
Complex Sequential Question Answering: Towards Learning to Converse Over
Linked Question Answer Pairs with a Knowledge Graph

Amrita Saha∗
IBM Research AI and I.I.T. Madras, India

amrsaha4@in.ibm.com

Vardaan Pahuja†
MILA, Université de Montréal

vardaanpahuja@gmail.com

Mitesh M. Khapra
I.I.T. Madras, India

miteshk@cse.iitm.ac.in

Karthik Sankaranarayanan
IBM Research AI

kartsank@in.ibm.com

Sarath Chandar
apsarathchandar@gmail.com

MILA, Université de Montréal

Abstract

While conversing with chatbots, humans typically tend to
ask many questions, a significant portion of which can be
answered by referring to large-scale knowledge graphs (KG).
While Question Answering (QA) and dialog systems have
been studied independently, there is a need to study them
closely to evaluate such real-world scenarios faced by bots
involving both these tasks. Towards this end, we introduce
the task of Complex Sequential QA which combines the two
tasks of (i) answering factual questions through complex in-
ferencing over a realistic-sized KG of millions of entities, and
(ii) learning to converse through a series of coherently linked
QA pairs. Through a labor intensive semi-automatic process,
involving in-house and crowdsourced workers, we created a
dataset containing around 200K dialogs with a total of 1.6M
turns. Further, unlike existing large scale QA datasets which
contain simple questions that can be answered from a single
tuple, the questions in our dialogs require a larger subgraph
of the KG. Specifically, our dataset has questions which re-
quire logical, quantitative, and comparative reasoning as well
as their combinations. This calls for models which can: (i)
parse complex natural language questions, (ii) use conversa-
tion context to resolve coreferences and ellipsis in utterances,
(iii) ask for clarifications for ambiguous queries, and finally
(iv) retrieve relevant subgraphs of the KG to answer such ques-
tions. However, our experiments with a combination of state
of the art dialog and QA models show that they clearly do not
achieve the above objectives and are inadequate for dealing
with such complex real world settings. We believe that this
new dataset coupled with the limitations of existing models
as reported in this paper should encourage further research in
Complex Sequential QA.

Introduction

In recent years there has been an increased demand for
AI driven personal assistants which are capable of convers-
ing coherently with humans. Such personal assistants could
benefit from large scale knowledge graphs which contain
millions of facts stored as tuples of the form {predicate,
subject, object} (for example, {director, Titanic, James

∗Equal Contribution
†Work done while at IBM Research

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cameron}). Such knowledge graphs can indeed be handy
when the bot is used in specific domains such as educa-
tion, entertainment, sports, etc. where it is often required
to answer factual questions while being aware of the con-
text of the conversation. While Question Answering (?; ?;
?; ?; ?; ?; ?; ?; ?; ?) and Conversation Systems (?; ?; ?;
?) have received a lot of attention in the recent past, we
would like to focus on such real life settings encountered
by chatbots which involve a combination of QA and dialog.
Specifically, we are interested in building systems which can
learn to converse over a series of coherently linked questions
that can be answered from a large scale knowledge graph. We
refer to this task as Complex Sequential Question Answering
(CSQA).

Needless to say, CSQA is very different from the kind
of conversations found in existing dialog datasets such as
the Twitter (?), Ubuntu (?) and Movie Subtitles (?) datasets.
Table ?? shows an example of one such conversation from
our dataset containing a series of questions. Note that to
answer the question in Turn 11, the bot needs to remember
that the question involves the same predicate (‘diplomatically
related’) as the previous question, but with a different subject
(‘Australia’). In other words, it is difficult to answer this
question without retaining the context of the conversation.
Further, in a natural conversation, some of the questions
may require co-reference resolution (as in Turn 2), ellipsis
resolution (as in Turn 11), etc. Finally, in some cases the
question could be ambiguous (as in Turn 2) in which case
the bot needs to ask for clarifications keeping in mind other
entities and relations which were previously mentioned in the
conversation.

While the example in Table ?? already highlights some
of the challenges involved in CSQA, we now discuss an
orthogonal set of challenges which arise from the complex-
ity of the questions. Existing datasets for Factual QA (?;
?; ?) deal with Simple Questions, each of which can be an-
swered from a single tuple in the KG. However, in a real-life
setting, a bot could encounter more complex questions requir-
ing logical, quantitative and comparative reasoning. Table ??
shows some examples of such questions. It should be clear
that unlike simple questions, which can be answered from
a single tuple, these questions require a larger subgraph of

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

705

Turn State Utterance

T1
Simple Q. USER : Can you tell me which cities border Verderio In-

feriore ?
Response SYSTEM : Cornate d’Adda, Bernareggio, Robbiate

T2
Coreference Q. USER : And which cities flank that one ?
Clarification Q. SYSTEM : Did you mean Robbiate ?

T3
Clarification USER : No, I meant Cornate d’Adda.
Response SYSTEM : Bottanuco, Busnago, Trezzo sull’Adda

T4
Logical Q. USER : Which ones share border with Robbiate and are

not part of Azerbaijan ?
Response SYSTEM : Trezzo sull’Adda, Busnago, Bottanuco

T5
Quantitative Q. USER : Which city is the capital of min number of french

administrative divisions ?
Response SYSTEM : Riga

T6
Boolean Q. USER : Is Rot am See located adjacent to that one ?
Response SYSTEM : No

T7
Quanti. Q. USER : How many political territories have strategic rela-

tion with around 22 other countries ?
Response SYSTEM : 11

T8
Logical Q. USER : Which are the nations connected with Robbiate

and are not located in Italy ?
Response SYSTEM : The answer count is 11. Do you want to see

all possibilities?

