The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

RUBER: An Unsupervised Method for Automatic
Evaluation of Open-Domain Dialog Systems

Chongyang Tao,' Lili Mou,? Dongyan Zhao,'* Rui Yan'?3*
Mnstitute of Computer Science and Technology, Peking University, China
2David R. Cheriton School of Computer Science, University of Waterloo
3Beijing Institute of Big Data Research, China
{chongyangtao,zhaody,ruiyan} @pku.edu.cn  doublepower.mou@gmail.com

Abstract

Open-domain human-computer conversation has been at-
tracting increasing attention over the past few years. How-
ever, there does not exist a standard automatic evaluation met-
ric for open-domain dialog systems; researchers usually re-
sort to human annotation for model evaluation, which is time-
and labor-intensive. In this paper, we propose RUBER, a Ref-
erenced metric and Unreferenced metric Blended Evaluation
Routine, which evaluates a reply by taking into consideration
both a groundtruth reply and a query (previous user-issued
utterance). Our metric is learnable, but its training does not
require labels of human satisfaction. Hence, RUBER is flex-
ible and extensible to different datasets and languages. Ex-
periments on both retrieval and generative dialog systems
show that RUBER has a high correlation with human anno-
tation, and that RUBER has fair transferability over different
datasets.

Introduction

Open-domain human-computer conversation is attracting in-
creasing attention as an established scientific problem (Bick-
more and Picard 2005; Bessho, Harada, and Kuniyoshi
2012; Shang, Lu, and Li 2015; Yan et al. 2016; Yao et
al. 2017); it also has wide industrial applications like Xi-
aolce from Microsoft and DuMi from Baidu. Even in a task-
oriented dialog (e.g., hotel booking), an open-domain con-
versational system could be useful in handling unforeseen
user utterances.

In existing studies of open-domain conversational sys-
tems, however, researchers typically resort to manual anno-
tation to evaluate their models, which is expensive and time-
consuming. Hence, automatic evaluation metrics are partic-
ularly in need, so as to ease the burden of model comparison
and to promote further research on this topic.

In early years, traditional vertical-domain dialog systems
use metrics like slot-filling accuracy and goal-completion
rate (Walker et al. 1997; Walker, Passonneau, and Boland
2001; Schatzmann, Georgila, and Young 2005). Unfortu-
nately, such evaluation hardly applies to the open domain
due to the diversity and uncertainty of utterances: “accu-
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racy” and “completion,” for example, make little sense in
open-domain conversation.

Previous studies in several language generation tasks have
developed successful automatic evaluation metrics, e.g.,
BLEU (Papineni et al. 2002) and METEOR (Banerjee and
Lavie 2005) for machine translation, and ROUGE (Lin 2004)
for summarization. For dialog systems, researchers occa-
sionally adopt these metrics for evaluation (Ritter, Cherry,
and Dolan 2011; Li et al. 2015). However, Liu et al. (2016)
conduct extensive empirical experiments and show weak
correlation between existing metrics and human annotation.

Very recently, Lowe et al. (2017) propose a neural
network-based metric for dialog systems; it learns to predict
a score of a reply given its query (previous user-issued utter-
ance) and a groundtruth reply. But such approach requires
human-annotated scores to train the network, and thus is less
flexible and extensible.

In this paper, we propose RUBER, a Referenced metric
and Unreferenced metric Blended Evaluation Routine for
open-domain dialog systems. RUBER has the following dis-
tinct features:

e An embedding-based scorer measures the similarity be-
tween a generated reply and the groundtruth. We call this a
referenced metric, because it uses the groundtruth as a ref-
erence, akin to existing evaluation metrics. Instead of using
word-overlapping information (e.g., in BLEU and ROUGE),
we measure the similarity by pooling of word embeddings;
it is more suited to dialog systems due to casual expressions
in open-domain conversation.

o A neural network-based scorer measures the relatedness
between the generated reply and its query. We observe that
the query-reply relation is informative itself. This scorer is
unreferenced because it does not refer to groundtruth. We
apply negative sampling to train the network. Our approach
requires no manual annotation label, and hence is more ex-
tensible than Lowe et al. (2017).

e We propose to combine the referenced and unreferenced
metrics to better make use of both worlds. On the one hand,
closeness to groundtruth implies high quality. On the other
hand, the groundtruth does not cover all possible ways of re-
plying the query; the relatedness between a generated reply
and its query then provides additional information. Combin-
ing these two aspects with heuristic strategies (e.g., averag-
ing) further improves the performance.
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OK, thank you for your advice

Query:

Groundtruth:

Candidate 1:

Candidate 2:

Candidate 3:

Table 1: Query and groundtruth/candidate replies.

