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Abstract

This paper proposes a computational approach for analysis
of strokes in line drawings by artists. We aim at developing
an Al methodology that facilitates attribution of drawings of
unknown authors in a way that is not easy to be deceived by
forged art. The methodology used is based on quantifying the
characteristics of individual strokes in drawings. We propose
a novel algorithm for segmenting individual strokes. We pro-
pose an approach that combines different hand-crafted and
learned features for the task of quantifying stroke character-
istics. We experimented with a dataset of 300 digitized draw-
ings with over 80 thousands strokes. The collection mainly
consisted of drawings of Pablo Picasso, Henry Matisse, and
Egon Schiele, besides a small number of representative works
of other artists. The experiments shows that the proposed
methodology can classify individual strokes with accuracy
70%-90%, and aggregate over drawings with accuracy above
80%, while being robust to be deceived by fakes.

Introduction

Attribution of art works is a very essential task for art ex-
perts. Traditionally, stylistic analysis by expert human eye
has been a main way to judge the authenticity of artworks.
This has been pioneered and made a methodology by Gio-
vanni Morelli (1816-1891) who was a physician and art col-
lector, in what is known as Morellian analysis. This connois-
seurship methodology relies on finding consistent detailed
“invariant” stylistic characteristics in the artist’s work that
stay away from composition and subject matter. For exam-
ple Morelli paid great attention to how certain body parts,
such as ears and hands are depicted in paintings by different
artists, not surprisingly given his medical background. This
methodology relies mainly on the human eye and expert
knowledge. The work of van Dantzig (van Dantzig 1973)
that we follow in this paper belongs to this methodology.

In contrast, technical analysis focuses on analyzing the
surface of the painting, the underpainting, and/or the canvas
material. There is a wide spectrum of imaging (e.g. infrared
spectroscopy and x-ray), chemical analysis (e.g. Chromatog-
raphy), and radiometric (e.g. carbon dating) techniques that
have been developed for this purpose. Mostly, this analysis
aims to get insights on the composition of the materials and
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pigments used in making the different layers of the work and
how that relates to what materials, were available at the time
of the original artist or what the artist typically used. These
techniques are complementary and each of them has limita-
tions to the scope of their applicability (Riederer 1986).

Analysis using computer vision and image processing
techniques has been very sparsely and cautiously investi-
gated in the domains of attribution and forgery detection
(e.g. (Guo, Doermann, and Rosenfield 2000; Johnson et al.
2008; Polatkan et al. 2009; Li et al. 2012)). Image process-
ing has been used as a tool in conjunction with non-visual
spectrum imaging, such as analysis of x-ray imaging to de-
termine canvas material and thread count (e.g. (Johnson et
al. 2008; Liedtke, Johnson Jr, and Johnson 2012)).

The question we address in this paper is what role Artifi-
cial Intelligence can play in this domain given the spectrum
of the other available technical analysis techniques, which
might seem more conclusive. We argue that developing this
technology would complement other technical analysis tech-
niques for three reasons. First, computer vision can uniquely
provide a quantifiable scientific way to approach the tradi-
tional stylistic analysis, even at the visual spectrum level.
Second, it would provide alternative tools that lie out of the
scope of applicability for the other techniques. For exam-
ple, this can be very useful for detecting forgery of modern
and contemporary art where the forger would have access
to pigments and materials similar to what original artist had
used). Third, computer vision has the potential to provide a
cost-effective solution compared to the cost of other techni-
cal analysis methods. For example, in particular related to
the topic of this paper, there are large volumes of drawings,
prints, and sketches for sale and are relatively cheap (in the
order of a few thousand dollars, or even few hundreds) com-
pared to paintings. Performing sophisticated technical anal-
ysis in a laboratory would be more expensive than the price
of the work itself. This prohibitive cost makes it attractive
for forgers to extensively target this market.

