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Introduction

Networks are widely studied across numerous scientific
fields. Mostly, the objective of these studies is to establish
and maintain a stable and fully functional network. How-
ever, sometimes an unstable or dysfunctional network is
equally desirable. Examples include epidemic, terrorist and
drug trafficking networks. Strategic aspects of network anal-
ysis is an important research area in many fields includ-
ing Al (Michalak, Rahwan, and Wooldridge. 2017). Within
this area, identifying the most important nodes or edges
is a fundamental problem (Zheng, Dunagan, and Kapoor
2011). Applications include disrupting the spread of an epi-
demic (Kovacs and Barabasi 2015), weakening a terrorist
network (Michalak et al. 2015), pinpointing the most vul-
nerable nodes (Holme et al. 2002) and blocking a contagion
for network security (Zheng, Dunagan, and Kapoor 2011).
The problem is relevant to various fields and sectors such as
epidemiology, sociology, physics, security and logistics.

We focus on the problem of optimizing the performance
of a network by identifying the most critical nodes or
edge whose removal has significant impact on the perfor-
mance of the network. We choose to quantify the network
performance by Inverse Geodesic Length (IGL). Formally,
IGL(G) = {4 v)Cviuso dumy Where d(u,v) denotes the
distance between v and v. Our choice is driven by two fac-
tors. One, IGL has been frequently studied in the relevant
literature as a global measure of robustness of a network.
Two, IGL remains effective irrespective of the input graph
structure. Interestingly, despite its widespread use as a net-
work performance measure, the optimization problem with
respect to IGL has not been examined previously.
Parameterized complexity analysis: A parameterized de-
cision problem II is in FPT (Fixed Parameter Tractable), if
there is an algorithm solving any instance x with parameter
k in time f(k) - |z|°, where f(k) is a computable function
of k and ¢ is a constant. Denoted by W 1] is a class of pa-
rameterized decision problems that are considered unlikely
to be in FPT (Downey and Fellows 2013). A para-NP-hard
problem is NP-hard even for constant values of the param-
eter. See (Cygan et al. 2015) for a detailed discussion on
parameterized complexity.
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Related Work

The problem of optimizing the network performance by
identifying critical nodes or edges has been considered both
in social network analysis and artificial intelligence; see,
e.g., (Lindelauf, Hamers, and Husslage 2013; Michalak et
al. 2015). A common trend among these studies is to rank
the vertices by their importance using a heuristic (Micha-
lak et al. 2015; Szczepanski, Michalak, and Rahwan 2015).
To measure the quality of their ranking they either use ex-
pert domain knowledge on the importance of vertices in
the network or existing network performance measures like
component order connectivity (size of the largest connected
component) (Gross et al. 2013) and inverse geodesic length
(IGL). IGL has been used to examine network vulnera-
bility (Holme et al. 2002) and the effect of critical nodes
(Barabasi and Albert 1999) in the network security domain.
It has also been used to identify influential nodes in a so-
cial network (Morone and Makse 2015). Game-theoretic
values and centrality measures, such as the Shapley value
and betweenness centrality of the nodes, have been used
as heuristics to delete nodes with large impact on network
performance (Holme et al. 2002; Michalak et al. 2015;
Szczepanski, Michalak, and Rahwan 2015). Particularly,
Szczepanski, Michalak, and Rahwan delete the nodes with
the highest Shapley value as a heuristic to decrease the IGL.

Results

Although the inverse geodesic length is prominent in net-
work analysis, we formally initiate research on the com-
plexity of the optimization problem with respect to IGL.
In (Aziz, Gaspers, and Najeebullah 2017) we consider the
single-agent, vertex deletion optimization problem corre-
sponding to IGL called MINIMIZE IGL (MINIGL). In
MINIGL, given a network G, a budget k, and a target inverse
geodesic length 7', the question is: does there exist a set
X CV(G),suchthat | X| < kand IGL(G—X) < T?Our
main focus is a parameterized complexity analysis of the
problem. We observe that MINIGL is equivalent to VER-
TEX COVER when 7' = 0 and is therefore NP-Complete.
This also implies that it is para-NP-hard for parameter 7". For
parameter k, we give reductions from CLIQUE on regular
graphs to show that MINIGL is W [1]-hard and NP-complete
even when restricted to bipartite and split graphs. For param-
eter k + T, we give a kernel of size O(k? +T'), which estab-



lishes that the problem is FPT for k£ + 7'. Next, we consider
structural parameters. Our choice of parameters is supported
by the relevant literature as well as by the empirical analysis
of the real-world datasets. The vertex cover number is one
of the well-known and widely studied structural parameters
(Fomin et al. 2014) , whereas recently introduced alterna-
tives neighborhood diversity (Lampis 2012) and twin cover
number (Ganian 2015) are less restrictive generalizations of
vertex cover. Our main result is that MINIGL is FPT param-
eterized by twin cover number. Since a vertex cover is a twin
cover, this also implies tractability for vertex cover number.
However, we give a faster algorithm for this parameter. We
also provide an FPT algorithm parameterized by neighbor-
hood diversity and the deletion budget combined.

Future Directions

A natural future direction is to consider MINIGL-ED, the
edge deletion counterpart of MINIGL, we aim to approach it
on similar lines as that of MINIGL. Intuitively, a multi-agent
setting for MINIGL (respectively, MINIGL-ED) problem
seems more relevant in practice. In what follows, we present
multi-agent settings for the optimization problems corre-
sponding to IGL.

Stackelberg Game with IGL Payoffs

A Stackelberg game is a strategic game in which at least one
player is defined as the leader who can make a decision and
commit to a strategy before other players who are defined as
followers. We consider a two-player Stackelberg game on a
graph G, let defender d and attacker = be the two players.
We designate d to be the leader. The set of actions for d is
to protect Sq C V(G) with kg = |Sy| and the set of actions
for z is to remove S, C V(G) with k, = |S,|. A vertex
can only be removed if it is not protected. We formalize the
DEFENDER-STACKELBERG GAME (D-SIGL) problem as
follows; Given a graph G, integers kg, k, and a target in-
verse geodesic length 7', does there exist a set of vertices
Sq with |Syq| = kg such that IGL(G — S,) > T for all
Sz C (V(G)\ Sy) where |S,| = k,. We plan to conduct a
comprehensive computational and parameterized complex-
ity analysis of D-SIGL. We intend to consider parameters
ka, kg, T, tree-width, vertex cover and their combinations.

Cooperative Game with IGL Payoffs

A cooperative game is defined by a pair (N,v) where
N = {1,2,..., n} is the set of agents and v : 2V — R
is a valuation function that associates with each coalition
S C N a value v(S) with v(f)) = 0. v(S) can be con-
sidered as the value generated when players in coalition
S cooperate. The Shapley value ¢(N,v) specifies a value
¢; (N, v) for each player where, ¢;(N,v) = Wl‘, doSCN\{i}
(ISIN(N] = 15| = D! - (v(SU{i}) —v(S)). We consider
a cooperative game IGL-CoOOP defined on a graph G with
N = V(G) and v(S) = IGL(G) — IGL(G[V(G) \ 9)).
Note that v()) = 0 and v(V(G)) = IGL(G). Based on
IGL-Coo0P, each vertex has a corresponding Shapley value.
We refer to the Shapley value as SH-IGL and aim to find
answers to the following questions; What is the complexity
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of computing SH-IGL? What is the complexity of compar-
ing the SH-IGL of two vertices? Can we find an axiomatic
characterization of the SH-IGL?
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