In this way, RUBER does not require human annotation
scores for training, in the sense of which, we call our metric
unsupervised. Although we still have to prepare a corpus to
train embeddings (in an unsupervised manner) and neural
scorers (by negative sampling), the query-reply data—also
a prerequisite in Lowe et al. (2017)—are much cheaper to
obtain than human annotation of their satisfaction, showing
the advantage of our approach.

We evaluated RUBER on prevailing dialog systems, in-
cluding both retrieval and generative ones. Experiments
show that RUBER significantly outperforms existing auto-
matic metrics in terms of the Pearson and Spearman corre-
lations with human judgments, and has fair transferability
over different open-domain datasets.

Empirical Observations

In this section, we present our empirical observations re-
garding the question “What makes a good reply in open-
domain dialog systems?”

Observation 1. Resembling the groundtruth generally
implies a good reply. This is a widely adopted assumption
in almost all metrics, e.g., BLEU, ROUGE, and METEOR.
However, utterances are typically short and casual in di-
alog systems; thus word-overlapping statistics are of high
variance. Candidate 1 in Table 1, for example, resembles
the groundtruth in meaning, but shares only a few common
words. Hence our method measures similarity based on em-
beddings.

Observation 2. A groundtruth reply is merely one way
to respond. Candidate 2 in Table 1 illustrates a reply that is
different from the groundtruth in meaning but still remains a
good reply to the query. Moreover, a groundtruth reply itself
may be universally relevant to all queries (and thus unde-
sirable). “I don’t know,”—which appears frequently in the
training set (Li et al. 2015)—may also fit the query, but it
does not make much sense in a commercial chatbot.! The
observation implies that a groundtruth alone is insufficient
for the evaluation of open-domain dialog systems.

Observation 3. Fortunately, a query itself provides use-

"Even if a system wants to mimic the tone of humans by saying
“I don’t know,” it can be easily handled by post-processing. The
evaluation then requires system-level information, which is beyond
the scope of this paper.
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Figure 1: Average query-reply relevance scores versus quan-
tiles of human scores. In other words, we divide human
scores (averaged over all annotators) into 5 equal-sized
groups, and show the average query-reply relevance score
(introduced in the “Referenced Metric” part) of each group.

ful information in judging the quality of a reply.? Figure 1
plots the average human satisfactory score of a groundtruth
reply versus the relevance measure (introduced in the “Ref-
erenced Metric” part) between the reply and its query. We
see that, even for groundtruth replies, those more relevant
to the query achieve higher human scores. The observation
provides rationales of using query-reply information as an
unreferenced score in dialog systems.

Methodology

In this section, we design referenced and unreferenced met-
rics based on the above observations. We will further discuss
how they are combined. The overall design methodology of
our RUBER metric is shown in Figure 2.

Referenced Metric

We measure the similarity between a generated reply 7 and a
groundtruth r as a referenced metric. Traditional referenced
metrics typically use word-overlapping information includ-
ing both precision (e.g., BLEU) and recall (e.g., ROUGE). As
said, they may not be appropriate for open-domain dialog
systems (Liu et al. 2016).

We adopt a vector pooling approach that summarizes
sentence information by choosing the maximum and min-
imum values in each dimension of pretrained word embed-
dings; the closeness of 7 and 7 is measured by the cosine
score. We use such heuristic matching because we assume
no groundtruth scores, making it infeasible to train a model
with parameters.