Several papers have addressed art style classification,
where style is an art movement (e.g. Impressionism), or the
style of a particular artist (e.g. the style of Van Gogh) (Sab-
latnig, Kammerer, and Zolda 1998; Fahad Shahbaz Khan
2010; Lombardi 2005; Arora and Elgammal 2012; Saleh et
al. 2014). Such analysis does not target authentication. Such
works use global features that mainly capture the composi-



Figure 1: Illustration of van Dantzig methodology on simple
strokes. Spontaneous strokes differ in their shape and tone at
their beginning, middle and end. Figure from (van Dantzig
1973)

tion of the painting. In fact, such algorithm will classify a
painting done on the style of Van Gogh, for example, as Van
Gogh, since it is designed to do so.

Methodology The methodology used in this paper is
based on quantifying the characteristics of individual strokes
in drawings and comparing these characteristics to a large
number of strokes by different artists using statistical infer-
ence and machine learning techniques. This process is in-
spired by the Pictology methodology developed by Maurits
Michel van Dantzig (1903 - 1960). Van Dantzig suggested
several characteristics to distinguish the strokes of an artist,
and suggested that such characteristics capture the spontane-
ity of how original art is being created, in contrast to the
inhibitory nature of imitated art (van Dantzig 1973).

Among the characteristics suggested by van Dantzig to
distinguish the strokes of an artist are the shape, tone, and
relative length of the beginning, middle and end of each
stroke. The characteristics include also the length of the
stroke relative to the depiction, direction, pressure, and sev-
eral others. The list of characteristics suggested by van
Danzig is comprehensive and includes over one hundred as-
pects that are designed for inspection by the human eye. The
main motivation is to characterize spontaneous strokes char-
acterizing a certain artist from inhibited strokes, which are
copied from original strokes to imitate the artist style.

In this paper we do not plan to implement the exact list of
characteristics suggested by van Dantzig; instead we devel-
oped methods for quantification of strokes that are inspired
by his methodology, trying to capture the same concepts in a
way that is suitable to be quantified by the machine, is rele-
vant to the digital domain, and facilitates statistical analysis
of a large number of strokes by the machine.

We excluded using comparisons based on compositional
and subject-matter-related patterns and elements. Most
forged art works are based on copying certain composi-
tional and subject-matter-related elements and patterns. Us-
ing such elements might obviously and mistakenly connect
a test subject work to figures and composition in an artist
known works. In contrast to subject matter and compo-
sitional elements, the characteristics of individual strokes
carry the artist’s unintentional signature, which is hard to
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imitate or forge, even if the forger intends to do.

Contribution The main contribution of the paper is test-
ing the hypothesis that artists can be identified based on indi-
vidual strokes, which was never tested before scientifically.
This is a novel problem and we provide a novel result, which
shows that indeed the hypothesis is true. Beside this scien-
tific contribution, technical novelty includes a novel stroke
segmentation algorithm, designing and comparing different
hand-crafted and learned deep neural network features, and
adaptation of RNN for the task of quantifying stroke charac-
teristics.

Detailed Methodology

Challenges The variability in drawing technique, paper
type, size, digitization technology, spatial resolution, impose
various challenges for quantify the characteristic of strokes
in a way that is invariant to these variability. Here we high-
light some these challenges and how we addressed them.

Drawings are made using different techniques, materi-
als and tools, including, but not limited to drawings using
pencil, pen and ink, brush and ink, crayon, charcoal, chalk,
and graphite drawings. Different printing techniques also are
used such as etching, lithograph, linocuts, wood cuts, and
others. Each of these techniques results in different stroke
characteristics. This suggests developing technique-specific
models of strokes. However, typically each artist prefers cer-
tain techniques over others, which introduce unbalance in
the data, which need to be addressed. Therefore, in this paper
we are testing two hypotheses: technique specific vs. across
technique comparisons, to test if we can capture invariant
stroke characteristic for each artist that persists across tech-
niques.

Drawings are executed on different types of papers,
which, along with differences in digitization, imply varia-
tions in the tone and color of the background. This intro-
duces a bias in the data. We want to make sure that we iden-
tify artists based on their strokes and not based on the color
tone of the paper used. Different types of papers along with
the type of ink used result in different diffusion of ink at the
boundaries of the strokes which, combined with digitization
effects, alter the shape of the boundary of the stroke.

