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Abstract

As we move towards autonomous machines responsible for
making decisions previously entrusted to humans, there is an
immediate need for machines to be able to explain their be-
havior and defend the reasonableness of their actions. To im-
plement this vision, each part of a machine should be aware
of the behavior of the other parts that they cooperate with.
Each part must be able to explain the observed behavior of
those neighbors in the context of the shared goal for the local
community. If such an explanation cannot be made, it is ev-
idence that either a part has failed (or was subverted) or the
communication has failed. The development of reasonable-
ness monitors is work towards generalizing that vision, with
the intention of developing a system-construction methodol-
ogy that enhances both robustness and security, at runtime
(not static compile time), by dynamic checking and explain-
ing of the behaviors of parts and subsystems for reasonable-
ness in context.

Introduction
An important problem of complex autonomous systems is
that they cannot provide insight into their behaviors and
thought processes. This work on reasonableness monitor-
ing is a first step towards developing the methodologies and
technologies to support building robust, articulate systems.
Such systems will be introspective and able to explain their
behaviors. They will be able to use explanations to dynami-
cally detect, and mitigate, anomalous behaviors.

Reasonableness monitors are implemented as two types
of interfaces around the subsystems of a complex machine.
Local monitors dynamically check the behavior of a specific
subsystem, and non-local reasonableness monitors monitor
committees of subsystems for plausibility (reasonableness)
in context. Reasonableness monitors are able to build an ex-
planation of a problem (or a reasonable state) by examining
the premises supporting the observation of a contradiction
(or consistency).

I present preliminary results on applying a local reason-
ableness monitoring system to machine perception. The key
contribution here is determining the reasonableness of a
perception-derived scene description with the careful use of
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dependencies and dependency analysis. I also present pre-
liminary technical contributions and a methodology towards
monitoring non-local inconsistencies. This methodology is
inspired by the structure of successful human organizations,
where tasks are accomplished by committees of multiple
people. Committees are able to survive bad work by any
single member, because members of the committee observe
each other’s work and can jointly decide on actions to cor-
rect bad work or remove misbehaving members. The goal
of reasonableness monitoring is to apply this philosophy of
committees to subsystems of machines, with the aim of pro-
ducing more robust and secure systems for safety-critical or
mission-critical tasks.

Methods
Each reasonableness monitor has its own knowledge base:
a set of behaviors that are considered to be reasonable. For
monitoring machine perception, ConceptNet 5 (Speer and
Havasi 2013) is used as a knowledge base of reasonableness.
Monitors search through the knowledge base for premises
and generate explanations of inconsistencies. The premises
are used as evidence for explaining inconsistent (or consis-
tent) information.

These methods are greatly influenced by work on knowl-
edge representation (Fahlman 1979), analogical chain-
ing (Blass and Forbus 2017), and monitoring systems for
planning (Veloso, Pollack, and Cox 1998). Explanatory sys-
tems have also been applied to multi-agent domains (Molin-
eaux and Aha 2015) and story understanding (Winston and
Holmes 2017).

Preliminary Results
Take the observed perception of “a mailbox crossing the
street.” This is clearly unreasonable since mailboxes are
heavy, inanimate objects found at the sidewalk of a street
that do not move. Reasonableness monitors can detect and
explain this unreasonable perception.

input: "A mailbox crossing the street"
parsed as: (mailbox, cross, street)

This perception is UNREASONABLE,
using data from ConceptNet5.
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REASONING:
A mailbox is a type of box typically
found near a sidewalk.

Mailboxes cannot cross a street
because mailboxes are objects that
do not move on their own.

Reasonableness monitors can also explain and detect con-
sistent information. This monitor can explain that the per-
ception of “a mailbox contains papers” is reasonable.

input: "A mailbox contains papers"
parsed as: (mailbox, contain, papers)

This perception is REASONABLE,
using data from ConceptNet5.

REASONING:
A mailbox is used for receiving
letters. And a letter is a sub type
or specific instance of a piece
of paper.

So mailboxes can reasonably contain
papers.

Future Work
Current work is focused on creating the system design to
monitor non-local inconsistencies. For instance, the moni-
tor may be provided with additional alternative premises ex-
plicitly (e.g a mailbox in a hurricane can move). These sorts
of premises can be manually inserted into the monitor and
cause previously reasonable premises to lose support.

Longer term contributions are focused on learning shared
premises (and ranking their applicability of support) be-
tween subsystems. This will rely on the structure of com-
mittees of multiple subsystems. When a contradiction is
exposed, if more than one subsystem provides an accept-
able explanation, then the committee decides which expla-
nation is most appropriate. If the explanations are all log-
ical, then the premises that support the alternative proposi-
tions are inspected by the committee. The committee decides
which premises should prevail and thereby which conclu-
sion should be accepted.

Non-local Monitors
I extended the monitoring system to be able to recon-
cile a previously inconsistent system state. In this proof-
of-concept, premises can be manually added. Returning
to the perception of “A mailbox crossing the street”,
if the premise: (mailbox in hurricane, move,
plausible) is added, this premise takes precedent, and
the (mailbox, moves, false) premise is removed.
The system is able to explain that the perception is reason-
able with this added premise:

added premise :
(mailbox in hurricane, move, plausible)

REASONING:
Typically, mailboxes cannot cross a
street because mailboxes are objects
that do not move on their own.

But during a hurricane, it’s plausible
for a mailbox to move. Therefore,
it is reasonable for a mailbox to
cross the street during a hurricane.

Learning Shared Premises
The question remains how to learn premises that are shared
among parts. When monitoring a community of parts work-
ing together, the set of local premises that support the
behavior may not be enough to produce a coherent ex-
planation. Further, these monitors will need to determine
which premises take precedent when there are inconsisten-
cies. Currently, for our proof-of-concept, the most recently
added premise takes precedent. However when neighboring
monitors are alerted of inconsistencies, the most supported
premise may not obvious. The idea is to diligently use de-
pendencies, dependency tracking, and dependency analysis.
Once the offending premise is removed, we are left with a
consistent worldview. However, not all non-local consisten-
cies will be this simple to explain and detect.

Returning to the “mailbox crossing the street’ example, I
propose that the alternative support will be learned with re-
spect to a more general knowledge base of reasonableness
(e.g. high winds can cause immobile heavy objects to move)
and deduction (high winds can move heavy objects and a
mailbox is a heavy object, therefore high winds can move a
mailbox. Since a hurricane is characterized by high winds,
it is plausible for a mailbox to be perceived to walk across
the street during a hurricane). Both approaches arrive at the
same conclusion and produce an equally sufficient explana-
tion. The methods and computational techniques for learn-
ing this type of shared knowledge and premises between
parts are left to future work.
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