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Abstract

A wide array of complex biological, social, and physical sys-
tems have recently been shown to be quantitatively described
by Ising models, which lie at the intersection of statistical
physics and machine learning. Here, we study the fundamen-
tal question of how to optimize the state of a networked Ising
system given a budget of external influence. In the continu-
ous setting where one can tune the influence applied to each
node, we propose a series of approximate gradient ascent al-
gorithms based on the Plefka expansion, which generalizes
the naive mean field and TAP approximations. In the discrete
setting where one chooses a small set of influential nodes,
the problem is equivalent to the famous influence maximiza-
tion problem in social networks with an additional stochastic
noise term. In this case, we provide sufficient conditions for
when the objective is submodular, allowing a greedy algo-
rithm to achieve an approximation ratio of 1 —1/e. Addition-
ally, we compare the Ising-based algorithms with traditional
influence maximization algorithms, demonstrating the practi-
cal importance of accurately modeling stochastic fluctuations
in the system.

Introduction

The last 10 years have witnessed a dramatic increase in the
use of maximum entropy models to describe a diverse range
of real-world systems, including networks of neurons in the
brain (Schneidman et al. 2006; Ganmor, Segev, and Schnei-
dman 2011), flocks of birds in flight (Bialek et al. 2012),
and humans interacting in social networks (Lynn et al. 2017;
Galam 2008), among an array of other social and biological
applications (Kapur 1989; Phillips, Anderson, and Schapire
2006; Mora et al. 2010; Lezon et al. 2006). Broadly speak-
ing, the maximum entropy principle allows scientists to for-
malize the hypothesis that large-scale patterns in complex
systems emerge organically from an aggregation of simple
fine-scale interactions between individual elements (Jaynes
1957). Indeed, intelligence itself, either naturally-occurring
in the human brain and groups of animals (Hillis 1988)
or artificially constructed in learning algorithms and au-
tonomous systems (Mataric 1993; Namatame, Kurihara, and
Nakashima 2007), is increasingly viewed as an emergent
phenomenon (Lévy 1997), the result of repeated underlying
interactions between populations of smaller elements.
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Given the wealth of real-world systems that are quantita-
tively described by maximum entropy models, it is of fun-
damental practical and scientific interest to understand how
external influence affects the dynamics of these systems.
Fortunately, all maximum entropy models are similar, if not
formally equivalent, to the Ising model, which has roots in
statistical physics (Brush 1967) and has a rich history in ma-
chine learning as a model of neural networks (Coughlin and
Baran 1995). The state of an Ising system is described by
the average activity of its nodes. For populations of neu-
rons in the brain, an active node represents a spiking neuron
while inactivity represents silence. In the context of humans
in social networks, node activity could represent the send-
ing of an email or the consumption of online entertainment,
while inactivity represents moments in which an individual
does not perform an action. By applying external influence
to a particular node, one can shift the average activity of that
node. Furthermore, this targeted influence also has indirect
effects on the rest of the system, mediated by the underly-
ing network of interactions. For example, if an individual is
incentivized to send more emails, this shift in behavior in-
duces responses from her neighbors in the social network,
resulting in increased activity in the population as a whole.

As a first step toward understanding how to control such
complex systems, we study the problem of maximizing the
total activity of an Ising network given a budget of external
influence. This so-called Ising influence maximization prob-
lem was originally proposed in the context of social net-
works (Lynn and Lee 2016), where it has a clear practical
interpretation: If a telephone company or an online service
wants to maximize user activity, how should it distribute its
limited marketing resources among its customers? However,
we emphasize that the broader goal—to develop a unifying
control theory for understanding the effects of external influ-
ence in complex systems—could prove to have other impor-
tant applications, from guiding healthy brain development
(Goddard, Mclntyre, and Leech 1969) and intervening to al-
leviate diseased brain states (Goddard 1967) to anticipating
trends in financial markets (Mantegna and Stanley 1999) and
preventing viral epidemics (Pastor-Satorras and Vespignani
2001).

We divide our investigation into two settings: (i) the con-
tinuous setting where one can tune the influence applied to
each node, and (ii) the discrete setting in which one forces



activation upon a small set of influential nodes. In the con-
tinuous setting, we propose a gradient ascent algorithm and
give novel conditions for when the objective is concave. We
then present a series of increasingly-accurate approximation
algorithms based on an advanced approximation technique
known as the Plefka expansion (Plefka 1982). The Plefka
expansion generalizes the naive mean field and TAP approx-
imations, and, in theory, can be extended to arbitrary order
(Yedidia 2001).