Formally, let wi,ws, -+ ,w, be the embeddings of
words in a sentence. Max-pooling summarizes the maxi-
mum value as

Umax 1] = max {w1[i], wali],- -, wy[i]}

)

Technically speaking, a dialog generator is also aware of the
query. However, a discriminative model (scoring a query-reply
pair) is more easy to train than a generative model (synthesizing
areply based on a query). There could also be possibilities of gen-
erative adversarial training.
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where [-] indexes a dimension of a vector. Likewise, min
pooling yields a vector v,,;,. Since an embedding feature
is symmetric in terms of its sign, we cannot tell whether the
maximum (positive) value is more important than the min-
imum (negative) value. We thus use both by concatenating
max- and min-pooling vectors as v = [Umax; Umin]-

Let v; be the generated reply’s sentence vector and v, be
that of the groundtruth reply, both obtained by max and min
pooling. The referenced metric sp measures the similarity
between r and 7 by
v, s

[[or]] - ozl

sg(r, ) = cos(v,,vp) = )

Similar heuristics are used in previous work. For example,
Forgues et al. (2014) propose a vector extrema method that
utilizes embeddings by choosing either the largest positive
or smallest negative value. Our heuristic here is more robust
in terms of the sign of a feature.

Unreferenced Metric

We measure the relatedness between the generated reply 7
and its query g. This metric, denoted as sy (g, 7*), is unrefer-
enced because it does not refer to a groundtruth reply.

Different from the r-7 metric, which mainly measures the
similarity of two utterances, the ¢-7 metric in this part in-
volves more semantics. Hence, we empirically design a neu-
ral network (Figure 3) to predict the appropriateness of a re-
ply with respect to a query.

Concretely, each word in the query ¢ and the reply r is
mapped to an embedding; a bidirectional recurrent neural
network with gated recurrent units (Bi-GRU RNN) captures
information along the word sequence. The forward RNN
takes the form

[Tt; Zt] = O—(Wr,zwt + Ur,zht_:l + b'r,z)
hy” = tanh (Wya; + Uy (0 hi2 ) + by)
hy =(1—z)oh, +2zo0h

where x; is the embedding of the current input word, and
h;” is the hidden state. Likewise, the backward RNN gives
hidden states h;~. The last states of both directions are con-
catenated as the sentence embedding (q for a query and r
for a reply).

We further concatenate g and r to match the two ut-
terances. Besides, we also include a “quadratic feature” as

Word Embedding Bi-GRU RNN
—C—_

Query E:I
M =

| :

Figure 3: The neural network predicting the unreferenced
score.

sy(q.7)

— OO

q" Mr, where M is a parameter matrix. Finally, a multi-
layer perceptron (MLP) predicts a scalar score as our un-
referenced metric sg;. The hidden layer of MLP uses tanh
as the activation function, whereas the last (scalar) unit uses
sigmoid because we hope the score is bounded.

The above empirical structure is mainly inspired by sev-
eral previous studies (Severyn and Moschitti 2015; Yan,
Song, and Wu 2016). We may also apply other variants for
matching; details are beyond the focus of this paper.

To train the neural network, we adopt negative sampling,
which does not require human-labeled data. That is, given a
groundtruth query-reply pair, we randomly choose another
reply r~ in the training set as a negative sample. We would
like the score of a positive sample to be larger than that of
a negative sample by at least a margin A (set to 0.05 by
validation). The training objective is to minimize

J = max {O,A—SU(%T) +5U(q77ﬁ)} €)

We train model parameters with Adam (Kingma and Ba
2015) with backpropagation.

In previous work, researchers adopt negative sampling for
utterance matching (Yan, Song, and Wu 2016; Yan, Zhao,
and others 2017). Our study further verifies that negative
sampling is useful for the evaluation task, which eases the
burden of human annotation compared with fully supervised
approaches that require manual labels for training their met-
rics (Lowe et al. 2017).

Hybrid Evaluation

We combine the above two metrics by simple heuristics,
resulting in a hybrid method RUBER for the evaluation of
open-domain dialog systems.

First, each metric is normalized to the range (0, 1), so that
they are generally of the same scale. In particular, the nor-
malization is given by

s — min(s’)

“4)

o max(s’) — min(s’)
where min(s’) and max(s’) refer to the maximum and min-
imum values, respectively, of a particular metric.

