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Abstract

Some well-known paradoxes in decision making (e.g., the Al-
lais paradox, the St. Petersburg paradox, the Ellsberg para-
dox, and the Machina paradox) reveal that choices conven-
tional expected utility theory predicts could be inconsistent
with empirical observations. So, solutions to these paradoxes
can help us better understand humans decision making accu-
rately. This is also highly related to the prediction power of a
decision-making model in real-world applications. Thus, var-
ious models have been proposed to address these paradoxes.
However, most of them can only solve parts of the paradoxes,
and for doing so some of them have to rely on the parameter
tuning without proper justifications for such bounds of pa-
rameters. To this end, this paper proposes a new descriptive
decision-making model, expected utility with relative loss re-
duction, which can exhibit the same qualitative behaviours
as those observed in experiments of these paradoxes without
any additional parameter setting. In particular, we introduce
the concept of relative loss reduction to reflect people’s ten-
dency to prefer ensuring a sufficient minimum loss to just a
maximum expected utility in decision-making under risk or
ambiguity.

Introduction

Decision-making is a process of selecting one among avail-
able choices (Russell et al. 2010). In real-world applications,
decisions often have to be made under risk or ambiguity
(Ma, Xiong, and Luo 2013; Luo, Zhong, and Leung 2015).
Here, decision making under risk means that the conse-
quence of a decision is uncertain but the probability of each
possibility is known, while decision making under ambigu-
ity means even the probability of each possibility is unclear.
Since such uncertainties are inevitable in real-world appli-
cations, this topic is a central concern in decision science
(Tversky and Kahneman 1992; Gul and Pesendorfer 2014)
and artificial intelligence (Dubois, Fargier, and Perny 2003;
Luo and Jennings 2007; Ma, Luo, and Jiang 2017). Perhaps
the most well-known theory for decision-making under un-
certainty is expected utility theory (Neumann and Morgen-
stern 1944). Specifically, it is about how to make optimal
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decisions under risk. It gives a normative interpretation for
researchers in economics and artificial intelligence to model
applications related to rational agents.

Unfortunately, recent empirical studies, such as the Allais
paradox (Allais and Hagen 2013), the St. Petersburg para-
dox (Joyce 2011), the Ellsberg paradox (Ellsberg 1961), and
the Machina paradox (Machina 2009), have observed a num-
ber of violations (i.e., humans’ choices in reality deviated
from those predicted by classic expected utility theory (Neu-
mann and Morgenstern 1944)). At the same time, in many
artificial intelligence applications such as recommendation
system, supply chain management, policy making, human-
computer negotiation, and security surveillance system, hu-
man decision-making behaviour indeed is an essential con-
cern and computers often need to predict precisely human
decisions under uncertainty. For example, if a government
policy-making support system cannot understand how the
people will respond to a policy, it is questionable to recom-
mend the policy to the government (Zhan et al. 2018).

Since the classic expected utility theory cannot predict hu-
man decisions observed in these paradoxes, various gener-
alised expected utility theories and ambiguity decision mod-
els have been proposed to account the paradoxes. How-
ever, most of them can only resolve parts of the paradoxes,
and some of them (e.g., (Tversky and Kahneman 1992;
Quiggin 2012; Gul and Pesendorfer 2014)) can only solve
the paradoxes by adding some extra parameters, which
means that these models only work in cases that the bounds
of parameter variations are already known. Unfortunately,
this makes it hard to evaluate the predication power of the
models in a new decision-making problem (more detailed
discussion can be found in related work section).

To address this issue, this paper introduces a new con-
cept, called relative loss reduction, which is based on the
human nature of loss aversion, which has been convinc-
ingly confirmed by many psychological and economic ex-
periments (Kahneman 2003). In psychology, loss aversion
refers to people’s tendency to prefer avoiding losses to ac-
quiring equivalent gains (Kahneman 2003). In this paper, we
interpret the meaning of loss in two cases: (i) the difference
between the minimum utilities of any two choices; and (ii)
the span of the expected utility interval of a choice. In the
first case, the loss aversion means a decision maker prefers
a choice with higher minimum utility, ceteris paribus; and
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in the second case, the loss aversion means a decision maker
prefers a choice with less ambiguous, ceteris paribus. And
since the two interpretations are based on the comparison of
multiple values and normally a decision maker cares about
the reduction of loss in a decision making problem, we call
these two interpretations as relative loss reduction.

Then, we construct a formal descriptive decision-making
model to explore how this concept helps to make an op-
timal choice in decision-making and address three well-
documented deviations from expected utility theory without
any extra parameter:

(i) Allais-style evidence: a decision maker prefers the
choice with certain reward to the choice under risk, but
reverses this ordering if both choices are mixed with an
undesirable possible consequence. Thus, it shows vio-
lations of the independence axiom.

(ii) St. Petersburg-style evidence: a decision maker only
wants to pay a very small amount of money to play a
particular lottery game that has a random consequence
with a huge expected utility.

(iii) (iii) Ellsberg-style evidence: a decision maker has the
nature of ambiguity aversion in case that the precise
probabilities of some possible consequences of the
choices are unavailable.