In the discrete setting, it was recently shown that Ising
influence maximization is closely related to the famous in-
fluence maximization problem in social networks (Kempe,
Kleinberg, and Tardos 2003) with the addition of a natural
stochastic noise term (Lynn and Lee 2017). Here, we pro-
vide novel conditions for when the total activity of the sys-
tem is submodular with respect to activated nodes. This re-
sult guarantees that a greedy algorithm achieves a 1 — 1/e
approximation to the optimal choice of nodes. We compare
our greedy algorithm with traditional influence maximiza-
tion techniques, demonstrating the importance of accurately
accounting for stochastic noise.

Related Work

Ising influence maximization was originally proposed in the
context of human activity in social networks (Lynn and Lee
2016). However, a recent surge in the use of Ising mod-
els to describe other biological and physical systems signif-
icantly expands the problem’s applicability (Stein, Marks,
and Sander 2015).

Ising influence maximization was originally studied in the
continuous setting under the naive mean field approxima-
tion. Since the Plefka expansion generalizes the mean field
approximation to increasing levels of accuracy, our work
represents a principled improvement over existing tech-
niques.

In the discrete setting, it was recently shown that Ising in-
fluence maximization is closely related to standard influence
maximization (Lynn and Lee 2017), which was first studied
in the context of viral marketing (Domingos and Richard-
son 2001). Kempe et al. (Kempe, Kleinberg, and Tardos
2003) proposed influence maximization as a discrete opti-
mization problem and presented a greedy algorithm with ap-
proximation guarantees. Significant subsequent research has
focused on developing efficient greedy and heuristic tech-
niques (Leskovec et al. 2007; Chen, Wang, and Yang 2009;
Chen, Wang, and Wang 2010). Here, we do not claim to pro-
vide improvements over these algorithms in the context of
standard influence maximization. Instead, we focus on de-
veloping analogous techniques that are suitable for the Ising
model.

Ising Influence Maximization

In the study of complex systems, if we look through a
sufficiently small window in time, the actions of individ-
ual elements appear binary—either human ¢ sent an email
(o;, = 1) or she did not (0; = —1). The binary vector
o = {o;} € {£1}" represents the activity of the entire
system at a given moment in time, where 7 is the size of the
system.

680

Many complex systems in the biological and social sci-
ences have recently been shown to be quantitatively de-
scribed by the Ising model from statistical physics. The Ising
model is defined by the Boltzmann distribution over activity
vectors:

P(o) = %exp (; Z Jijoio; + Z biai> , (D
i#j i

where Z is a normalization constant. The parameters J =
{Jij} define the network of interactions between elements
and the parameters b = {b;} represent individual biases,
which can be altered by application of targeted external in-
fluence. For example, if .J defines the network of interactions
in a population of email users, then b represents the intrinsic
tendencies of users to send emails, which can be shifted by
incentivizing or disincentivizing email use.

Problem Statement

The total average activity of a network with bias b is denoted
M(b) = >, (i), where (-) denotes an average over the
Boltzmann distribution (1). In what follows, we assume that
the interactions .J and initial bias b° are known. We note that
this assumption is not restrictive since there exist an array of
advanced techniques in machine learning (Ackley, Hinton,
and Sejnowski 1985) and statistical mechanics (Aurell and
Ekeberg 2012) for learning Ising parameters directly from
observations of a system.

We study the problem of maximizing the total activity M
with respect to an additional external influence h, subject to

the budget constraint ||, = (3, |hi\p)1/p < H, where H
is the budget of external influence.

Problem 1 (Ising influence maximization). Given an Ising
system defined by J and b°, and a budget H, find an optimal
external influence h* satisfying

h* = argmax M (b° + h).
|kl <H

2

We point out that the norm p plays an important role. If
p = 1,2,3,..., then one is allowed to tune the influence
on each node continuously. On the other hand, if p = 0,
then |h|y counts the number of non-zero elements in h. In
this case, one chooses a subset of | H | nodes {i} to activate
with probability one by sending {h;} — oo.