Then we combine 5i and Sy as our ultimate RUBER met-
ric by heuristics including min, max, geometric averaging,
and arithmetic averaging. As we shall see in the experiments,
different strategies yield similar results, consistently outper-
forming baselines.



Retrieval (Top-1) Seq2Seq (w/ attention)
Metrics Pearson(p-value) | Spearman(p-value) | Pearson(p-vaiue) | Spearman(p-value)
Human (Avg) 0.4927(<0.01) 0.4981(<0.01) 0.4692(<0.01) 0.4708(<0.01)
Inter-annotator | Human (Max) 0.5931(<0.01) 0.5926(<0.01) 0.6068(<0.01) 0.6028(<0.01)
BLEU-1 0.2722(<0.01) 0.2473(<0.01) 0.1521¢<0.01) 0.2358(<0.01)
BLEU-2 0.2243(<0.01) 0.2389(<0.01) -0.0006(0.9914) 0.0546(0.3464)
BLEU-3 0.2018(<0.01) 0.2247(<0.01) -0.0576(0.3205) | -0.0188(0.7454)
Referenced BLEU-4 0.1601¢<0.01) 0.1719¢<0.01) | -0.0604(0.2971) | -0.0539(0.3522)
ROUGE 0.2840¢<0.01) 0.2696(<0.01) 0.1747(<0.01) 0.2522(<0.01)
Vector pool (sr) | 0.2844(<0.01) 0.3205(<0.01) 0.3434(<0.01) 0.3219(<0.01)
Vector pool 0.2253(<0.01) 0.2790(<0.01) 0.3808(<0.01) 0.3584(<0.01)
Unreferenced NN scorer (sg7) 0.4278(<0.01) 0.4338(<0.01) 0.4137(<0.01) 0.4240(<0.01)
Min 0.4428(<0.01) 0.4490(<0.01) 0.4527(<0.01) 0.4523(<0.01)
Geometric mean | 0.4559(<0.01) 0.4771(<0.01) 0.4523(<0.01) 0.4490(<0.01)
RUBER Arithmetic mean | 0.4594(<0.01) 0.4906(< 0.01) 0.4509(< 0.01) 0.4458(<0.01)
Max 0.3263(<0.01) 0.3551(<0.01) 0.3868(<0.01) 0.3623(<0.01)

Table 2: Correlation between automatic metrics and human annotation. We also compare human-human agreement: “Hu-
man (Avg)” refers to average correlation between every two humans, whereas “Human (Max)” refers to the two annotators
who are most correlated. Notice that the p-value is a rough estimation of the probability that an uncorrelated metric produces a
result that is at least as extreme as the current one; it does not indicate the degree of correlation.

Experiments

In this section, we evaluate the correlation between our RU-
BER metric and human annotation, which is the ultimate
goal of automatic metrics. We conducted experiments on a
Chinese corpus because our the cultural background (as hu-
man aspects are deeply involved in this study). However, we
shall show the performance of RUBER when it is transferred
to different datasets, and we believe our evaluation routine
could be potentially applied to different languages.

Setup

We crawled massive data from an online Chinese forum
Douban.? The training set contains 1,449,218 samples, each
of which consists of a query-reply pair. We performed Chi-
nese word segmentation, and obtained Chinese terms as
primitive tokens. In the referenced metric, we trained 50-
dimensional word2vec embeddings on the Douban dataset.
For the unreferenced metric, the dimension of RNN layers
was set to 500.

The RUBER metric (along with baselines) is evalu-
ated on two prevailing dialog systems. One is a feature-
based retrieval-and-reranking system, which first retrieves a
coarse-grained candidate set by keyword matching and then
reranks the candidates by human-engineered features; the
top-ranked results are selected for evaluation (Song et al.
2016). The other is a sequence-to-sequence (Seq2Seq) neu-
ral network (Sutskever, Vinyals, and Le 2014) that encodes
a query as a vector with an RNN and decodes the vector to
a reply with another RNN; the attention mechanism (Bah-
danau, Cho, and Bengio 2015) is also applied to enhance
query-reply interaction.