The remainder of this paper is organised as follows.
Firstly, we give the formal definition of decision problems
under uncertainty, and recap the methods to obtain expected
utilities and expected utility intervals. Secondly, we present
our decision-making model that reflects the human nature
of loss aversion in making an optimal choice and reveal
some insights into our model. Thirdly, we further validates
our model by showing that it can resolve four well-known
paradoxes. Fourthly, we discuss the related work. Finally,
we conclude the paper with further work.

Problem Definition

In this section, we give a formal definition for the problem of
decision-making under uncertainty (including risk and am-
biguity), and recap the notions of expected utility (Neumann
and Morgenstern 1944), and expected utility interval (Ghi-
rardato, Maccheroni, and Marinacci 2004).

Definition 1 A decision problem under uncertainty is a 4-
tuple (S,C, u,Q),1 where:

(i) S is a set of all the possible states;
(ii) C is a convex set of all the available choices. That is,

if c1, c2 ∈ C and λ ∈ [0, 1], then a uncertain choice
λc1 + (1 − λ)c2, meaning to choose c1 with a chance
of λ and choose c2 with a chance of 1−λ, is also in C.

(iii) u is a mapping from C×S to R, representing the utility
of making choice c ∈ C in state s ∈ S.

(iv) Δ(S) = {p | p : S→ [0, 1],
∑

si∈S p(si)=1}, i.e., the
set of all the probability distributions p over S.

1This paper considers the decision problem with choice-state
independence to simplify the issue. However, in future it is worth
studying whether or not that our model can be applied to the cases
of choice-state dependence as well.

(v) Q is a subset of Δ(S), representing the probability as-
signments for each state s ∈ S.

Then by Definition 1, a decision problem under risk is a
4-tuple (S,C, u, {p}), where p ∈ Q is a unique probability
distribution for the decision maker to represent the precise
probability value for each state. Whilst, a decision problem
under ambiguity is a 4-tuple (S,C, u,Q), where |Q| > 1,
representing multiple probability values for some states.

The most widely used model of decision making under
uncertainty is expected utility theory (Neumann and Mor-
genstern 1944), in which expected utility of a choice is given
as follows:

EU(c) =
∑

si∈S

p(si)u(c, si). (1)

For a decision problem under ambiguity, Ghirardato,
Maccheroni, and Marinacci (2004) introduce the concept of
expected utility interval of a choice c as follows:
Definition 2 Given a decision problem under ambiguity
(S,C, u,Q), the expected utility interval of a choice c, de-
noted as EUI(c) = [E(c), E(c)], is given by:

E(c) = min
p∈Q

EUp(c), (2)

E(c) = max
p∈Q

EUp(c). (3)

Decision-Making with Relative Loss Reduction

This section will reveal some insights into the concept of rel-
ative loss reduction in decision-making under risk and deci-
sion making under ambiguity.

As mentioned previously, the idea of relative loss reduc-
tion is based on the human nature of loss aversion. Usually,
loss aversion means that the focus is on the real loss in a de-
cision making problem. For example, one who losed $100
loses more satisfaction than another who gains satisfaction
from a windfall of $100. Nevertheless, this human nature
occurs not only in the case that the real consequence of a
choice is negative, but also in the case the possible conse-
quence of a choice may be worse than the decision maker’s
expectation. For example, in decision making under risk,
suppose choice a is to win $80 with a chance of 50% and
to win $20 with a chance of 50%; and choice b is to win
$100 with a chance of 50% and get nothing with a chance
of 50%. Then a decision maker, who makes choice b, suffers
an anticipated loss aversion: if choice b turns out to be zero,
I will lost at least $20 since it is the minimum utility I can
obtain by making choice a. Similarly, for decision making
under ambiguity, if choice a is to win $100 with a chance
between 0 and 2/3 and to get nothing otherwise, and choice
b is to win $100 with a chance of 1/3 and to get nothing oth-
erwise, then a decision maker, who makes choice a, suffers
another anticipated loss aversion: if the real probability of
wining $100 is 0, I will loss $100 with a chance of 1/3 since
it is the minimum probability of obtaining $100 by making
choice b.

According to the above intuitions, we can interpret two
types of loss aversion as follows. (i) Worst Case Loss Aver-
sion: This happens when the worst consequence of the
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choice made is worse than the worst consequence of other
choices, and it is due to the uncertainty of the states of the
world and the comparison of multiple choices. (ii) Ambigu-
ity Loss Aversion: This happens when the expected utility
of a choice is unclear (i.e., it is interval-valued), and it is
due to the uncertainty of the probability of some states of
world and the comparison of multiple choices. Since the two
types of loss aversion are based on the comparison of mul-
tiple choices and the loss aversions lead the decision maker
to make a choice with less loss, we call the concept relative
loss reduction.

Based on the above understanding of relative loss reduc-
tion, in the following we will establish a formal model to
predict the behaviour of an anticipated loss aversion prone-
ness decision maker.