The Plefka Expansion

Since the Ising model has remained unsolved for all but a
select number of special cases, tremendous interdisciplinary
effort has focused on developing tractable approximation
techniques. Here, we present an advanced approximation
method known as the Plefka expansion (Yedidia 2001). The
Plefka expansion is not an approximation itself, but is rather
a principled method for deriving a series of increasingly
accurate approximations, the first two orders of which are
the naive mean-field (MF) and Thouless-Anderson-Palmer
(TAP) approximations. In subsequent sections, we will use
the Plefka expansion to approximately solve the Ising influ-
ence maximization problem in (2).



Calculations in the Ising model, such as the average ac-
tivity (o;), generally require summing over all 2" binary ac-
tivity vectors. To get around this exponential dependence on
system size, the Plefka expansion provides a series of ap-
proximations based on the limit of weak interactions | J; ;| <
1. Each order « of the expansion generates a set of self-
consistency equations m; = fi(o‘) (m), where m; approxi-
mates the average activity (o). Thus, for any order « of the
Plefka expansion, the intractable problem of computing the
averages (o;) is replaced by the manageable task of com-
puting solutions to the corresponding self-consistency equa-
tions m = f(*)(m). We point the interested reader to Ap-
pendix A for a detailed derivation of the Plefka expansion.

For a system with interactions J and bias b, the first order
in the expansion yields the naive mean field approximation,
summarized by the self-consistency equations

m; = tanh [bi +3° Jijmj} A MEGLY (3)
J

The second order in the Plefka expansion yields the TAP
approximation,

m; = tanh {b +Z‘]’Jm3 mlsz (I—m ]

2 £ (m). 4

Higher-order approximations can be achieved by systemati-
cally including higher orders of .J in the argument of tanh][-].
In Appendix B, we present a derivation of the third-order ap-
proximation, denoted TAP3.

The standard approach for computing solutions to the
self-consistency equations m = f£(®)(m) is to iteratively
apply (%) until convergence is reached:

— (1 —ym+vf(m), Q)

where 7 € [0, 1] is the step size. The convergence of this
procedure was rigorously examined in (Bolthausen 2014).
In practice, we find that v ~ 0.01 yields rapid convergence
for most systems up to the third-order approximation.

The Continuous Setting

In this section, we study Ising influence maximization un-
der a budget constraint |h|, < H, where p = 1,2,3,...,
yielding a continuous optimization problem where one can
tune the external influence on each element in the system.
We first present an exact gradient ascent algorithm and com-
ment on its theoretical guarantees. We then demonstrate how
the Plefka expansion can be used to approximate the gradi-
ent, yielding a series of increasingly accurate approximation
algorithms.

Projected Gradient Ascent

We aim to maximize the total activity M (b°+h) =, (o)
with respect to the external influence h. Thus, a crucially
important concept is the response function

_ 9low (3) (03}

Xij = oh, (6)

= (oio;) —
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Algorithm 1: Projected Gradient Ascent (PGA)

Input: Ising system defined by .J and b°, budget H,
norm p, and error €;

Output: External influence h;
1 Initialize: Choose |h(V)|, < H, k «+ 0;
2 while [M(b° + A®)) — M(b° + R*~D)| > € do
3 | Choose step size n;; hF+1)

Ty, <i [RF) + mx (B0 + RE)T1];

4 k++;
5 end
6 h — h®;

which quantifies the change in the activity of node ¢ due to
a shift in the influence on node j. The gradient of M with
respect to h can be succinctly written V;, M = x7'1, where
1 is the n-vector of ones.

In Algorithm 1 we present a projected gradient ascent
algorithm PGA. Starting at a feasible choice for the exter-
nal influence h(?), PGA steps along the gradient x”'1 and
then projects back down to the space of feasible solutions
|h|, < H.Wenote that for p = 1,2, 3, .. ., the space of fea-
sible solutions is convex, and hence the projection 7| <p
is well-defined and can be performed efficiently (Duchi et
al. 2008).

Conditions for Optimality

The algorithm PGA efficiently converges to an e-
approximation of a local maximum of M in O(1/¢)
iterations (Nesterov 2013). However, this local maximum
could be arbitrarily far from the globally optimal solution.
Here, we present a novel sufficient condition for when
PGA is guaranteed to converge to a global maximum of M,
subject to the proof of a long-standing conjecture.

Conjecture 2 (Sylvester 1983). Given an Ising system with
non-negative interactions J > 0 and non-negative biases
b > 0, the average activity of each node (o;) is a concave
function of the biases b.