We randomly selected 300 samples and invited 9 volun-
teers to express their human satisfaction of a reply (either
retrieved or generated) to a query by rating an integer score

*http://www.douban.com

725

among 0, 1, and 2. A score of 2 indicates a “good” reply, 0
a “bad” reply, and 1 “borderline.”

Results

Table 2 shows the Pearson and Spearman correlations be-
tween the proposed RUBER metric and human scores; also
included are various baselines. Pearson and Spearman cor-
relations estimate linear and monotonic correlation, respec-
tively, and are widely used in other research of automatic
metrics such as machine translation (Stanojevi¢, Kamran,
and Bojar 2015).

We find that the referenced metric s based on embed-
dings is more correlated with human annotation than exist-
ing metrics including both BLEU* and ROUGE, which are
based on word overlapping information. This implies the
groundtruth alone is useful for evaluating a candidate reply.
However, exact word overlapping is too strict in the dialog
setting; embedding-based methods measure sentence close-
ness in a “soft” way.

The unreferenced metric sy achieves even higher cor-
relation than sgr, showing that the query alone is also in-
formative and that negative sampling is useful for training
evaluation metrics (although it does not require human an-
notation as labels). Notice that the neural network scorer
largely outperforms vector pooling in the unreferenced set-
ting. This is because the cosine measure used in vector pool-
ing mainly captures similarity, but the rich semantic relation-
ship between queries and replies necessitates more compli-
cated mechanisms like neural networks.

We combine the referenced and unreferenced metrics
as the ultimate RUBER approach. Experiments show that
choosing the larger value of sr and s;; (denoted as max)
is too lenient, and is slightly worse than other strategies.
Choosing the smaller value (min) and averaging (either ge-

*BLEU-n considers n-gram only (instead of a geometric mean
of unigram up to n-gram.)
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Figure 5: Score correlation of the generative dialog system (Seq2Seq w/ attention).

ometric or arithmetic mean) yield similar results. While the
peak performance is not consistent in two experiments, they
significantly outperforms both single metrics, showing the
rationale of using a hybrid metric for open-domain dia-
log systems. We further notice that our RUBER metric has
near-human correlation. More importantly, all components
in RUBER are heuristic or unsupervised. Thus, RUBER does
not require human labels; it is more flexible than the exist-
ing supervised metric (Lowe et al. 2017), and can be easily
adapted to different datasets.

Figure 4 further illustrates the scatter plots against human
judgments for the retrieval system, and Figure 5 for the gen-
erative system (Seq2Seq w/ attention). The two experiments
yield similar results and show consistent evidence.

As seen, BLEU and ROUGE scores are zero for most
replies, because exact word overlapping occurs very occa-
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sionally in short-text conversation; thus these metrics are too
sparse. By contrast, both the referenced and unreferenced
scores are not centered at a particular value, and hence are
better metrics to use in open-domain dialog systems. Com-
bining these two metrics results in a higher correlation.

We would like to clarify more regarding human-human
plots. Liu et al. (2016) divide human annotators into two
groups and show scatter plots between the two groups, the
results of which in our experiments are shown in Subplots 4b
and 5b. However, in such plots, each data point’s score is
averaged over several annotators, resulting in low variance.
Hence it is not a right statistic to compare with.> In our

SWe can image that, in the limit of the annotator number to
infinity, Subplots 4b and 5b would become diagonals due to the
Law of Large Numbers.



Query Groundtruth Reply Candidate Replies Human Score| BLEU-2 | ROUGE SuU SR RUBER
RI: &LFTAFRIE
SBR[ G~ T also think it’s near. 1.7778 0.0000 | 0.0000 | 1.8867 | 1.5290 | 1.7078
? CARAREg ?
It seems very near,| Where are you? |R2: fR 7% 17778 | 0.0000 | 0.7722 | 1.1537 | 1.7769 | 1.4653
Where are you from?

Table 3: Case study. In the third column, R1 and R2 are obtained by the generative and retrieval systems, resp. RUBER here
uses arithmetic mean. For comparison, we normalize all scores to the range of human annotation, i.e., [0, 2].