Risky Expected Utility with Relative Loss
Reduction

First, we discuss a decision problem under risk. For this
problem, since the expected utility of a choice is determined
by expected utility theory, we only need to consider the in-
fluence of the worst case loss aversion. Formally, we can de-
fine expected utility with relative loss reduction (RLR) for
decision problems under risk (or simple risky expected util-
ity with RLR) and accordingly set the preference ordering as
follows:

Definition 3 For a decision problem under risk (S, C, u,
{p}), let si ∈ S (j = 1, . . . , n) be a state of the world,
u(c, si) be the utility of a choice c ∈ C at state si ∈ S, and
EU(c) be the expected utility value given by formula (1).
Then the risky expected utility with relative loss reduction
(RLR) of a choice c ∈ C, denoted as Lr(c), is given by:

Lr(c)=EU(c)−(max
c′∈C

min
si∈S

u(c′,si)−min
sj∈S

u(c,sj)). (4)

For any two choices c1 and c2, the preference ordering based
on risky expected utility with RLR, denoted as �r, is defined
as:

c1 �r c2 ⇔ Lr(c1) ≥ Lr(c2). (5)

In Definition 3, the loss aversion in risk is represented as

max
ci∈C

min
sj∈S

u(ci, sj)−min
sk∈S

u(c1, sk),

which actually is the distance between the maximum mini-
mum utility of any choice ci ∈ C and the minimum utility of
a selected choice c1. Moreover, since the effect only occurs
when the minimum consequence of a choice is worse than
other choices, we can find that for a choice with the maxi-
mum minimum utility, the worst case loss aversion should be
0. And Lr(c1) shows the reduced expected utility of a choice
under the influence of anticipated worst case loss aversion.
Finally, since for a decision making problem (S,C, u,Q)
with |Q| > 1 the expected utility is interval-valued, more
factors should be considered when we extend Definition 3
to the case of ambiguity (this will be discussed in next sec-
tion).

Let us consider the following example:

Example 1 Alice is thinking about investing $240K in
stock. And she considers a stock offered by Bob (an invest-
ment advisor) that give she $150K with a chance of 30%
and $300K with a chance of 70% after one year. Clearly,
by formula (1), the expected utility is 255K. However, by
Definition 3, since the minimum expected utility of reject-
ing this offer is 240K and that of accepting the offer is
$150K, after considering the loss aversion in risk (i.e.,
240K − 150K = 90K), the risky expected utility with RLR
of accepting the offer is 165K (i.e., 255K − 90K), while
that of rejecting the offer is 240K. Thus, Alice should reject
the offer.

Now, in the following theorem we reveal some properties
about the preference ordering set in Definition 3:

Theorem 1 Let C be a finite choice set, S be a state set,
and EU(c) be the expected utility of choice c. Then for any
c1, c2, c3 ∈ C, the preference ordering �r satisfies:

1. Weak Order: (i) Either c1 �r c2 or c2 �r c1; and (ii) if
c1 �r c2 and c2 �r c3, then c1 �r c3.

2. Archimedean Axiom: If c1 �r c2 and c2 �r c3, then
there exist λ, μ ∈ (0, 1) such that

λc1 + (1− λ)c3 �r c2 �r μc1 + (1− μ)c3.

3. Monotonicity: If for any q ∈ Δ(S) satisfying q(si) = 1
(si∈S), we have c1�r c2, then c1�r c2 for any p∈Δ(S).

4. Sen’s property: If c1 �r c2 in a choice set C, then for any
choice set C ′, such as c1, c2 ∈ C ′, we have c1 �r c2.

5. Limited Constant Independence: If c1 �r c2 and c∗ is a
choice with certain consequence that satisfies EU(c∗) ≥
min
i=1,2

min
sj∈S

{u(ci, sj)}, then

λc1 + (1− λ)c∗ �r λc2 + (1− λ)c∗

for any λ ∈ (0, 1].
6. Certainty Effect: If EU(c1) = EU(c∗) and c∗ is a choice

with certain consequence, then c∗ �r c1.

Proof: We check the properties in this theorem one by one.
(i) Since Lr(c1) ≥ Lr(c2) or Lr(c1) ≤ Lr(c2) holds

for any c1, c2 ∈ C, by Definition 3, we have c1 �r c2 or
c2 �r c1. Moreover, suppose c1 �r c2 and c2 �r c3. Then
by Definition 3, we have Lr(c1) ≥ Lr(c2) and Lr(c2) ≥
Lr(c3). As a result, Lr(c1) ≥ Lr(c3). Thus by Definition 3,
we have c1 �r c3. So, property 1 holds.

(ii) Suppose c1 �r c2 and c2 �r c3. Then by Definition
3, we have Lr(c1) ≥ Lr(c2) and Lr(c2) ≥ Lr(c3). Since
Lr(ci) ∈ � for i ∈ {1, 2, 3}, by the continuity of the real
number, there exists λ, μ ∈ (0, 1), such that

λLr(c1)+(1−λ)Lr(c3)≥Lr(c2)≥μLr(c1)+(1−μ)Lr(c3).

Thus, by Definition 3 and the choice set is convex, property
2 holds.