T9
Clarification USER : No, show only a few of them
Response SYSTEM : Papua New Guinea, Jamaica, Antigua and Bar-

buda, Austria, New Zealand, The Bahamas, Gabon

T10
Quantitative Q. USER : How many countries are diplomatically related to

Italy ?
Response SYSTEM : 74

T11
Quantitative Q. USER : And how many of them also with Australia ?
Response SYSTEM : 56

T12
Comparative Q. USER : Which countries have lesser number of political

relations with others than Australia ?
Response SYSTEM : Denmark, Canada, Grenada

Table 1: A sample dialog from the dataset (More examples of
generated dialogs are provided in the supplementary material)

the KG. For example, to answer the question “Which rivers
flow through India and China ?” one needs to find (i) the set
of rivers flowing through India (ii) the set of rivers flowing
through China and finally (iii) the intersection between these
two sets. Answering such questions requires models which
can parse complex natural language questions, retrieve rel-
evant subgraphs of the KG and then perform some logical,
comparative and/or quantitative operations on this subgraph.
Also the Knowledge Graph used in our work is orders of
magnitude larger than those used in some existing works (?;
?; ?; ?) which lie at the intersection of QA and dialog.

Having motivated the task of CSQA and highlighted its
differences from existing work on dialog and QA, we now
briefly describe the process used for creating our dataset.
As mentioned earlier, a KG contains tuples of the form
{predicate, subject, object}. For each of the 330 predicates
in our Knowledge Graph, we first asked workers on Amazon
Mechanical Turk to create questions containing the predicate
and the subject (or object) such that the answer to that ques-
tion is the object (or subject). These questions are complete in
the sense that they do not have any ambiguity and can be an-
swered in isolation without requiring any additional context.
We then ask in-house annotators to create multiple templates

for generating a conversation comprising of connected ques-
tion answer pairs. Two question answer pairs are said to be
connected if they contain the same predicate, subject or ob-
ject. We then ask workers to make modifications to these
questions so as to introduce challenges like co-references,
ellipsis, incompleteness (or under specification) and contex-
tual dependence. We also solicit templates and modifications
to add logical, comparative and quantitative operators to the
questions obtained above. This results in a dataset which
contains conversations of the form shown in Table ??.

The objective of this work is twofold: (i) to introduce the
task of Complex Sequential QA and (ii) to show the inad-
equacy of current state of the art QA and dialog methods
to deal with such tasks. Towards the second objective, we
propose a model for CSQA which is a cross between a state
of the art hierarchical conversation model (?) and a key value
based memory network model for QA (?). Through our ex-
periments, we demonstrate the inadequacy of these models
and highlight specific challenges that need to be addressed.
It is also worth mentioning that the unambiguous (context
independent) questions which appear in our dataset (typically,
at the start of the conversation) can also be used for study-
ing Complex Question Answering (as opposed to Simple
Question Answering) in isolation ignoring the dialog context.
This will help to independently push the state of the art in
Complex QA.

Related Work
Our work lies at the intersection of Question Answering
and Dialog Systems. Question Answering has always been
of interest to the research community starting from early
TREC evaluations (?) . Over the years various datasets and
tasks have been introduced to advance the state of the art
in QA. These datasets can be divided into 5 main types (i)
TREC style Open Domain QA (?; ?; ?) where the aim is to
answer a question from a collection of documents (ii) factoid
QA over structured knowledge graphs (?; ?; ?) (iii) reading
comprehension style QA (?; ?), (iv) cloze style QA (?; ?) (v)
multiple choice QA (?; ?)

Of the above QA tasks, factoid QA is most relevant to
us as the questions in our CSQA dataset are factoid ques-
tions. Existing factoid QA datasets contain Simple Questions
which can be answered from a single tuple in the knowledge
graph. Specifically, unlike our dataset, none of the existing
datasets contain complex questions requiring logical, quanti-
tative and comparative reasoning involving larger subgraphs
of the KG as opposed to a single tuple. Solutions to the sim-
ple QA task range from semantic parsing based methods (?;
?) to embedding based methods (?; ?; ?) and state of the art
Memory Networks based architectures (?; ?; ?). In this work,
we experiment with Memory Network based architectures
and make a case for the need of better architectures when
going beyond simple questions.

Since we are interested in CSQA which contains a series of
QA pairs over a coherent conversation, we also review some
related work on dialog systems. Over the past few years
three large scale dialog datasets, viz., Twitter-Conversations
(?), Ubuntu Dialogue (?) and Movie-Dic Corpus (?) have
become very popular. However, none of these datasets have

706

the flavor of CSQA and there is no explicit Knowledge Graph
associated with the conversations. Here again, neural network
based (hierarchical) sequence to sequence methods (?; ?;
?) have become the de facto choice. Recently, (?) proposed a
dataset which contains knowledge graph driven goal oriented
dialogs for the task of restaurant reservation. However, the
size of the KG here is very small (<10 cuisines, locations,
ambience, etc.) and the dialog contains very few states. (?)
also uses a dataset for QA and recommendation but unlike
our dataset, their dataset does not contain coherently linked
question answer pairs. Further, the KG is again much smaller
(75K entities and 11 relations). Recently (?) have explored
complex question answering over around 18.5K queries from
the WikiTableQuestions dataset, but their tables have less
than 100 rows and a handful of columns whereas our complex
QAs are grounded in a KB of over 20 million tuples. Further,
their dataset does not have a conversational aspect.