\ Seq2Seq (w/ attention)
\

Metrics Pearson(p-value) \ Spearman(p-value)
Human (Avg) 0.4860(<0.01) 0.4890(<0.01)
Inter-annotator | Hyman (Max) 0.6500(<0.01) 0.6302(<0.01)
BLEU-1 0.2091(0.0102) 0.2363(<0.01)
BLEU-2 0.0369(0.6539) 0.0715(0.3849)
X BLEU-3 0.13270.1055) 0.1299(0.1132)

Referenced BLEU-4 nan nan

ROUGE 0.2435(<0.01) 0.2404(<0.01)
Vector pool (sg) | 0.2729(<0.01) 0.2487(<0.01)
Vector pool 0.2690(<0.01) 0.2431(<0.01)
Unreferenced NN scorer (sg/) 0.2911(<0.01) 0.2562(<0.01)
Min 0.3629(<0.01) 0.3238(<0.01)
Geometric mean | 0.3885(<0.01) 0.3462(<0.01)
RUBER Arithmetic mean | 0.3593(<0.01) 0.3304(<0.01)
Max 0.2702(<0.01) 0.2778(<0.01)

Table 4: Correlation between automatic metrics and human
annotation in the transfer setting.

experimental design, we would like to show the difference
between a single human annotator versus the rest annota-
tors; in particular, the scatter plots 4a and 5a demonstrate the
medium-correlated human’s performance. These qualitative
results show our RUBER metric achieves similar correlation
to humans.

Case Study

Table 3 illustrates an example of our metrics as well as base-
lines. We see that BLEU and ROUGE scores are prone to be-
ing zero. Even the second reply is similar to the groundtruth,
its Chinese utterances do not have bi-gram overlap, resulting
in a BLEU-2 score of zero. By contrast, our referenced and
unreferenced metrics are denser and more suited to open-
domain dialog systems.

We further observe that the referenced metric si assigns
a high score to RI due to its correlation with the query,
whereas the unreferenced metric sy assigns a high score
to R2 as it closely resembles the groundtruth. Both R1 and
R2 are considered reasonable by most annotators, and our
RUBER metric yields similar scores to human annotation by
balancing sy and sp.

Transferability

We would like to see if the RUBER metric can be transferred
to different datasets. Moreover, we hope RUBER can be di-
rectly adapted to other datasets even without re-training the
parameters.

We crawled another Chinese dialog corpus from the Baidu
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Figure 6: Score correlation of the generative dialog system
(Seq2Seq w/ attention) in the transfer setting.

Tieba® forum, the topics of which may vary from the previ-
ously used Douban corpus. Here we only evaluated the re-
sults of the Seq2Seq model (with attention) because of the
limit of space and time.

We directly applied the RUBER metric to the Baidu
dataset, i.e., word embeddings and sr’s parameters were
trained on the Douban dataset. We also had 9 volunteers
to annotate 150 query-reply pairs as described previously.
Table 4 shows the Pearson and Spearman correlations, and
Figure 6 demonstrates the scatter plots in the transfer setting.

As we see, transferring to different datasets leads to
slight performance degradation compared with Table 2.
This makes sense because the parameters, especially the sr
scorer’s, are not trained for the Tieba dataset. That being
said, RUBER still significantly outperforms baseline metrics,
showing fair transferability of our proposed method.

Regarding different blending methods, min and geomet-
ric/arithmetic mean are similar and better than the max op-
erator; they also outperform their components s and s .
The results are consistent with the non-transfer setting (Ta-
ble 2), showing additional evidence of the effectiveness of
our hybrid approach.

Shttp://tieba.baidu.com



Related Work
Automatic Evaluation Metrics

Automatic evaluation is crucial to the research of language
generation tasks such as dialog systems (Liu et al. 2016),
machine translation (Papineni et al. 2002), and text sum-
marization (Lin 2004). The Workshop on Machine Trans-
lation (WMT) organizes shared tasks for evaluation met-
rics (Stanojevi¢, Kamran, and Bojar 2015; Bojar et al. 2016),
attracting a large number of researchers and greatly promot-
ing the development of translation models.