(iii) Suppose for any q ∈Δ(S) satisfying q(si)= 1 (si ∈
S), we have c1 �r c2. Then by Definitions 1 and 3, we have
u(c1, s)≥u(c2, s) for ∀s∈S. Thus, by formula (1), we have
EU(c1)≥EU(c2). Hence, by Definitions 3 and the fact that
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min
si∈S

u(c1, si) ≥ min
sj∈S

u(c2, sj), we can obtain c1 �r c2.

Thus, property 3 holds.
(iv) Let t=max

ci∈C
min
s∈S

u(ci, s) and t′ = max
cj∈C′

min
s∈S

u(cj , s).

Then by Definition 3 and c1�r c2 in a choice set C, we have

EU(c1)−(t−min
s∈S

u(c1, s)) ≥ EU(c2)−(t−min
s∈S

u(c2, s)).

Hence, from the fact that t = t′ − (t′ − t), we know that
Lr(c1) ≥ Lr(c2) in choice set C ′. Thus, property 4 holds.

(v) Let min
s∈S

u(c1, s)=k1, min
s∈S

u(c2, s)=k2, EU(c∗)=a,

and max
ci∈C

min
s∈S

u(ci, s) = t, where t > λk1+(1−λ)a and

t > λk2+(1−λ)a. Then, by c1 �r c2 and Definition 3, we
have:

λEU(c1)+(1−λ)a−(t−(λk1+(1−λ)a))

≥ λEU(c2)+(1−λ)a−(t−(λk2+(1−λ)a)).

Thus, by formula (5), property 5 holds.
(vi) Let EU(c1) = EU(c∗) = a and min

s∈S
u(c1, s) = k1.

Then, by formula (1), a ≥ k1. Hence, by Definition 3, we
have

a− (a− a) ≥ a− (a− k1).

Thus, by formula (5), we have c∗ �r c1. So property 6 holds.
�

Properties 1-3 in the above theorem are the standard ax-
ioms in expected utility theory (Neumann and Morgenstern
1944). The first means a preference ordering can compare
any pair of choices and satisfies transitivity. The second
works like a continuity axiom on preferences, asserting that
no choice is either infinitely better or infinitely worse than
any other choices. The third is the requirement of mono-
tonicity, asserting that if a decision maker does not think the
utility of one choice is worse than the potential obtained util-
ity of another choice on each state of world, then the former
choice is conditionally preferred to the latter. And property
4 is implied by expected utility theory, meaning eliminating
some of the unchosen choice should not affect the optimal
choice.

The rest of the properties in the above theorem are our
own. The fifth requires that the ranking of choices is not af-
fected by mixing a choice with certain consequence, which
has a higher utility than the minimum utilities of the choices.
Intuitively the violations of independence should be due
only to the worst case utility, rather than the uncertainty
of states. So, the property gives the essence of worst case
loss aversion: decision makers really care about the mini-
mum utility they could obtain by making a choice. The sixth
means the decision maker prefers a choice with a sure gain
to risky one if they have the same expected utility. In fact, the
property somehow describes the certainty effect (Kahneman
2011) for decision makers in real-world applications.

Ambiguous Expected Utility with Relative Loss
Reduction

Now, we turn to decision problems under ambiguity. In this
case, a decision maker manifests a worst case loss aversion
as well as an ambiguity loss aversion.

For the first type of loss aversion in decision making un-
der ambiguity, based on the maximum expected utility (see
Definition 2) and Definition 3, its effect can be measured by:

E(c)− (max
c′∈C

min
si∈S

u(c′, si)−min
sj∈S

u(c, sj)), (6)

where E(c) is the maximum expected utility of choice c.
Since the excepted utility interval is determined by the un-

certainty of the probability as well as the utility of the con-
sequences of a choice, the second type of loss aversion is
determined by the ambiguity degree of the expected utility
as well as the difference between maximum expected util-
ity and minimum expected utility. For the ambiguity degree,
it means the extent of the uncertainty about the probability
distribution with respect to a choice.

Let us consider the following example:
Example 2 (Example 1 continued) After Alice rejects the
first offer, Bob offers her two new stocks whose prices heav-
ily depend on the monetary policy. According to the market
survey of the trend of monetary policy, there is one in three
chances that the government will adopt a normal monetary
policy (n) and there is two in three chances that the gov-
ernment will change the monetary policy, it is either being
expansionary (e) or contractionary (c). Then, (i) c1 is to get
$300K if the monetary policy is normal, and get $240K oth-
erwise; and (ii) c2 is to win $300K if the monetary policy is
expansionary, and get $240K otherwise.