Theorem 3. If Conjecture 2 holds, then for any Ising system
with non-negative interactions J > 0 and non-negative
initial biases b° > 0, PGA converges to a global maximum
of the total activity M.

Proof. For Ising systems with positive couplings J > 0,
the response function is non-negative {x;;} > 0 (Griffiths
1967). This implies two things: (i) at least one global
maximum of M (b) occurs in the non-negative orthant of
b, and (ii) if b° > 0, then b° + h(*) will be non-negative
at every iteration k of PGA. If Conjecture 2 holds, then
every local maximum in the non-negative orthant is a global
maximum. Thus, PGA converges to a global maximum. [J

We remark that Sylvester (Sylvester 1983) provides ex-
tensive experimental justification for Conjecture 2, and even
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Figure 1: Performance of PGA for various orders of the Plefka expansion. (a) An Erdos-Rényi network with n = 15 nodes
and budget H = 1. The total activity is calculated exactly using the Boltzmann distribution. (b) An Erdés-Rényi network with
n = 200 nodes and budget H = 10. (c) A preferential attachment network with n = 200 nodes and budget H = 10. (d) A
collaboration network of n = 904 physicists on the arXiv and budget H = 20. The total activities in (b-d) are estimated using
Monte Carlo simulations. The benchmarks are PGA with the exact gradient for (a) and the gradient estimated using Monte

Carlo simulations in (b-d).

proves Conjecture 2 in a number of limited cases. Addition-
ally, we manually verified the veracity of Conjecture 2 in
each of the experiments presented below. We also note that
the sufficient conditions are plausible for many real-world
scenarios. Positive interactions .J > 0 imply that an action
from one node will tend to induce an action from another
node, a phenomenon that has been experimentally verified
in small neuronal (Schneidman et al. 2006) and social (Lynn
et al. 2017) networks. The more stringent condition is that
bY >, implying that each element in the network prefers ac-
tivity over inactivity.

Approximating the Gradient via the Plefka
Expansion

Since PGA requires calculating the response function y at
each iteration, an exact implementation scales exponentially
with the size of the system. Here we show that the Plefka
expansion can be used to approximate Y, yielding a series
of efficient and increasingly-accurate gradient ascent algo-
rithms.

Given a self-consistent approximation of the form m =
F(®) (m), where «v denotes the order of the Plefka approxi-
mation, the response function is approximated by

o) _ 5" afi(a);((@).
i~ Oh, Oy, <k

2. ™
For all orders « of the Plefka expansion, we point out that
afi(“)/ahj = (1 — m2)8;;. Thus, defining A;; = (1 —
m?)8;;, and denoting the Jacobian of £ by D fi(;‘) =

0 fi(o‘) /Om;, the response function takes the particularly
simple form

X = (I —Dfl)4, (8)

where [ is the identity matrix.
Thus, to approximate the gradient Vi M =~ xT1, one
simply needs to calculate the Jacobian of f(®). Under
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the mean field approximation, the Jacobian takes the form
D fMF = AJ; and under the TAP approximation, we have

D ;I;AP = (1—m?) Jij—i—QJijmimj—(Sij ZJzk(l_mi)}
k

9)
We point the reader to Appendix B for a derivation of the
third-order Jacobian.

Experimental Evaluation

In Fig. 1, we compare various orders of the Plefka approxi-
mation across a range of networks for the norm p = 1. We
also compare with the uniform influence h = H/nl as a
baseline. In Fig. 1(a), the network is small enough that we
can calculate the exact optimal solution h*, while for Figs.
1(b-d), we approximate h* by running costly Monte Carlo
simulations to estimate the gradient at each iteration of PGA.
Similarly, we calculate the total activity M exactly using the
Boltzmann distribution in Fig. 1(a), while in Figs. 1(b-d), we
estimate M using Monte Carlo simulations.

For each network, we assume that the interactions are
symmetric .J = JT with uniform weights and that the initial
bias is zero b° = 0. We then study the performance of the
various algorithms across a range of interaction strengths,
summarized by the spectral radius p(J). For p(J) < 1,
the network is dominated by randomness and all influence
strategies have little affect on the total activity. On the other
hand, for p(J) > 1, the elements interact strongly and any
positive influence induces the entire network to become ac-
tive. Thus, the interesting regime is the “critical” region near
p(J) ~ 1.