Dataset Creation

Our aim is to create a dataset which contains a series of linked
QA pairs forming a coherent conversation. Further, these
questions should be answerable from a Knowledge Graph
using logical, comparative and/or quantitative reasoning. We
started by asking pairs of in-house annotators to converse
with each other. One annotator in the pair acted as a user
whose job was to ask questions and the other annotator acted
as the system whose job was to answer the questions or ask
for clarifications if required. Note that these annotators were
Computer Science graduates who understood the concepts of
knowledge graph, sub graph, tuples, subject, object, relation,
etc. The idea was to use the in-house annotators to understand
the types of simple and complex questions that can be asked
over a knowledge graph. These could then be abstracted to
templates and used to instantiate more questions involving
different relations, subjects and objects. Similarly, we also
wanted to understand the type of coreferences, ellipses etc
used by users when asking linked questions over a coherent
conversation. These could again be abstracted to templates
and used to link individual QA pairs to form a coherent
dialog. In the remainder of this section we describe (i) the
knowledge graph supporting our CSQA (ii) simple question
templates suggested by the in-house annotators (iii) complex
question templates and finally (iv) the linked conversation
templates and the process used to instantiate around 200K
dialogs containing 1.6 million linked QA pairs.

Knowledge Graph

As our KG, we used wikidata which stores facts in the form
of tuples containing a relation, a subject and an object. For ex-
ample, (rel: capital, subj: India, obj: New Delhi) is a tuple in
wikidata. Each entity (subject or object) is associated with an
entity type. For example, in the above tuple, India is an entity
of type country and New Delhi is an entity of type city. We
use the wikidata dump of 14-Nov-2016 which contains 5.2K
relations, 12.8M entities and 52.3M facts. Of these 5.2K rela-
tions, we retain only 330 meaningful ones. Specifically, we
ignore relations such as “ISO 3166-1 alpha-2 code”, “NDL
Auth ID” etc., as we do not expect users to ask questions

about such obscure relations. Similarly, of the 30.8K unique
entity types in wikidata, we selected 642 types (considering
only immediate parents of entities) which appeared in the top
90 percentile of the tuples associated with atleast one of the
retained meaningful relations. In effect, there were around
21.2M such tuples containing only the filtered relations and
entity types. The total number of unique entities in these
filtered tuples is 12.8M out of which 3.8M appear in atleast 3
tuples.

Reaso-

ning

Type Containing Example

Log-
ical

Union
Single
Relation

Which rivers flow through India
or China?

Intersection Which rivers flow through India
and China?

Difference Which rivers flow through India
but not China?

Any of the
above

Multiple Rela-
tions

Which river flows through In-
dia but does not originate in Hi-
malayas?

Verifi-
cation

Boolean Single/Multi-
ple entities

Does Ganga flow through India ?

Quant-
itative

Count
Single entity
type

How many rivers flow through In-
dia ?

Mult. entity
type

How many rivers and lakes does
India have ?

Logical
operators

How many rivers flow through In-
dia and/or/but not China?

Min/Max
Single entity
type

Which river flows through maxi-
mum number of countries ?

Mult. entity
type

Which country has maximum
number of rivers and lakes com-
bined ?

Atleast/Atmost Single entity
type

Which rivers flow through at least
N countries ?

/Approx./
Equal

Mult. entity
type

Which country has at least N
rivers and lakes combined ?

Count over
Atleast

Single entity
type

How many rivers flow through at
least N countries?

/Atmost /
Approx./Equal

Mult. entity
type

How many countries have at least
N rivers and lakes combined ?

Comp-
arative

More/Less
Single entity
type

Which countries have more num-
ber of rivers than India ?

Mult. entity
type

Which countries have more rivers
and lakes than India ?

Count over
More/Less

Single entity
type

How many countries have more
number of rivers than India ?

Mult. entity
type

How many countries have more
rivers and lakes than India ?

Table 2: Types of questions in the dataset.

Simple Questions

For discovering simple question templates, we asked the an-
notators to come up with questions which can be answered
from a single tuple in the knowledge graph. The annotators
suggested that for a given tuple (say, rel: CEO, subj: Google,
obj: Sundar Pichai) there are mainly 3 types of simple ques-
tions that can be generated:

707

1. Object based questions: Here the question contains
the relation and the subject from a tuple and the answer is the
tuple’s object. For example, “Q: Who is the CEO (relation)
of Google (subject) ? A: Sundar Pichai (object)”.

2. Subject based questions: Here the question contains
the relation and the object from a tuple and the answer is the
tuple’s subject. For example, “Q: Which company is Sundar
Pichai (object) the CEO of (relation) ? A: Google (subject)”.

3. Relation based questions: Here the question contains
the subject and the object from a tuple and the answer is
the tuple’s relation. For example, “Q: How is Sundar Pichai
(object) related to Google (subject) ? A: CEO (relation)”.
During our discussions, we found that in many cases, relation
based questions do not make a lot of sense. For example, it
is unnatural for someone to ask the question “Q: How is Hi-
malayas related to India? A: located in”. Hence, in this work
we focus only on object based and subject based questions.

Note that in some cases the question could have multiple
correct answers. In other words, there are multiple tuples
related to this question. For example, “Q: Which rivers flow
through India ? A: Ganga, Yamuna, Narmada,”. Note that
even though these questions can be answered from multiple
tuples, they are still simple questions because they do not
require any joint reasoning over multiple tuples.