Clearly, in this example, state set S is {n, e, c}. Since it is
unclear how many chances the monetary policy will be ex-
pansionary or contractionary, there exist multiple values of
the probability of a state (e.g., the probability of expansion-
ary monetary policy can be any value in [0, 2/3]). Thus, the
probability distribution over the possible states is uncertain.
In order to consider its ambiguity degree, we first need to
define the structure of the multiple probability distributions
over the state set in such a decision-making under ambiguity
as follows:
Definition 4 For a decision problem under uncertainty (S,
C, u,Q), a partition [S] = {S1, . . . , Sn} of the state set S is
a structure partition of the decision problem that reveals the
essence of the uncertain probability distribution over state
set S if it satisfies:2

• there exists a precise probability function q : [S]→ [0, 1],
such that

∑
Si∈[S]

q(Si)=1;

• for any Si ∈ [S], Si = {sk, . . . sl} and for any proba-
bility distribution p ∈ Q over all states in Si, we have∑
s∈Si

p(s)=q(Si); and

• for any |Si| > 1 (Si ∈ [S]), each nonempty proper subset
of Si has multiple probability values.
In fact, inspired by the definition of mass function of D-

S theory, Definition 4 defines a unique probability distribu-
tion q over [S] for Q. By Definition 4, in Example 2, sup-
pose {n, e, c} is the state set, then the structure partition is

2A partition [S] = {S1, . . . , Sn} means that (i) Si �= ∅ (i =
1, . . . , n), (ii) S1 ∪ · · · ∪ Sn = S, and (iii) Si ∩ Sj = ∅ for any
Si �= Sj and Si, Sj ∈ {S1, . . . , Sn}.
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[S] = {{n}, {e, c}} with the probability 1/3 for {n} and
2/3 for {e, c}. However, the partition of {{n}, {e}, {c}} is
not a structure partition, since there does not exist a precise
probability value for {e} or {c}. And {{n, e, c}} is not a
structure partition either, because the probability of subset
{n} or {e, c} has a unique value.

Clearly, by
∑

si∈S p(si) = 1 and Definition 4, we can
easily prove that for any decision problem under uncertainty,
there exists a structure partition. Now, based on Definition
4, we can formally define the ambiguity degree of a given
choice as follows:

Definition 5 For a decision problem under uncertainty (S,
C, u,Q), let [S] = {S1, . . . , Sn} be a structure partition,
q(Si) (i = 1, . . . , n) be the precise probability value as-
signed to Si ∈ [S], Uc = {u(c, s) | s ∈ S} be the set
of all the possible utilities of making choice c, and Vi =
{u(c, sj) | sj ∈ Si, Si ∈ [S]} be the set of potentially ob-
tained utilities of state set Si ∈ [S]. Then the ambiguity de-
gree of choice c, denoted as δc, is given by:

δc =
n∑

i=1

q(Si)
log2 |Vi|
log2 |Uc| . (7)

In fact, Definition 5 is inspired by the generalised Hartley
measure for non-specificity (Dubois and Prade 1985) in D-S
theory. By q(Si) log2 |Vi|, it means that the higher the proba-
bility value and the more number of the potentially obtained
utilities involved in the probability value, the more ambi-
guity the decision maker suffers in a state set Si. Finally,
for Example 2, by Definition 5, we can find δc1 = 0 and
δc2 = 2/3. Clearly, the greater the ambiguity degree of a
choice, the higher the value that is to be assigned to the min-
imum expected utility to show the ambiguity loss aversion
the decision maker manifests.

Together with the worst case loss aversion in decision
making under ambiguity (which is defined in formula (6)),
we can formally define an expected utility with relative loss
reduction in decision making under ambiguity (or simple
ambiguous expected utility with RLR) and accordingly set
the preference ordering as follows:

Definition 6 For a decision problem under ambiguity (S,
C, u,Q) with |Q| > 1. The ambiguous expected utility with
RLR of choice c, denoted as La(c), is given by:

La(c)=E(c)− δc(E(c)−E(c))− (max
c′∈C

min
si∈S

u(c′, si)

−min
sj∈S

u(c, sj)). (8)

Then, for any two choices c1 and c2, the preference ordering
based on the ambiguous expected utility with RLR, denoted
as �a, is defined as follows:

c1 �a c2 ⇔ La(c1) ≥ La(c2). (9)

By Definition 6, we can define two types of loss aver-
sion effect in a decision problem under ambiguity with
one formula. That is, E(c) in formula (8) says that a de-
cision maker expects the maximum expected utility in a

given decision problem. However, since the maximum ex-
pected utility is obtained in case of ambiguity, the deci-
sion maker also reduces his evaluation of the choice ac-
cording to his nature of the ambiguity loss aversion. And
δc(E(c)−E(c)) means that the ambiguity loss aversion is de-
termined by the ambiguity degree and the distance of maxi-
mum expected utility and minimum expected utility. Finally,
max
c′∈C

min
si∈S

u(c′, si)−min
sj∈S

u(c, sj) represents the worst case

loss aversion of the decision maker.
Let us consider the following example:

Example 3 (Example 2 continued) Since these two new
stocks offered by Bob suffer no loss of capital, Alice only
needs to decide which one she should accept. First, she cal-
culates the expected utility intervals of both choices by Def-
inition 2, and obtain EUI(c1) = 260 and EUI(c2) =
[240, 280]. Then, after considering worst case loss aver-
sion and ambiguity loss aversion of herself, she decides to
make her decision based on the ambiguous expected utility
with RLR. Thus, by Definition 5, she obtains δc1 = 0 and
δc2 = 2/3. So, by the fact that the maximin utility of these
two choices is 240K. As a result, by Definition 6, she has
La(c1) = 260 and La(c2) = 253.3. Thus, she chooses c1.