The striking success of the Plefka expansion is summa-
rized by the fact that TAP and TAP3 consistently provide
dramatic improvements over the naive mean field algorithm
studied in (Lynn and Lee 2016). Indeed, TAP and TAP3
consistently perform within 20% of optimal (except for the
arXiv network) and sometimes even outperform the Monte
Carlo algorithm benchmark in Figs. 1(b-d). Furthermore,
while the Monte Carlo algorithm takes ~ 10 minutes to



Algorithm 2: Greedy algorithm for choosing top H
influential nodes in an Ising network (GI)

Input: Ising system defined by J and b°, budget H;
Output: Set of H influential nodes V';

1 Initialize: V1) « {};

2 fork=1,...,H do

3 | forallnodesic {1,...,n}/V®) do

4 | Calculate total activity M(V®) U {i});

5 end

6 | Choose node i* = arg max; M (V) U {i});

7 | Addi* to influential set V#+1) « VF) U {i*};

8 end

9 V « VktD),

complete in a network of size 200, PGA with the TAP and
TAP3 approximations converges within ~ 5 seconds.

Discrete Setting

We now consider the discrete setting corresponding to a bud-
get constraint of the form |h|y < H. In this setting, one is
allowed to apply infinite external influence to a set of | H |
nodes in the system, activating them with probability one;
that is, one chooses a set of nodes V' = {i} for which we
impose (o;) = 1 by taking h; — +oo. We begin by pre-
senting a greedy algorithm that selects the single node at
each iteration that yields the largest increase in the total ac-
tivity M. We then provide novel conditions for when M is
submodular in the selected nodes, which guarantees that our
greedy algorithm is within 1 — 1/e of optimal. Finally, we
comment on the relationship between (discrete) Ising influ-
ence maximization and traditional influence maximization
in viral marketing, and we present experiments comparing
our greedy algorithm with traditional techniques.

A Greedy Algorithm

We aim to maximize the total activity M with respect to a
set V' of activated nodes of size |V| = H (assuming H is
integer). To eliminate confusion, we denote by M (V) the
total activity of the system after activating the nodes in V,
assuming that the couplings J and initial bias b" are already
known.

Since there are () ~ nl possible choices for V, an ex-
haustive search for the optimal set is generally infeasible.
On the other hand, we can simplify our search by looking
at one node at a time and iteratively adding to V' the single
node that increases M the most. This approximate greedy
approach was made famous in traditional influence maxi-
mization in the context of viral marketing by Kempe et al.
(Kempe, Kleinberg, and Tardos 2003). In Algorithm 2 we
propose an analogous algorithm for computing the top H
influential nodes in an Ising system.

Theoretical Guarantee

The greedy algorithm GI efficiently chooses an approximate
set V' of influential nodes in O(nH) iterations. However,

683

V' could be arbitrarily far from the globally optimal set
of nodes. Here, we present novel conditions for when
M is monotonic and submodular in V/, and, hence, GI is
guaranteed to compute a 1 — 1/e approximation of the
optimal set of nodes. The proof is based on the famous GHS
inequality from statistical physics.

Theorem 4 (Griffiths, Hurst, and Sherman 1970). Given
an Ising system with non-negative interactions J > 0 and

g;fggi < 0 for all

non-negative biases b > 0, we have
elements i, j, k.

We note that the GHS inequality guarantees a limited
type of concavity of (o;) in the direction of positive bias b.
While this was not enough to prove that PGA is optimal in
the continuous setting, it is strong enough to guarantee that
M is submodular in the discrete setting.

Theorem 5. For an Ising system with non-negative interac-
tions J > 0 and non-negative initial biases b0 > 0, the total
activity M is monotonic and submodular in the activated
nodes V.

Proof. Monotonicity is guaranteed for any system with non-
negative interactions in (Griffiths 1967). To prove submod-
ularity, we first introduce the notation hY" € {0,1} if i is or
is not in V. Then we note that M(V) = lim._,oo M (b° +
ch"). Since M is non-negative and concave in the direction
of positive bias for J > 0 and % > 0, M it is subadditive.
Thus, for any set V' of nodes and any two nodes i,7 ¢ V,
we have

M®° 4 c(hY + h1)) + M®° + c(hY + hU}))
> M(° + c(hY + b + RUN)) + M(B° + chY).
(10)
Taking ¢ — oo, we find that
MV U{i}) + MV U{j}) = M(V Ui j}) +M(K)1,)

which is the formal definition for submodularity.