Crowdsourced question generation: Based on this ini-
tial pilot with in-house annotators we then requested workers
on AMT to create subject based and object based questions
for each of the 330 relations in our KG. For creating subject
based questions the annotators were shown (i) the object, (ii)
the relation (iii) the type of the subject associated with that
tuple and (iv) a few sample tuples. Note that the subject type
is important as the annotator will need to look at the subject
type (city) to form the question “Which city is the capital
of India ?”. This is important because some relations (for
example, the relation tributary) can have multiple subject and
object types as shown below:

1. subj: Spring Creek (type: river), obj: Lake Ilsanjo (type:
lake)

2. subj: Spring Creek (type: river), obj: Matanzas Creek
(type: stream)

It should be obvious that even for the same relation different
combinations of subjects and objects should result in different
questions. For example, “Which lake is a tributary of Spring
Creek?” v/s “Which river is a tributary of Spring Creek?”.
Note that, on an average each relation in our KG was associ-
ated with 5 subject types and 6 object types. We first asked a
set of workers to create one subject based and object based
question for each relation. We then asked a separate set of
annotators to create paraphrases of these questions. In all,
we collected 1531 subject based and 1450 object based ques-
tion templates (including paraphrases) through this process.
Once we get a template we can instantiate it with different
entity types and entities to create many questions. For exam-
ple, given the template “Which <water course> is located in
<country> ?” we can instantiate it by replacing water course
by it’s sub-types (river, lake, etc) and by replacing country
by entities of that type (U.S., India, etc.). This gives us a

semi-automatic way of creating many questions from the
collected templates. Note that the question templates also
contain paraphrases, so we have different ways of asking the
same question.

Complex Questions

Next we wanted the annotators to help us identify types of
questions which require logical, comparative and quantitative
reasoning over a larger subgraph of the KG.

Logical Reasoning: These are questions which require
some logical inferencing over multiple tuples in the KG. For
example, consider the question “Which rivers flow through
India and China ?” To answer this question we first need
to create two sets (i) a set A containing rivers appearing in
tuples of the form (flows through, India, river) and (ii) a set
B containing rivers appearing in tuples of the form (flows
through, China, river). The final answer to the question is
then an intersection of these two sets. It should be obvious
that answering such questions is more difficult then the Sim-
ple Questions studied in literature so far (and as described in
the previous section).

The annotators came up with questions involving different
logical operators such as AND, OR, NOT, etc (see Table ??).
They also suggested some templates for creating such logical
reasoning questions from the simple questions that we had
already collected (as described in Section 3.1). For example,
one such template was to take a simple object based question
such as “Which rivers flow through India” and augment it
with another subject such as “and China”. Similar templates
and paraphrases were suggested for other operators such
as OR, NOT, etc. for both subject based and object based
questions. This allowed us to semi-automatically create many
questions requiring logical reasoning. This process is semi-
automatic because once a template is created, we instantiate
it for multiple tuples (as explained earlier) and then manually
verify a subset of these questions to check whether they are
syntactically and semantically correct.

Note that some of the logical reasoning questions sug-
gested by the annotators contained multiple relations. For
example, the question “Which river flows through India and
has its source in Himalayas?” requires a logical operation
over two relations, viz., flows through and source.

Quantitative Reasoning: These questions require some
quantitative reasoning involving standard aggregation func-
tions like max, min, count, atleast / atmost / approximately /
equal to N , etc. We refer the reader to Table ?? to see exam-
ples of different types of quantitative questions. Once again,
with the help of in-house annotators we identified several
templates for modifying the simple questions that we had al-
ready collected and creating quantitative reasoning questions
involving different aggregation operators. For example, one
such template was to take the object based question “Which
rivers flow through India” and replace “Which” by “How
many”. In fact, we found this particular template to be so
convenient that for every relation, we asked the workers to
give us at least one simple question which starts with “Which
subject-type ... ”. Some of these simple questions starting
with “Which subject-type ... ” look a bit unnatural but we

708

made a conscious choice to allow this so that it simplifies
the process of creating complex questions. We also created
questions which require quantitative reasoning on top of logi-
cal reasoning. For example, “How many rivers flow through
India but not through China ?”.

Comparative Reasoning: These are questions which re-
quire a comparison between entities based on certain rela-
tions (predicates). For example, consider the question “Which
countries have more number of rivers than India ?”. This re-
quires inference over multiple tuples in the KG. The model
here essentially needs to learn the count, sort and more/less
operations. Such questions could also involve multiple entity
types. For example the question “Which countries have more
lakes and rivers than India ?” involves two entity types (lakes,
rivers). Finally, we could have questions which require a
counting type quantitative reasoning on top of comparative
reasoning. For example, “How many countries have more
rivers than India ?” requires counting after comparing. These
questions were created by modifying the simple questions,
using the rules of transformation given by our annotators.

Note that in all of the above cases, once the annotator sug-
gests a modification, we can apply that modification and its
paraphrases to multiple tuples to get many questions. Further,
after instantiating we retain only those Qs which have less
than 1000 answers.

Linked Sequential QA

So far we have described the process of collecting individual
QA pairs containing various types of questions. We are now
interested in creating coherent conversations involving such
QA pairs. We can think of such a conversation as a walk over
the Knowledge Graph using QA pairs such that subsequent
questions refer to subjects, objects or relations which have
appeared previously in the conversation. More specifically,
such conversations should have the following properties (i)
subsequent QA pairs should be linked and (ii) the conver-
sation should contain typical elements of a dialog such as
coreferences, ellipses, clarifications, confirmation, etc.