Drawings are made on different-sized papers, and digi-
tized using different resolutions. The size of the original
drawing as well as the digitization resolution are necessary
to quantify characteristics related to the width or length of
strokes. Therefore, in this paper we quantify the character-
istics of the strokes in a metric basis after converting all the
measurements to the metric system.

Data collection A collection of 297 drawings were gath-
ered from different sources. The drawings selected are re-
stricted to line drawings, i.e, it excludes drawings that have
heavy shading, hatching and water-colored strokes. The
collection included drawings and prints by Picasso (130),
Henry Matisse (77), Egon Schiele (36), Amedeo Modigliani
(18), and a small representative works of other artists (36),
ranging from 1910-1950AD. The collection included a va-
riety of techniques including: pen and ink, pencil, crayon,



Table 1: Dataset collection:

technique distribution

Technique [ Pen/brush (ink) | Etching [ Pencil [ Drypoint | Lithograph | Crayon | Charcoal | Unknown | Total |

Picasso 80 38 8 2 2 0 0 0 130
Matisse 45 10 5 2 14 1 0 0 77
Schiele 0 0 10 0 0 5 4 17 36
Modigliani 0 0 9 0 0 8 1 0 18
Others 20 0 0 0 9 4 1 2 36
Total 145 48 32 4 25 18 6 19 297
Strokes 36,533 19,645 | 9,300 914 6,180 4,648 666 2,204 80,090
Others: Georges Braque, Antoine Bourdelle, Massimo Campigli, Marc Chagall, Marcel Gimond,

Alexej Jawlensky, Henri Laurens, Andre Marchand, Albert Marquet,

Andr Masson, Andre Dunoyer Dr Segonzac, Louis Toughague

and graphite drawings as well as etching and lithograph
prints. Table 1 shows the number of drawings for each artist
and technique. In the domain of drawing analysis it is very
hard to obtain a dataset that is uniformly sampling artists
and techniques. In all the validation and test experiments an
equal number of strokes were sampled from each artist to
eliminate data bias.

The collection included digitized works from books,

downloaded digitized images from different sources, and
screen captured images for cases where downloading was
not permitted. The resolution of the collected images varies
depending on the sources. The effective resolution varies
from 10 to 173 pixel per cm depending on the actual draw-
ing size and the digitized image resolution. Given this wide
range of resolutions, the algorithms and features used were
designed to be invariant to the digitization resolution.
Fake drawing dataset: In order to validate the robustness of
the proposed approaches against being deceived by forged
art, we commissioned five artists to make drawings similar
to those of Picasso (24), Matisse (39) and Schiele (20) using
the same techniques, totaling 83 drawings. None of these
fake drawings was used in training the models. We only used
them for testing.

Figure 2 shows examples of the fake dataset mixed up
with real drawings. Because we do not expect the reader
to be an expert in authentication in art, to be able to judge
the quality of the fake drawings in isolation, we deliberately
mixed up a collection of the fake drawings with real draw-
ings in Figure 2. If the reader is interested to know which of
these images are of fake or real drawings, please refer to the
end of the paper.

Stroke Segmentation

A typical isolated stroke is a line or curve, with a starting
point and endpoint. A stroke can have zero endpoints (closed
curve) or 1 endpoint, which are special cases that do not need
further segmentation. However, strokes typically intersect to
form a network of tangled strokes that needs to be untan-
gled. A network of strokes is characterized by having more
than 2 endpoints. Since strokes are thin elongated structures;
a skeleton representation would preserve their topological
structure even in a network configuration (Lam, Lee, and
Suen 1992). Therefore, the segmentation of strokes is done
on such a skeleton representation.
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There is a large classical literature in computer vision on
detecting junctions on edge maps as a way to characterize
object boundaries, infer about three-dimensional structure
and form representations for recognition. Unlike classical
literature which look at natural images, in our case detecting
junctions and endpoints is fortunately relatively easy since
they persists in a skeleton representation of the network of
strokes. On the other hand, the challenge in our case is to use
the information of such junctions and endpoints to segment
individual strokes.

In our case, junctions play crucial role in identifying the
intersections between strokes. There are two basic ways
strokes intersect: occluder-occluded configuration to form
a T-junction or two strokes crossing each other to form an
X-junction. A T-junction is a continuation point of the oc-
cluding stroke and an endpoint for the occluded stroke. We
need to preserve the continuation of the occluding stroke at
the T-junction.

