet
2017) using Tensorflow as backend.

Performance

The net is solving 5 binary classification problems in par-
allel: Fig 2 (center) reports the Area Under the ROC Curve
computed for each sensor. We note that the central sensor
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and its neighbors are predicted more accurately than the pe-
ripheral sensors (LL and RR); this is expected as the area
covered by such sensors is at the periphery of the camera
field of view, and obstacles seen by the sensors may not be
visible in the camera image.

Controller implementation

We implemented a reactive controller that processes the
camera stream in realtime and uses the network outputs for
control; in particular, the five outputs are converted to linear
and angular speeds by means of simple rules similar to those
used to generate obstacle-avoidance behaviors from proxim-
ity sensors: the resulting trajectories are visible in attached
videos and Fig. 2 right.

Figure 3: Camera view of the robot; outputs of the deployed
net (red bars); resulting steering (horizontal slider) and lin-
ear speed (vertical slider).
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