The process of connecting linked QA pairs in a coherent
conversation can be thought of as performing a systematic
walk over a Knowledge Graph. Simply stated, two questions
can be placed next to each other in a conversation if they
share a relation or an entity. However, bringing in factors
such as ambiguity, underspecified or coreferenced questions
into the conversation requires manual effort. For this, we
again requested in-house annotators to create templates for
converting simple or complex questions described above into
conversational questions. For example, one such template was
to take a simple question such as “Which rivers flow through
India ?” and replace the subject by “that subject-type” or “that
country” in this case. Multiple such templates were created
and refined for different question types that we described
in the earlier sections. This was a labor intensive tedious
process requiring several iterations. Some templates were
also collected using crowdsourcing on AMT. We refer to such
questions as Indirect questions as opposed to Direct questions
which are fully specified and do not indirectly refer to some
entity or relation from the earlier conversation. The in-house

annotators also suggested some clarification templates which
involved asking questions containing coreferences which
could resolve to more than one of the previously mentioned
entities. Turn 2 in Table ?? shows one such example. The
information in this question is not enough to answer the
question and hence the system needs to ask for a clarification.
Note that, whenever we use linking we only link consecutive
questions and not arbitrary questions in the sequence (i.e., the
i-th question can be linked to the next pr previous question
but not to arbitrary questions appearing before or after it.)

Through the above processing involving a mix of manual
work (crowdsourced and inhouse) and semi-automatic instan-
tiation, we created a dataset containing 200 K dialogs and a
total of 1.6 M turns. Table ?? shows the number of templates
for each question type and some sample types. Table ??
shows various statistics about the dataset including the Train,
Validation and Test splits . Note that we constructed the train,
valid and test splits in such a way that the dialogs in the vali-
dation and test set do not contain questions corresponding to
tuples for which questions were seen at train time.

Dataset Statistics Train Valid Test

Total No. of Dialogs(chat sessions) 152391 16413 27797
Avg. No. of Utterances per dialog 15.9 15.65 19.44
Total No. of Utterances having Ques-
tion/Answer

1.2M .13M .27M

Length of user’s question (in words) 9.7 9.68 10.28
Length of system’s response (in words) 4.74 4.67 4.37
Avg. No. of Dialog states per dialog 3.89 3.84 4.53
Vocab size (freq>=10) 0.1M - -

Table 3: Overall Dataset Statistics

Some peculiar characteristics of Wikidata

We found that Wikidata has some typical characteristics and
predicates, subject types and object types which often leads to
very unnatural questions. We list down some of these issues
below:

• Very generic predicates: Consider the relation
lake outflow for which the annotators suggested
the question “Which object type outflows from the
lake YYY ?”. This seems like a valid template but
turns out that Wikidata also contains predicates of the
form lake outflow(DalLake, evaporation) where
evaporation is an outflow from the lake. Similarly, the
relation fabrication method allows for methods used
to grow, cook, weave, build, assemble, manufacture an
item. Due to the presence of such very generic relations
(which allow a wide range of object types) sometime the
questions instantiated from these templates may look very
unnatural. In many cases, we manually tried to filter out
such questions but given the scale of the KB it was not
always possible to do this. We expect some such noisy
questions to be a part of the final dataset.

• Overlapping predicate and subject types: The word re-
ligion is both a predicate and a subject type in Wikidata.
Similarly, sport is both a predicate and a subject type in

709

Wikidata. This often leads to some questions containing
repitions (for example, “Which religion (subject type) is
the religion (predicate) practised by YYY ?”. Again, we
filtered out many such cases by applying some rule based
post-processing after instantiating the templates but we
still expect a few of these to be present in the dataset.

• Long tail of subject types and relations: There are a few
subject types in Wikidata which are very dominant. For
example, a large number of entities in Wikidata belong
to the sub-class person and location. These subject types
in turn are associated with a few dominant relations. For
example, part-of is the predominant relations associated
with almost entities of type location. Similarly, citizen-
of, birthdate, birthplace are common relations associated
with almost all entities of type person. Other relations
such as named-after are a bit rare. Hence, when creating
complex or linked questions connecting multiple entities
and relations some of the rarer relations do not show up
frequently. Such long tail behavior wherein some relations
and predicates dominate will be observed in any KB of a
reasonable size and can’t really be avoided.

• Unnatural Peer Subject types: As per Wikidata, the sub-
ject types religion and social group are peers as they are
both sub-classes of belief system. As a consequence of this
we have logical questions of the form “Which religions
and social groups does YYY belong to?”. We found this
is a bit odd and we are not sure if an average user would
consider these to be peers. These are special cases and are
expected to any such large scale KB.

Proposed Model

Since CSQA involves a combination of dialog and QA, we
propose a model which is a cross between (i) the HRED
model (?) which is one of the state of the art models for
dialog systems and (ii) the key value memory network model
(?) which is a state of the art QA system. Our model has the
following components:

1. Hierarchical Encoder: The model contains a lower level
RNN encoder which goes over the words in an utterance
and computes a representation for each utterance. This is
followed by a higher level encoder which goes over these
utterance representations and computes a representation q1
for the context (current state of the dialog).

2. Handling Large Vocabulary: As input to the above en-
coder, we provide pre-trained Glove embeddings (?) of the
words in the question. However, our questions contain many
entities (names, locations, etc.) for which pre-trained word
embeddings are not available. Since these entities are crucial
for answering the questions we cannot treat them as unknown
words. One option is to randomly initialize the embeddings
of these entity words and then train them along with other
parameters of the model. This would effectively lead to a
very large vocabulary and blow up the number of parameters.
To avoid this, we use a state of the art TransE method (?)
for learning embeddings of KG entities offline. More specif-
ically, for entities such as India, China, Ganga, Himalayas,
etc. which are present in the KG we learn embeddings us-

ing the TransE model. We refer to these embeddings as KG
embeddings. The final embedding of every question word
is then a concatenation of the Glove embedding (if avail-
able, 0s otherwise) and the KG embedding (if available, 0s
otherwise).