The stroke segmentation algorithm takes a network of
strokes and identifies one occluding stroke at a time and
remove it from the network of strokes to form a residual
network(s) that is recursively segmented. This is achieved
by constructing a fully connected graph whose vertices are
the endpoints in the network and edges are weighted by the
cost of reaching between each two endpoints. The cost be-
tween two endpoints reflects the bending energy required at
the junctions.

Let the endpoints in a network of strokes denoted
by ei,---,e, and let the junction locations denoted by
J1s -+, Jn. The cost of the path between any two end points
e; to e; is cumulative curvature along the skeleton path be-
tween them, where the curvature is only counted close to
junctions. The rational is that it does not matter how much
bending a stroke would take as long as it is not at junctions.
Let (t) : [0 : 1] — R? be the parametric representation of
the curve connecting e; and e;. The cost is defined as

1
clesref) = / w(t) - ((t))dt

where k() is the curvature and ¢(-) is a junction potential
function, which is a function of the proximity to junction
locations defined as

1 — 2
P (x—3ji)" /o
ola) = 33 e



Matisse, Picasso, and Schiele. See

Figure 2: Examples of images of the fake dataset mixed up with real images of drawings by

the key at the end of the document to tell which are real and which are fake!
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After the graph construction, the minimum cost edge rep-
resents a path between two endpoints with minimum bend-
ing at the junctions, which corresponding to an occluding
stroke. In case of a tie, the path with the longest length is
chosen. The optimal stroke is removed from the skeleton
representation and from the graph. This involves reconnect-
ing the skeleton at X-junctions (to allow the detection of the
crossing strokes) and new endpoints have to be added at T-
junctions (to allow the detection of occluded strokes. Re-
moving a stroke from the graph involves removing all edges
corresponding to paths that go through the removed stroke.
This results in breaking the graph to one or more residual
subgraphs, which are processed recursively.

Stroke Analysis Methodology
Quantifying Stroke Characteristics

This section explains the process of quantifying the charac-
teristics of individual strokes and the extracted features used
to represent each stroke. The goal is to construct a joint fea-
ture space that captures the correlation between the shape
of the stroke, its thickness variation, tone variation, local
curvature variation. For this purpose we studied two differ-
ent types of features and their combination: 1) Hand-crafted
features capturing the shape of each stroke and its bound-
ary statistics, 2) Learned-representation features capturing
the tone variation as well as local shape characteristics. The
next two subsection describe each of these features.

Hand-crafted Features In our study, each stroke is rep-
resented by its skeleton, its boundary, and the rib length
around the skeleton. The following descriptors are extracted
to quantify the characteristics of each stroke. All the descrip-
tors are designed to be invariant to translation, rotation, scal-
ing, and change in digitization resolution.

Shape of the boundary: The shape of the stroke boundary
is quantified by Fourier descriptors, which provide shape
features that are proven to be invariant to translation, scal-
ing, rotation, sampling, and contour starting points (Burger
and Burge 2016). We used 40 amplitude coefficients (first
20 harmonics in each direction) to represent the shape of the
boundary of the stroke.

Reconstruction error profile: The mean reconstruction error,
as a function of the number of harmonics used to approxi-
mate the shape of the strokes, is used as a descriptor of the
smoothness of the contour and the negative space associated
with the stroke. In particular, we compute the mean recon-
struction error at each step while incrementally adding more
harmonics to approximate the shape of the stroke. The re-
construction error profile is normalized by dividing by the
stroke mean width in pixels to obtain a descriptor invariant
to digitization resolution.

Contour Curvature descriptor: To quantify the curvature of
the stroke contours, we use the first and second derivatives
of the angular contour representation. The distributions of
these derivatives are represented by their histograms.

Stroke thickness profile: To quantify the thickness of the
stroke, we compute the mean and standard deviation of the
rib length around the skeleton of the stroke, as well as a his-
togram of the rib length. All rib length measurements are
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mapped to mm units to avoid variations in digitization reso-
lution.