Now, we can show the relationship between the risky ex-
pected utility with RLR and the ambiguous expected utility
with RLR by the following theorem:
Theorem 2 Risky expected utility with RLR is a special case
of ambiguous expected utility with RLR.

Proof: For a decision problem under risk (S,C, u, {p}),
suppose p(si) is a precise probability value assigned to a
state si ∈ S, u(c, si) be the utility of the consequence that
makes choice c in state si. Then by Definition 2, we have:

E(c) = E(c) = EU(c) =
∑

si∈S

p(si)u(c, si).

Moreover, by Definitions 4 and 5, we have δc = 0. There-
fore, for a given choice c, by Definition 6, we have

La(c)=EU(c)−
∑

si∈S

p(si)[EU(c)−u(c, si)] =Lr(c).

�
By Theorem 2, it means that we can use Definition 6 to

obtain the expected utility with RLR of each choice for any
decision problem under uncertainty. Thus, without losing
generality, we can use La(c) to represent the expected utility
with relative loss reduction under uncertainty.

Also, the following theorem gives some properties for am-
biguous expected utility with RLR:
Theorem 3 Let C be a finite choice set and the interval-
valued expected utility of choice ci ∈ C be EUI(ci) =
[E(ci), E(ci)], and its ambiguity degree be δci . Then for two
choices c1 and c2 with the same minimum utility, the binary
relation �a over C satisfies:

(i) if E(c1) > E(c2), E(c1) > E(c2), and δc1 ≤ δc2 ,
then c1 
a c2;

(ii) if E(c1)≥E(c2) and δc1 =δc2 =1, then c1�a c2; and
(iii) if EUI(c1)=EUI(c2) and δc1 < δc2 , then c1 
a c2.

691



Table 1: Allais’ Decision Situation Design
g1 g2 g3 g4

Gain p Gain p Gain p Gain p

$100 100%

$100 89% 0 89%
0 90%

0 1%
$100 11%

$500 10% $500 10%

Proof: By Definition 6 and the fact that two choices c1 and
c2 have the same minimum utility, we can obtain the result
of Theorem 3 directly. �

In fact, for two choices with the same minimum utility,
property (i) of Theorem 3 means that if the ambiguity degree
of a choice is not more than that of another, and the worst
and the best expected utility of this choice is better than
those of another respectively, this choice should be made.
And property (ii) of Theorem 3 means that in the case of
absolute ambiguity, a decision maker should take maximin
attitude (i.e., compare their minimum expected utilities and
choose the best one). Finally, property (iii) reveals the rela-
tion between ambiguity degree and the preference ordering.
That is, a decision maker should make a choice with less
ambiguous, ceteris paribus.

Paradox Analysis

This section resolves four paradoxes using our model.
The Allais paradox (Allais and Hagen 2013) is a choice

problem that shows expected utility theory is problematic.
Suppose a decision maker needs to make a choice between
two gambles: g1 and g2, or g3 and g4. The payoff for each
gamble in each experiment is as shown in Table 1. Allais
discovered that most participants picked g1 rather than g2,
or alternatively most participants picked g4 rather than g3.
However, this result is inconsistent with what expected util-
ity theory predicts.

Using our model, by Definition 3, we have:

Lr(g1)=100, Lr(g2)=139−(100−0)=39,

Lr(g3)=11−(0−0)=11, Lr(g4)=50−(0−0)=50.

Thus, for a decision maker, we have g1 
r g2 and g4 
r g3.
This result is the same as the observation of Allais. In fact,
our model is able to not only resolve the Allais paradox, but
also reveal the limitation of the influence about certainty ef-
fect. For instance, if g2 has a chance of 89% to win $100,
a chance of 1% to win $0, and a chance of 10% to win
$50, 000, there is no doubt that most of people prefer g2 to
g1. And if g2 has a chance of 89% to win $100, a chance of
1% to win $70, and a chance of 10% to win $500, people
should also prefer g2 to g1.

The St. Petersburg game (Joyce 2011) is played by flip-
ping a fair coin until it comes up tails, and the total num-
ber of flips n determines the prize, which equals $2n.
Then, by formula (1), the expected utility of this game is∑∞

n=1
1
2n 2

n =∞.3 In other words, a decision maker should

3Here, although utility does not necessarily equal to money
value and Bernoulli claims that the logarithmic utility function can

Table 2: The Ellsberg Paradox
30 balls 60 balls

r: red b: blue g: green
c1 $100 $0 $0
c2 $0 $100 $0
c3 $100 $0 $100
c4 $0 $100 $100

be willing to pay any price to enter this game. Nevertheless,
obviously some prices might be too high for a rational de-
cision maker to pay for playing. Moreover, even with the
rebuttal that any dealer could only offer finite money for
another to play the St. Petersburg lottery, people still make
choices in finite St. Petersburg game, which is inconsistent
with expected utility theory (Cox, Sadiraj, and Vogt 2008).
In fact, many people agree that “few of us would pay even
$25 to enter such a game” (Hacking 1980).