3. Candidate generation: State of the art memory network
based methods (?) learn to compute an attention function
over the tuples in the KG based on the given question (or dia-
log context in our case). For large sized KGs, it is infeasible
to compute the attention over the entire KG. Instead, follow-
ing (?) we filter out tuples from the KG using the longest
possible n-gram matching. We essentially consider only the
longest n-gram which corresponds to the name of a KG-
entity and retain only those tuples where the entity appears
as subject/object. We observed that even with this filtering,
the average number of candidate tuples for a given question
in our dataset can sometimes be very large. We return to this
issue in the Discussions section.

4. Key Value Memory Network: A key value memory net-
work stores each of the N candidate tuples (as selected
above) as a key-value pair where the key contains the con-
catenated embedding of the relation and the subject (de-
noted by φK(khi

) ∈ RD for the ith memory entry) whereas
the value contains the embedding of the object (denoted by
φV (vhi) ∈ RD for the ith memory entry). Here, the subject,
object and relation embeddings are the TransE KG embed-
dings, as described above. The model makes multiple passes
over the memory computing new attention weights over the
keys of the memory at each pass and updating the contex-
tual question representation (q) whose initial representation
q1 ∈ Rd is computed by the hierarchical encoder. The ra-
tionale behind making multiple passes over the question is
that the model may learn to focus on different aspects of the
question in each pass. This is especially important in the case
of complex questions. The following equation shows how the
query representation gets updated in the jth pass.

qj+1 = Rj(q+
N∑

i

Softmax(qjAφK(khi))AφV (vhi)) (1)

A ∈ Rd×D and R1...H ∈ Rd×d are the parameters of the
key-value memory network and N is the number of candidate
tuples.

5. Decoder: For a truly end-to-end solution, the decoder
should be generic enough to produce multiple types of an-
swers. For example, here are some of the answer sequences
that the decoder is expected to generate: (i) 5 rivers and 4
lakes (for count questions) (ii) Yes/No/Yes and No respec-
tively etc. (for verification questions) (iii) Did you mean ...
(for clarification questions) (iv) Ganga, Narmada, Yamuna,
... (list of KG entities satisfying the query) and so on. At a
high level, we can say that the model always produces se-
quences and in most cases the sequences will contain KG
entities whereas in some cases the sequences may contain
counts, entity types (rivers, lakes, etc) and non-KG words. We
thus model the decoder as an RNN based sequence generator
which takes as input the modified query representation. At

710

Figure 1: Proposed Model consisting of a (i) Hierarchical Encoder (ii) Key-Value Memory Network and (iii) Decoder

each time step it gives a softmax over a shortlisted vocabulary
containing counts, yes/no and KG entity types amounting
to 1500 words approximately. Note that even though the
model has to produce KG entities, we cannot include all
KG entities in this vocabulary (as it will blow up the num-
ber of parameters). Instead, we train the decoder to produce
the token KG WORD whenever a KG entity needs to be
produced in the output. We then use a copy mechanism to
replace the KG WORD with relevant entities. For example,
if the decoder produces n KG WORD tokens then we use
qH+1 to give a distribution over the entities in the candidate
tuples and then replace each KG WORD token in the out-
put by these top n entities having the highest probability.
The distribution over the candidate entities is computed as
Softmax(qH+1BφV (vhi

)) where B ∈ Rd×D is a parameter.
The training loss is a sum of the cross-entropy loss over the
tokens and the KG entities.

Question Type Recall Precision
Overall 15.83% 6.7%
Simple Question (Direct) 30.64% 7.17%
Simple Question (Coreferenced) 25.85% 8.0%
Simple Question (Ellipsis) 24.5% 4.26%
Logical Reasoning (All) 4.85% 19.70%
Quantitive Reasoning (All) 0.24% 0.11%
Comparative Reasoning (All) 1.05% 0.30%

Clarification 30.64% 10.8%

Question Type Accuracy
Verification (Boolean) (All) 8.34%
Quantitative Reasoning (Count) (All) 10.66%
Comparing Reasoning (Count) (All) 1.3%

Question Type BLEU-4
Clarification (Natural Language Generation) 15.58

Table 4: Performance of the proposed model on different
types of questions in the dialog

Results

We used Adam as the optimization algorithm and tuned the
following hyperparameters using the validation set; learning
rate ∈ {1e-3, 4e-4}, RNN hidden unit size, word embedding
size, KG embedding size ∈ {256, 512}, batch size ∈ {32, 64}
and dialog context size as 2. The bracketed numbers indicate
the values of each hyperparameter considered. On average,
we found that the candidate generation step produces 10K
candidate tuples, hence we kept upto 10K key value pairs
in the memory network. Following (?), we set H = 2. We
used Precision and Recall as the evaluation metrics which
capture the percentage of entities in the final decoder output
that were correct and the percentage of actual entities that
were retrieved by the system respectively. For verification
and count based questions which produce a sequence of Yes
and/or No or counts we use accuracy as the evaluation metric
(i.e., whether the count or boolean answer was exact or not).
Finally for questions which need clarification, the system has
to generate a natural language response which is usually a
sequence of KG-entities and non-KG words, hence for that
we separately report both Precision/Recall over the predicted
KG-entities and BLEU for the overall utterance similarity.
The results of our experiments are summarized in Table ??.