Stroke Length: The length of the stroke is quantified as the
ratio between the stroke skeleton length to the canvas diag-
onal length. This measure is invariant to digitization resolu-
tion.

Deep Learned Features using RNNs GRU Classification
with Truncated Back Propagation Through Time:

Unlike traditional feed-forward neural networks special-
ized at fixed size input, e.g. images, recurrent neural net-
work (RNN) could handle variable length sequence and ei-
ther fixed length output or variable length outputs. RNN se-
quentially takes input from the input sequence and update its
hidden state. Recently, it has been widely shown that more
complicated RNN model such as Long Short-Term Memory
(LSTM, (Hochreiter and Schmidhuber 1997)) or Gated Re-
current Unit (GRU, (Chung et al. 2014)) would eliminate the
problem of vanishing gradient (Bengio, Simard, and Fras-
coni 1994), (Hochreiter et al. 2000). LSTM and GRU in-
troduce some gating units that can automatically determine
how much the information flow could be used in each time
step, by which the vanishing gradient could be avoided.

We adapt GRUs for the task of quantifying individual
stroke tone and local shape features. Given a stroke, a se-
quence of patches of fixed size are collected along the skele-
ton of the stroke and fed to a GRU model as inputs. We tested
both fixed size patches or adaptive size patches where the ra-
dius of the patch is a function of the average stroke width in
the drawing. In both cases the input patches are scaled to
11x11 input matrices. To achieve invariant to the direction
of the stroke, each stroke is sampled in both directions as
two separate data sequences (at classification, both a stroke
and its reverse either appear in training or testing splits ). We
normalized the grey scale into range (-1, 1), and flattened the
11 x 11 image into a 121-dimension vector. The activation
function we used in experiments is tanh function. Parame-
ters are initialized from normal distribution with mean = 0,
standard deviation = 1. After comparing several optimizer
functions, we found that the RMSProp optimizer with learn-
ing rate 0.001 outperforms others. To avoid gradient vanish-
ing, we calculated the gradient by the truncated Back Propa-
gation Through Time. Each sequence is unrolled into a fixed
size steps (30 in the experiments) at each time to calculate
the gradient and to update the network’s parameters. The la-
bel of original sequence is assigned to each unrolling. Be-
tween each unrolling, the hidden state is passed on to carry
former time steps information. Within each unrolling, only
the last time step hidden state is used in the final linear trans-
formation and Softmax function to get the predicted score of
each class. We used a cross entropy loss.

Stroke Classification

For the case of hand-crafted features, strokes are classified
using a support vector machine (SVM) classifier (Cortes and
Vapnik 1995). We evaluated SVM using Radial basis kernels
as well as polynomial kernels. The classifier produces pos-
terior distribution over the classes. For the case of learned
GRU features, the classification of strokes is directly given



Figure 3: Examples of Segmentation Results — best seen in color.

by the trained networks. SVM was used to combine hand-
crafted features with the learned features in one classifi-
cation framework. In such case, the activation of the hid-
den units were used as features, and combined to the hand-
crafted features.

Drawing classification:

A given drawing is classified by aggregating the outcomes
of the classification of its strokes. We used four different
strategies for aggregating the stroke classification results, as
described below. 1) Majority Voting: In this strategy each
stroke votes for one class. All strokes have equal votes re-
gardless of the certainty of the output of the stroke classifier.
2) Posterior aggregate: In this strategy each stroke votes
with a weight equal to its posterior class probability. This
results in reducing the effect of strokes that are not classi-
fied with high certainty by the stroke classifier. 3) k-certain
voting: In this strategy, only the strokes with class posterior
greater than a threshold k are allowed to vote. This elimi-
nates effect of uncertain strokes. 4) certainty weighted vot-
ing: 1In this strategy each stroke vote is weighted using a
gamma function based on the certainty of the stroke classi-
fier in classifying it.

Validation Experiments

This section describes the experiments conducted to test and
validate the performance of the proposed stroke segmenta-
tion, stroke classification, and the drawing classification ap-
proaches on the collected dataset. In particular, the exper-
iments are designed to test the ability of the algorithms to
determine the attribution of a given art work and test its ro-
bustness to forged art. A baseline comparing to a wholistic
image-level approach is available.