Most existing metrics evaluate generated sentences by
word overlapping against a groundtruth sentence. For exam-
ple, BLEU (Papineni et al. 2002) computes geometric mean
of the precision for n-gram (n = 1,---,4); NIST (Dod-
dington 2002) replaces geometric mean with arithmatic
mean. Summarization tasks prefer recall-oriented metrics
like ROUGE (Lin 2004). METEOR (Banerjee and Lavie
2005) considers precision as well as recall for more com-
prehensive matching. Besides, several metrics explore the
source information to evaluate the target without referring
to the groundtruth. Popovi€ et al. (2011) evaluate the trans-
lation quality by calculating the probability score based on
IBM Model I between words in the source and target sen-
tences. Louis and Nenkova (2013) use the distribution sim-
ilarity between input and generated summaries to evaluate
the quality of summary contents.

From the machine learning perspective, automatic evalua-
tion metrics can be divided into non-learnable and learnable
approaches. Non-learnable metrics (e.g., BLEU and ROUGE)
typically measure the quality of generated sentences by
heuristics (manually defined equations), whereas learnable
metrics are built on machine learning models. Specia, Raj,
and Turchi (2010) and Avramidis et al. (2011) train a classi-
fier to judgment the quality with linguistic features extracted
from the source sentence and its translation. Other studies
regard machine translation evaluation as a regression task
supervised by manually annotated scores (Albrecht and Hwa
2007; Giménez and Marquez 2008; Specia et al. 2009).

Compared with traditional heuristic evaluation metrics,
learnable metrics can integrate linguistic features’ to en-
hance the correlation with human judgments through su-
pervised learning. However, handcrafted features often re-
quire expensive human labor, but do not generalize well.
Moreover, these learnable metrics require massive human-
annotated scores to learn the model parameters. By contrast,
our proposed metric apply negative sampling to train the
neural network to measure the relatedness of query-reply
pairs, and thus can extract features automatically without the
supervision of human-annotated scores.

Evaluation for Dialog Systems

Dialog systems can also be thought of as a language gen-
eration task; several studies adopt BLEU scores to measure
the quality of a reply (Li et al. 2015; Song et al. 2016;

"Technically speaking, existing metrics (e.g., BLEU and ME-
TEOR) can be regarded as features extracted from the output sen-
tence and the groundtruth.
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Tian et al. 2017). However, its effectiveness has been ques-
tioned (Callison-Burch, Osborne, and Koehn 2006; Galley
et al. 2015). Liu et al. (2016) conduct extensive empirical
experiments and show weak correlation of existing metrics
(e.g., BLEU, ROUGE, and METEOR) with human judgements
for dialog systems. To alleviate the rareness of word overlap-
ping, Galley et al. (2015) propose ABLEU, which considers
several reference replies. However, multiple references are
hard to obtain in practice.

Recent advances in generative dialog systems have raised
the problem of universally relevant replies. Li et al. (2015)
measure the reply diversity by calculating the proportion of
distinct unigrams and bigrams. Besides, Serban et al. (2017)
and Mou et al. (2016) use entropy to measure the informa-
tion of generated replies; such metric is independent of the
query and groundtruth, and can be easily cheated if used
alone. Lowe et al. (2017) propose a neural network-based
metric learned in a supervised fashion. By contrast, our ap-
proach does not require human-annotated scores.

Conclusion and Discussion

In this paper, we proposed an evaluation methodology for
open-domain dialog systems. Our metric is called RUBER (a
Referenced metric and Unreferenced metric Blended Evalu-
ation Routine), as it considers both the groundtruth and its
query. We evaluated RUBER on both retrieval and generative
dialog systems. Experiments show that, although unsuper-
vised, RUBER has strong correlation with human annotation,
and has fair transferability over different datasets.

Our paper currently focuses on single-turn conversation
as a starting point. However, the RUBER framework can
be extended naturally to more complicated scenarios: in a
history/context-aware dialog system, for example, the modi-
fication shall lie in designing the neural network, which will
take context into account, for the unreferenced metric.
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