Discussions

Based on the results in Table ??, we discuss some short-
comings of existing methods and suggest areas for future
research.

1. Simple v/s Complex Questions: It is obvious that the
model performs very poorly on complex questions as com-
pared to simple questions. There are multiple reasons for
this. First, existing models do not really model an aggregate
or logical function for handling quantitative, comparative
and logical reasoning. Designing such aggregation functions
for an end-to-end solution is non-trivial and needs further

711

exploration. This dataset should provide a good benchmark
for exploring such solutions for complex QA. Second, it is
not clear if the existing encoders (HRED + KVmem, in this
case) are capable of effectively parsing complex questions
and feeding a good represetation to the decoder. For example,
the encoder ideally needs to learn to break down the question
“Which rivers flow through India and China?” into two parts
(i) “Which rivers flow through India?” (ii) “Which rivers flow
through China?” and then compute an attention over relevant
tuples in the memory. Such kind of parsing is not explicitly
modeled by existing encoders. There is clearly a need for
revisiting some of the traditional parsing based methods for
QA in the light of this dataset.

2. Direct v/s Indirect Questions: Comparing the third and
fourth rows of Table ?? with the second row, we see that the
performance of the model drops when dealing with indirect
or incomplete questions which rely on the context for resolv-
ing ellipsis, coreferences, etc. Even though current dialog
systems (HRED, in this case) do learn to capture the context,
one key challenge w.r.t our dataset is that, here named entities
and relations matter more than other words in the context.
We need better models which can explicitly learn to give
importance to relations and entities (for example, using an
explicit supervised attention mechanism).

3. Candidate Generation: This step is required to prune
the size of the KG and store only relevant steps in the mem-
ory. This step is a bit adhoc as it relies on n-gram matching
and we saw specific issues while using this on our dataset.
We had explicitly asked the annotators to create paraphrases
of the same question. As a result simple n-gram matching
does not work well resulting in low recall of the actual an-
swer entity in the filtered candidate tuples. A better candidate
matching algorithm which takes care of entity paraphrases
(Leo, Leonardo, etc.) and relation paraphrases (director, di-
rected by, direct, etc.) are needed. In some cases, we also
have the reverse problem. For example, if the entity being
referred to in the question is extremely popular then it will
be involved in over 100K tuples in the KB (for example, an
entity like U.S.A.). This causes the KV memory to blow up
leading to poor and inefficient training and inference.

4. Better organization of the memory: It is inevitable that
for some questions, especially complex questions involving
logical operators over multiple entities and relations, the num-
ber of tuples required to be stored in the memory would be
large. For example, around 15% of the questions in our data
require more than 100K candidate tuples. Current Key Value
Memory Networks which are flat in their organization are
not suitable for this for two reasons. First, the amount of
memory required by the model increases and can go beyond
the capacity of existing GPUs. Second the attention weights
computed using equation ?? need a prohibitively expensive
softmax computation which increases both training and test
time. Better ways of organizing the memory along with ap-
proximate methods for computing the softmax function are
needed to handle such complex questions.

We hope that the dataset, results and discussions on the
resources presented in this paper will convince the reader that
CSQA has several challenges which are not encountered in
previous datasets for dialog and QA. Some of them are listed
above and there are a few more which we do not list due to
space constraints. Addressing/solving all of these challenges
is clearly beyond the scope of a single paper. The purpose
of this paper was to introduce the task and propose a model
based on existing state of the art models and thereby highlight
the need for further research to address the inadequacies of
these models. To facilitate research, this dataset will be made
available at https://github.com/iitm-nlp-miteshk/AmritaSaha/
tree/master/CSQA (please copy paste the URL in a browser
instead of clicking on it). This URL will contain the following
resources:

• the train/valid/test splits used in our experiments

• the processed version of the WikiData dump of 14-Nov-
2016 that was used to construct the dataset

• scripts to extract the train/valid/test set for each of the
different question types listed in Table ??

• scripts to evaluate the performance of the model

Conclusion

In this paper, we introduced the task of Complex Sequential
Question Answering (CSQA) with a large scale dataset con-
sisting of conversations over linked QA pairs. The dataset
contains 200K dialogs with 1.6M turns and was collected
through a manually intensive semi-automated process. To the
best of our knowledge, this is the first dataset of its kind which
contains complex questions which require logical, quantita-
tive and/or comparative reasoning over a large Knowledge
Graph containing millions of tuples. We propose a model for
CSQA which is a cross between state of the art models for
dialog and QA and highlight the inadequacies of this model
in dealing with the task of CSQA. It should be obvious that
CSQA has several challenges and addressing/solving all of
them is beyond the scope of a single paper. We hope that
the introduction of this task and dataset should excite the re-
search community to develop models for Complex Sequential
Question Answering.

References

Banchs, R. E. 2012. Movie-dic: a movie dialogue corpus for
research and development. In ACL, 2012, 203–207.
Berant, J., and Liang, P. 2014. Semantic parsing via para-
phrasing. In ACL (1), 1415–1425.
Berant, J.; Chou, A.; Frostig, R.; and Liang, P. 2013. Se-
mantic parsing on freebase from question-answer pairs. In
EMNLP, volume 2, 6.
Berant, J.; Srikumar, V.; Chen, P.; Linden, A. V.; Harding, B.;
Huang, B.; Clark, P.; and Manning, C. D. 2014. Modeling
biological processes for reading comprehension. In EMNLP
2014,.
Bordes, A., and Weston, J. 2016. Learning end-to-end goal-
oriented dialog. CoRR abs/1605.07683.