Relationship Between the Linear Threshold and
Ising Models

It was recently established that the discrete version of the
Ising influence maximization problem is closely related to
traditional influence maximization in social networks (Lynn
and Lee 2017). In traditional influence maximization, one
aims to maximize the spread of activations under a viral
model, such as linear threshold (LT) or independent cascade.
For example, the LT model is defined by the deterministic
dynamics

O’Z(H_l) — sign [Z Jijolgt) + b,} .
J

12)

Typically, one considers activation variables o € {0, 1} in-
stead of o; = %1, which can be accomplished by a simple
change of parameters Ji’j — 2J;; and b, « b; — Zj Jij.
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Figure 2: Comparison of the total Ising activity for greedy algorithms using various orders of the Plefka expansion. For each
network, we ensure 3 .J;; < 1/2 and we average over many draws of the initial bias {69} ~ U[-1/2,1/2]. (a) An Erdos-
Rényi network with n = 15 nodes. The total activity is calculated exactly using the Boltzmann distribution. (b) An Erdos-Rényi
network with n = 200 nodes. (c) A collaboration network of n = 904 physicists on the arXiv. The total activities in (b-c) are
estimated using Monte Carlo simulations. In (a-b) the benchmark is TAP3, while for (c) the benchmark is MF.
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Figure 3: Comparison of the spread of influence under the linear threshold model for different greedy algorithms. For each
network, we ensure . J;; < 1/2 and we average over many draws of the initial bias {09} ~ U[-1/2,1/2]. (a) An Erdds-
Rényi network with n = 15 nodes. (b) An Erdos-Rényi network with n = 200 nodes. (c) A collaboration network of n = 904

physicists on the arXiv. The benchmark in all panels is IM.

The negative bias 0; = —b/, is referred to as the threshold of
1, representing the amount of influence ¢ must receive from
her neighbors to become active.

We include a stochastic influence ¢ for each node at every
iteration ¢ of the LT dynamics, representing natural fluctua-
tions in the influence on each node over time. If € is drawn
from a logistic distribution, then these stochastic dynamics
are equivalent to Glauber Monte Carlo dynamics (Newman
and Barkema 1999)

P V]o) = (14T Juaé”””)_l, (13)

where T' parameterizes the variance of €. Allowing the sys-
tem time to equilibrate, the statistics of the Glauber dynam-
ics follow the Boltzmann distribution (noting that we have
taken 7" = 1 in Eq. (1)), simulating an Ising model. Fur-
thermore, it is clear to see that we recover the deterministic
LT dynamics in the limit of zero fluctuations 7" — 0. Thus,
the Ising model represents a natural generalization of the LT
model to settings with stochastic fluctuations in the influ-
ence. We emphasize that, because maximum entropy mod-
els have demonstrated tremendous ability in quantitatively
describing a wide range of real-world systems (Schneid-
man et al. 2006; Ganmor, Segev, and Schneidman 2011;
Bialek et al. 2012; Phillips, Anderson, and Schapire 2006;
Stein, Marks, and Sander 2015; Kapur 1989), understanding
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how these systems react to external influence is a significant
endeavor in and of itself, and this goal should fundamentally
be viewed as running adjacent to, as opposed to in conflict
with, the existing viral influence maximization literature.

Finally, we note that most applications of the LT model to
influence maximization impose the constraint >, J;; <
> ; Ji; < 1/2 in Ising notation) and assume that the bias
b; is drawn uniformly from [0, 1] (b; ~ U[—1/2,1/2]) at the
beginning of each simulation. Randomly selecting b; at the
beginning of each simulation is meant to represent uncer-
tainty in the nodes’ biases, which is fundamentally distinct
from randomizing b; at each iteration to represent natural
fluctuations in the biases over time. Indeed, in the following
experiments we include both sources of randomness, mak-
ing our model equivalent to the so-called random-field Ising
model, which shows similar behavior to a spin glass (Natter-
mann 1997).

Experimental Evaluation

We experimentally evaluate the performance of our greedy
algorithm under various orders of the Plefka expansion. We
also provide the first comparison between Ising influence al-
gorithms and the traditional greedy influence maximization
algorithm in (Kempe, Kleinberg, and Tardos 2003). As is
usually assumed in traditional influence maximization, we



scale the interactions such that > ; Jij < 1/2. Furthermore,
we draw the initial bias on each node from a uniform dis-
tribution b; ~ U[—1/2,1/2] and average over many such
draws.