Segmentation Validation

Validating the segmentation algorithm is quite challenging
since there is no available ground truth segmentation and be-
cause of the difficulty of collecting such annotation. It is quit
a tedious process for a human to trace individual strokes to
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provide segmentation of them, specially such task requires
certain level of expertise. To validate the segmentation algo-
rithm, we collected 14 drawings with medium difficulty (in
terms of number of strokes) from the collection and showed
the segmentation results to two artists and asked them in-
dependently to locate errors in the segmentations. Figure 4
shows an example of a drawing with its two annotations of
the results. A closer look highlights that annotators make
several mistakes (false positive, and false negatives). The
overall error per annotator is computed as: Error rate = total
marked errors at junctions / total number of strokes; where
the total is aggregated over all evaluated images. The aver-
age error rate over the two annotators is 12.94%, counting
all labeled errors by annotators (see SM for details). The
annotation shows large deviations between the two annota-
tors, with mean deviation 24.93 and standard deviation 12%.
This highlight the challenge in validating the segmentation
results by human annotation. However, most of the marked
errors are at small detailed strokes that are hard to segment,
even by the human eye, and does not contribute much to the
classification of strokes since small strokes are filtered out
anyway.

Stroke Classification

Evaluation Methodology: In all experiments the image
datasets were split into five 80/20% folds to perform five-
fold cross validation. Since strokes from the same drawings
might share similar characteristics, we did this splits at the
image level and not at the stroke level. For each fold, af-
ter splitting the images to train and test sets, equal number
of strokes were sampled for each artist class for training
and testing to avoid the bias in the data, which is signifi-
cant in our case. We evaluated different classification set-
tings including pair-wise classification, and one-vs-all clas-
sification, and multi-class classification. Extensive ablation
studies are also performed to evaluate the different features
and their effects, as well as to choose the optimal settings.

Stroke Classification Validation - Technique Specific -
Pairwise: For testing technique-specific classifiers, we
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Figure 4: Example of two drawings by Picasso, stroke segmentation results, and segmentation errors marked by two artists.

trained pairwise classifiers to discriminate between Picasso
and Matisse drawings made using either pen/ink or etching.
We chose these two techniques and these two artists since
they have the largest representation in our collection. Ta-
ble 2-top shows the stroke classification results. The experi-
ments is done using five-fold cross validation and the mean
and standard deviations are reported. The table shows a com-
parison between the different types of proposed features.

Stroke Classification Validation - One-vs-all: In this
experiment a one-vs-all classification settings is used to
build classifiers for Picasso-vs-Non-Picasso, Matisse-vs-
Non-Matisse, Schiele-vs-Non-Schiele. These three artists
are chosen since they have enough data for training and test-
ing the classifiers in a five-fold split setting. The classifiers
are then evaluated on the fake dataset.

We evaluated the performance of two settings: 1) across-
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techniques: we evaluated the performance of the stroke clas-
sifiers on all techniques combined to evaluate whether the
classifier can capture an invariant for the artist regardless
of the technique used. 2) Technique-specific: in this set-
ting each classifier is trained and tested using strokes from
the same drawing technique. Given the data collection, we
tested a) Picasso-vs-Non-Picasso classifier using ink/pen, b)
Matisse-vs-Non-Matisse classifier using ink/pen, c) Schiele-
vs-Non-Schiele using pencil.

Table 3-top shows the mean and standard deviations of
the five folds for the hand-crafter features, the GRU features
and the combination. Both types of features have very good
stroke classification performance. GRU has better perfor-
mance over the three artists tested. Combining the features
further improved the results and reduced the cross-fold vari-
ances, which indicate that both types of features are comple-



Table 2: Validation of Stroke Classifier

Technique specific: Ink Drawing (Pen/Brush) (Picasso vs Matisse)

Approach

Train

Test

Hand-Crafted - SVM-RBF
Hand-Crafted - SVM-POLY
GRU

87.99% (0.39%)
79.88% (0.14%)
84.92 % ( 1.89%)

79.16% (0.26%)
77.17% (0.58%)
65.86 (13.58 % )