Now, by using our model, based on the assumption of fi-
nite St. Petersburg game, suppose the net worth of Bill Gates
in Forbes 2015 (W = $79.2 Billion) is the total money that
a potential player can offer, and a is the money that the loss
aversion proneness decision maker is willing to pay. Then
L = �log2(W )
 = 36 is the maximum number of times the
dealer can fully cover the bet, and the risky expected utility
with RLR for playing the finite St. Petersburg game is:

Lr(c) =
36∑

n=1

1

2n
× 2n + 2

W

2L+1
− (a− 0) = 37.15− a.

If a decision maker wants to play the game, by Definition
3, it means 37.15 − a ≥ a, and thus a < 18.6. Therefore,
since the agent cannot even offer the net worth of Bill Gates
money for such a game, it is no doubt that many people are
willing to pay less money for playing the game. By consider-
ing the effect of worst case loss aversion, our model indeed
gives an explanation for the St. Petersburg game.

The Ellsberg paradox is a well-known, long-standing one
about ambiguity (Ellsberg 1961). Suppose in an urn contain-
ing 90 balls, 30 is red, and the rest are either blue or green,
and a decision maker faces two pairs of decision problems,
each involving a decision between two choices: c1 and c2,
or c3 and c4. A ball is randomly picked up from the urn, and
the return of selecting a ball for each choice is shown in Ta-
ble 2. Ellsberg found that a very common pattern of human
responses to these problems is: c1 
 c2 and c4 
 c3, which
violates expected utility theory.

In the Ellsberg paradox, by Definition 4, the structure par-
tition is [S] = {{r}, {b, g}}with a chance of 1/3 for {r} and
a chance of 2/3 for {b, g}. Then, by Definitions 2, 5 and 6,

handle this paradox in (Bernoulli 1954), many have found this re-
sponse to the paradox unsatisfactory (Martin 2014).
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Table 3: 50:51 Example
50 balls 51 balls
e1 e2 e3 e4

c1 $80 $80 $40 $40
c2 $80 $40 $80 $40
c3 $120 $80 $40 $0
c4 $120 $40 $80 $0

we have:

La(c1) =
100

3
−(0− 0)=

100

3
,

La(c2) =
200

3
− 2

3
×(

200

3
−0)−(0− 0)=

200

9
,

La(c3) = 100− 2

3
×(100− 100

3
)−(0− 0)=

500

9
,

La(c4) =
200

3
−(0− 0)=

200

3
.

Thus, we have c1 
a c2 and c4 
a c3.
Since the Ellsberg paradox shows that a decision maker

exhibits a preference for the choices with a deterministic
probability distribution over the choices with undetermine
probability distribution, it reveals a phenomenon, known as
ambiguity aversion. And our method can resolve this type
of paradox. Thus, our model indeed reflects the decision
maker’s ambiguity aversion nature by considering the influ-
ence of ambiguity loss aversion.

Recently, Machina (2009) has posed some questions re-
garding the ability of Choquet expected utility theory (Quig-
gin 2012) and some well-known ambiguity decision models
to resolve variations of the Ellsberg paradox. And the ex-
amples of these questions are called the Machina paradox
(Machina 2009).

The first example is shown in Table 3. In this 50:51 exam-
ple, the pair of c1 and c2 and the pair of c3 and c4 differ only
in whether they offer the higher prize of $80 on event e2 or
event e3. As argued by Machina (2009), a decision maker
prefers c1 to c2, but the decision maker may feel that the
tiny ambiguity difference between c3 and c4 does not off-
set c4 objective advantage (a slight advantage due to that the
51st ball may yield $80), and therefore prefers c4 to c3.

Using our method, by Definition 4, the structure parti-
tion is [S] = {{e1, e2}, {e3, e4}} with a chance of 50/101
for the set of {e1, e2} and a chance of 51/101 for the set
of {e3, e4}. Then, by Definitions 2, 5 and 6, we can find
La(c1) = 59.8, La(c2) = 40, La(c3) = 59.6, and La(c4) =
59.8. Thus, we have c1
a c2 and c4 
a c3. Moreover, for c1
and c2, although c2 has a slight advantage due to that the 51st
ball may yield $80, a decision maker still chooses c1 because
of ambiguity aversion. Whilst, for c3 and c4, since the ambi-
guity degree for both choices are the same, the slight advan-
tage of c4 influences the decision maker’s choice. In other
words, our method can consider the ambiguity aversion of
the decision maker as well as the advantage of a higher util-
ity for a decision making under ambiguity. So, our model
covers well the 50:51 example in the Machina paradox.

Now, we consider the second type of the Machina para-

Table 4: Reflection Example
50 balls 51 balls
e1 e2 e3 e4

c1 $40 $80 $40 $0
c2 $40 $40 $80 $0
c3 $0 $80 $40 $40
c4 $0 $40 $80 $40

dox, called the reflection example in Table 4. In this exam-
ple, since c4 is an informationally symmetric left-right re-
flection of c1 and c3 is a left-right reflection of c2, any deci-
sion maker who prefers c1 to c2 should have the “reflected”
ranking that prefers c4 to c3. And if c2 
 c1 then c3 
 c4.
The experimental analyses of L’Haridon and Placido (2008)
found that over 90 percent of subjects expressed strict prefer-
ence in the reflection problems, and that roughly 70 percent
manifest the structure c1 
 c2 and c4 
 c3 or c2 
 c1 and
c3 
 c4. And such a result cannot be explained well by most
of ambiguity decision models (Baillon and Placido 2011).