To fairly compare the Ising and linear threshold algo-
rithms, we divide the experiments into two classes: the first
is evaluated with respect to the total activity M under the
Ising model, while the second class of experiments evaluates
the spread S resulting from each choice of nodes under the
linear threshold model. We denote the greedy algorithm in
(Kempe, Kleinberg, and Tardos 2003) by IM. We also com-
pare with the heuristic strategy of choosing the top H nodes
with the highest degrees in the network.

Comparison Under the Ising Model. We first compare
the different greedy algorithms under the Ising model. In
Figs. 2(a-b), we use the Ising greedy algorithm GI with the
third-order approximation TAP3 as the benchmark. In both
Erdos-Rényi networks, we find that GI with TAP3 slightly
outperforms TAP and MF, while all three Ising-based algo-
rithms significantly out-perform the linear-threshold-based
algorithm IM and the degree heuristic. Since TAP3, TAP,
and MF all perform within 5% of one another, in Fig. 2(c)
we use GI with the MF approximation as the benchmark.
In the arXiv network, we find that GI with MF significantly
outperforms both LT and the degree heuristic. These results
demonstrate the practical importance of accurately model-
ing the stochastic noise in the system. We point out that the
total activity M is calculated exactly in Fig. 2(a) using the
Boltzmann distribution and estimated in Figs. 2(b-c) using
Monte Carlo simulations.

Comparison Under the Linear Threshold Model. We
now compare the algorithms under the linear threshold
model. In all of Figs. 3(a-c), we use the LT greedy algo-
rithm IM as the benchmark and exactly compute the spread
of influence under the LT model. Surprisingly, in both of the
Erdos-Rényi networks in Figs. 3(a-b), all of the Ising-based
algorithms and the degree heuristic out-perform IM. In par-
ticular, the third-order approximation TAP3 achieves close
to the largest spread in both networks. In the arXiv network
in Fig. 3(c), the Ising-based algorithm continues to slightly
out-perform IM, while IM out-performs the degree heuristic.

The success of the Ising-based algorithms is surprising,
since they are all attempting to maximize a fundamentally
different objective from influence spread under LT. We sus-
pect that the strong performance might be the result of the
Ising model performing a type of simulated annealing, simi-
lar to recent techniques proposed in (Jiang et al. 2011); how-
ever, an investigation of this hypothesis is beyond the scope
of the current paper.

Conclusions

Maximum entropy models such as the Ising model have
recently been used to quantitatively describe a plethora of
biological, physical, and social systems. Given the success
of the Ising model in capturing real-world systems, includ-
ing populations of neurons in the brain and networks of in-
teracting humans, understanding how to control and opti-
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mize the large-scale behavior of complex systems is of fun-
damental practical and scientific interest, with applications
from guiding healthy brain development (Goddard, Mcln-
tyre, and Leech 1969) and intervening to alleviate diseased
brain states (Goddard 1967) to anticipating trends in finan-
cial markets (Mantegna and Stanley 1999) and preventing
viral epidemics (Pastor-Satorras and Vespignani 2001).

Here, we study the problem of maximizing the total activ-
ity of an Ising network given a budget of external influence.
In the continuous setting where one can tune the influence
on each node, we present a series of increasingly-accurate
gradient ascent algorithms based on an approximation tech-
nique known as the Plefka expansion. In the discrete setting
where one chooses a set of influential nodes, we propose a
greedy algorithm and present novel conditions for when the
objective is submodular.

Future Work. Given the novelty of this problem and the
recent surge in the use of the Ising model, there are many
promising directions to pursue. One direction is to consider a
more general control problem in which the controller aims to
shift the Ising network into a desired state instead of simply
maximizing the activity of all nodes.

Another direction is to consider data-based optimization,
wherein the optimizer is only aware of the past activity of
the system (Goyal, Bonchi, and Lakshmanan 2011). Since
the Ising model is mathematically equivalent to a Boltzmann
machine (Coughlin and Baran 1995), one could adapt state-
of-the-art methods from machine learning to approach this
problem.

Finally, given the experimental success of the Ising-based
greedy algorithms under the linear threshold model, an ob-
vious extension of the current work should look into possi-
ble explanations. We suspect that a closer comparison with
simulated annealing techniques in (Jiang et al. 2011) might
provide the answer.
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