712

Bordes, A.; Usunier, N.; Garcı́a-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for model-
ing multi-relational data. In Neural Information Processing
Systems 2013, 2787–2795.
Bordes, A.; Usunier, N.; Chopra, S.; and Weston, J. 2015.
Large-scale simple question answering with memory net-
works. CoRR abs/1506.02075.
Bordes, A.; Chopra, S.; and Weston, J. 2014. Ques-
tion answering with subgraph embeddings. arXiv preprint
arXiv:1406.3676.
Bordes, A.; Weston, J.; and Usunier, N. 2014. Open question
answering with weakly supervised embedding models. In
ECML PKDD 2014. Proceedings, Part I, 165–180.
Dodge, J.; Gane, A.; Zhang, X.; Bordes, A.; Chopra, S.;
Miller, A. H.; Szlam, A.; and Weston, J. 2015. Evaluating
prerequisite qualities for learning end-to-end dialog systems.
CoRR abs/1511.06931.
Fader, A.; Soderland, S.; and Etzioni, O. 2011. Identifying
relations for open information extraction. In EMNLP 2011,
1535–1545.
Fader, A.; Zettlemoyer, L.; and Etzioni, O. 2014. Open
question answering over curated and extracted knowledge
bases. In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
1156–1165. ACM.
Kumar, A.; Irsoy, O.; Ondruska, P.; Iyyer, M.; Bradbury, J.;
Gulrajani, I.; Zhong, V.; Paulus, R.; and Socher, R. 2016.
Ask me anything: Dynamic memory networks for natural
language processing. In ICML 2016, 1378–1387.
Lowe, R.; Pow, N.; Serban, I.; and Pineau, J. 2015. The
ubuntu dialogue corpus: A large dataset for research in un-
structured multi-turn dialogue systems. In SIGDIAL 2015,,
285–294.
Lowe, R. T.; Pow, N.; Serban, I. V.; Charlin, L.; Liu, C.; and
Pineau, J. 2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. D&D 8(1):31–65.
Luong, M.-T.; Le, Q. V.; Sutskever, I.; Vinyals, O.; and Kaiser,
L. 2015. Multi-task sequence to sequence learning. arXiv
preprint arXiv:1511.06114.
Miller, A. H.; Fisch, A.; Dodge, J.; Karimi, A.; Bordes, A.;
and Weston, J. 2016. Key-value memory networks for di-
rectly reading documents. CoRR abs/1606.03126.
Mostafazadeh, N.; Chambers, N.; He, X.; Parikh, D.; Batra,
D.; Vanderwende, L.; Kohli, P.; and Allen, J. F. 2016. A
corpus and evaluation framework for deeper understanding
of commonsense stories. CoRR abs/1604.01696.
Neelakantan, A.; Le, Q. V.; Abadi, M.; McCallum, A.; and
Amodei, D. 2016. Learning a natural language interface with
neural programmer. CoRR abs/1611.08945.
Nguyen, T.; Rosenberg, M.; Song, X.; Gao, J.; Tiwary, S.;
Majumder, R.; and Deng, L. 2016. MS MARCO: A human
generated machine reading comprehension dataset. CoRR
abs/1611.09268.
Onishi, T.; Wang, H.; Bansal, M.; Gimpel, K.; and
McAllester, D. 2016. Who did what: A large-scale person-
centered cloze dataset. arXiv preprint arXiv:1608.05457.

Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Empirical Methods
in Natural Language Processing (EMNLP), 1532–1543.
Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250.
Richardson, M.; Burges, C. J. C.; and Renshaw, E. 2013.
Mctest: A challenge dataset for the open-domain machine
comprehension of text. In EMNLP 2013, 193–203.
Ritter, A.; Cherry, C.; and Dolan, B. 2010. Unsupervised
modeling of twitter conversations. In NAACL 2010, 172–180.
Serban, I. V.; Sordoni, A.; Bengio, Y.; Courville, A.; and
Pineau, J. 2016a. Building end-to-end dialogue systems using
generative hierarchical neural network models. AAAI’16,
3776–3783. AAAI Press.
Serban, I. V.; Garcı́a-Durán, A.; Gülçehre, Ç.; Ahn, S.; Chan-
dar, S.; Courville, A. C.; and Bengio, Y. 2016b. Generating
factoid questions with recurrent neural networks: The 30m
factoid question-answer corpus. In Proceedings of the 54th
Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Germany,
Volume 1: Long Papers.
Serban, I. V.; Sordoni, A.; Lowe, R.; Charlin, L.; Pineau, J.;
Courville, A. C.; and Bengio, Y. 2017. A hierarchical latent
variable encoder-decoder model for generating dialogues. In
AAAI, 3295–3301.
Voorhees, E. M., and Tice, D. M. 2000. Building a ques-
tion answering test collection. In Proceedings of the 23rd
annual international ACM SIGIR conference on Research
and development in information retrieval, 200–207. ACM.
Wang, M.; Smith, N. A.; and Mitamura, T. 2007. What is
the jeopardy model? a quasi-synchronous grammar for qa. In
EMNLP-CoNLL, volume 7, 22–32.
Yang, M.-C.; Duan, N.; Zhou, M.; and Rim, H.-C. 2014.
Joint relational embeddings for knowledge-based question
answering. In EMNLP, volume 14, 645–650.
Yang, Y.; Yih, W.; and Meek, C. 2015. Wikiqa: A challenge
dataset for open-domain question answering. In EMNLP
2015, Lisbon, Portugal, September 17-21, 2015, 2013–2018.

713