Etching Prin

ts (Picasso vs Matiss

€)

Approach

Train

Test

Hand-Crafted - SVM-RBF
Hand-Crafted - SVM-POLY
GRU

94.53% (0.22%)
94.27% (0.21%)
83.74% (4.60 % )

84.18% (0.85 %)
93.09% ( 0.88%)
75.08% (8.11%)

Multiclass - all techniques
5 Classes: Picasso, Matisse, Schiele, Modigliani, Others

Approach Train Test
Hand-Crafted - SVM 55.01 % (1.41%) | 48.97% (5.82%)
GRU 87.72% (2.43%) | 74.65% (3.41%)

mentary to each other as we hypothesized.

Comparing the performance of stroke classifiers on both
the technique-specific and across-technique settings, we no-
tice that in both cases the classifiers performed well. The
GRU performed better in the across-technique settings than
in the technique-specific setting, which can be justified by
the lack of data in the later case.

Multi-class Stroke Classification Experiment See Ta-
ble 2-bottom.

Drawing Classification and Detection of Fakes

Drawing Classification Validation: The trained one-vs-all
stroke classifiers were tested for drawing classification us-
ing the four aforementioned strategies for aggregating the
results from the stroke level to the drawing level. Given
that the stroke classifiers are trained on a five-fold cross-
validation setting, the drawing classification followed that
strategy, i.e. in each fold, each drawing in the test split is
classified using the classifier trained on the 80% of the im-
ages in the training split, hence there is no standard deviation
to report. Table 3-bottom shows the results for the across-
technique setting and the technique-specific setting.

Evaluation on Fake Drawings: The trained stroke clas-
sifiers were also tested on the fake drawing set to evalu-
ate whether the classifiers are really capturing artists’ stroke
characteristics and invariants or just statistics that can be eas-
ily deceived by forged versions. We used the Picasso-vs-all
classifiers to test the fakes that are made to imitate Picasso
drawings (We denote them as Picasso fakes). A similar set-
ting is used for Matisse fakes and Schiele fakes. Since the
stroke classifiers are trained on a five-fold setting, we have
five different classifiers trained per artist, one for each fold.
Each test stroke is classified using the five classifiers and the
majority vote is computed. The different aggregation meth-
ods are used to achieve a final classification for each draw-
ing. Since one-vs-all setting is adapted, classifying a fake
Picasso as others in a Picasso-vs-all setting is considered a
correct classification, while classifying fake Picasso as Pi-
casso is considered a wrong prediction. The bottom parts
of Table 3 shows the results for the fake dataset for the
across-technique and technique-specific settings. The table
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shows that the trained one-vs-all stroke classifiers for all the
three artists, are robustly rejecting fake drawing with ac-
curacy reaching 100% in the across-technique case. A no-
table difference here is that the GRU failed to detect the
fake drawings, in particular for the Picasso-vs-all, while the
hand-crafted features detected all the fakes. Similar case
happens for Schiele-vs-all as well. We hypothesize that this
is because of the limited training data in the technique-
specific case, which did not allow the GRU to learn an invari-
ant model that generalizes well as in the across-technique
case. In contrast the hand-crafted models did not suffer from
this limitation. Overall, the hand-crafted features are outper-
forming in detecting the fakes.

Conclusion

In this paper we proposed an automated method for quanti-
fying the characteristics of artist stokes in drawings. The ap-
proach is inspired by the Pictology methodology proposed
by van Dantzig. The approach segments the drawing into in-
dividual strokes using a novel segmentation algorithm. The
characteristics of each stroke is captured using global and
local shape features as well as a deep neural network that
captures the local shape and tone variations of each stroke.
We compared different types of features and showed results
at the stroke classification and drawing classification levels.

The main result of this paper is that it shows that we can
discriminate between artists at the stroke-level with high ac-
curacy, even using images of drawing of typical off-the-web
or scanned books resolutions. We also tested the method-
ology using a collected data set of fake drawings and the
results show that the proposed method is robust to such imi-
tated drawings, which highlights that the method can indeed
capture artists’ invariant characteristics that is hard to imi-
tate.
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