Nonetheless, using our method, by Definition 4, the struc-
ture partition is [S] = {{e1, e2}, {e3, e4}} with a chance of
1/2 for {e1, e2} and a chance of 1/2 for {e3, e4}. Then, by
Definitions 2, 5 and 6, we can find La(c1)=La(c4)= 34.8
and La(c2) = La(c3) = 47.4. Thus, c2 
a c1 and c3 
a c4.
So, our method can also explain the reflection example.

Related Work

There are two strands of literature related to our analyses
on the four well-known paradoxes. First, there are various
generalised expected utility theories and ambiguity decision
models that focus on some of the paradoxes. Generalised ex-
pected utility theories include prospect theory (PT) (Kahne-
man and Tversky 1990), regret theory (RT) (Bleichrodt and
Wakker 2015; Zhang et al. 2016), rank-dependent expected
utility (REU) (Quiggin 2012; Jeantet and Spanjaard 2011),
cumulative prospect theory (CPT) (Tversky and Kahneman
1992; Barberis 2013; Wang, Wang, and Martnez 2017). Am-
biguity decision models include maxmin expected utility
(MEU) (Gilboa and Schmeidler 1989; Troffaes 2007), vari-
ational preferences (VP) (Maccheroni, Marinacci, and Rus-
tichini 2006; De Marco and Romaniello 2015), α-maximin
(αM) (Ghirardato, Maccheroni, and Marinacci 2004) and a
smooth model of ambiguity aversion (SM) (Klibanoff, Mari-
nacci, and Mukerji 2005). However, all of them cannot pro-
vide an explanation for all the paradoxes we analysed in this
paper. In addition, our model is different from the most fa-
mous descriptive decision-making model (i.e., prospect the-
ory ) in the following aspects: (i) they need some extra pa-
rameters, but we do not; and (ii) they cannot resolve St.
Petersburg paradox, Ellsberg paradox and Machina paradox
and even its extension version (i.e., cumulative prospect the-
ory) cannot resolve Machina paradox, either; but our model
can resolve them all without setting any extra parameter.

Second, recently some decision models (Gul and Pe-
sendorfer 2014) were proposed with the claim of resolv-
ing these paradoxes with some parameter variations. For ex-
ample, the expected uncertainty utility (EUU) theory (Gul
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Table 5: Models Comparison
PT RT REU CPT MEU VP αM SM EUU ours

A +p +p +p +p N ∗ N ∗ +p Y
S N N ∗ +p N N N N ∗ Y
E N +p +p +p Y +p +p +p +p Y
M N N N N N N N N +P Y

and Pesendorfer 2014) resolves the paradoxes based on the
interval-valued expected utility and the utility indexes (a pa-
rameter variation) applied to the upper and lower bounds of
the interval. Nevertheless, such a model has the following
limitations: (i) it is unclear why a decision maker chooses
different utility indexes in different decision problems; and
(ii) since the utility indexes are obtained after the human se-
lection of a given decision problem is known, it is unclear
whether or not the utility indexes have the same predication
power for any new problem.

Finally, Table 5 summarises the models comparison in
solving four well-known paradoxes, where A stands for the
Allais paradox, S stands for the St. Petersburg paradox, E
stands for the Ellsberg paradox, M stands for the Machina
paradox, +p means the model can solve a paradox with
some additional parameters, N means the model cannot
solve a paradox, Y means the model can solve a paradox
without any additional parameter, and ∗ means it is unclear
whether or not the model can resolve a paradox.

Conclusion

This paper proposed a new decision model based on the hu-
man nature of loss aversion to address four well-known para-
doxes (Allais and Hagen 2013; Ellsberg 1961; Joyce 2011;
Machina 2009) at the same time without any additional pa-
rameter. More specifically, we distinguished two types of
loss aversion: worst case loss aversion and ambiguity loss
aversion in decision making under uncertainty, and proposed
the formal definition of relative loss reduction in decision
problems under risk or ambiguity. Then, we proved that the
loss aversion in decision problems under risk or ambiguity
can be defined by our unifying decision model with rela-
tive loss reduction. Moreover, we proved that some desir-
able properties can hold for our risky expected utility with
relative loss reduction or ambiguous expected utility with
relative loss reduction. Finally, we validated our models by
resolving the four famous paradoxes and demonstrated that
such a resolution without any additional parameter cannot
be achieved by the existing decision models.

There are many possible extensions to our work. Per-
haps the most interesting one is the axiomatisation and
psychological experimental analyses of our method. An-
other tempting avenue is to extend our model for resolv-
ing some paradoxes in multi-criteria decision making and
game theory. Finally, it is worth discussing the use of
our method in some real-word applications such as health
care, e-commerce, supply chain management, policy mak-
ing, human-computer negotiation, security surveillance sys-
tem and decision-theoretic planning.
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