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Abstract

The availability of a large amount of electronic health records
(EHR) provides huge opportunities to improve health care
service by mining these data. One important application is
clinical endpoint prediction, which aims to predict whether a
disease, a symptom or an abnormal lab test will happen in the
future according to patients’ history records. This paper de-
velops deep learning techniques for clinical endpoint predic-
tion, which are effective in many practical applications. How-
ever, the problem is very challenging since patients’ history
records contain multiple heterogeneous temporal events such
as lab tests, diagnosis, and drug administrations. The visiting
patterns of different types of events vary significantly, and
there exist complex nonlinear relationships between different
events. In this paper, we propose a novel model for learn-
ing the joint representation of heterogeneous temporal events.
The model adds a new gate to control the visiting rates of dif-
ferent events which effectively models the irregular patterns
of different events and their nonlinear correlations. Experi-
ment results with real-world clinical data on the tasks of pre-
dicting death and abnormal lab tests prove the effectiveness
of our proposed approach over competitive baselines.

Introduction

The volume of electronic health records (EHR) is expanding
at a staggering rate, providing a great opportunity for ma-
chine learning and data mining researchers to analyze these
data so as to provide better health care service. An important
application of machine learning in health care is predicting
the clinical endpoints such as a disease, symptom, or labo-
ratory abnormality based on patients’ historical records.

This paper develops effective deep learning techniques for
clinical endpoint prediction since deep learning techniques
have been proved effective for predictive analysis in a va-
riety of applications such as image recognition (He et al.
2016), speech recognition (Hinton et al. 2012), and natural
language understanding (Blunsom et al. 2017). The goal of
deep learning is to learn effective semantic representations
of the high-dimensional data such as images, speeches and
natural language. Therefore, our goal is to effectively repre-
sent patients’ historical records.

*corresponding authors
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Figure 1: Heterogeneous Temporal Events. The sampling
rates of different events vary significantly from each other.
Different kinds of events are highly correlated.

However, the problem is challenging since patients’ his-
torical records contain a variety of heterogeneous temporal
events such as different lab tests, routine vital signals, di-
agnosis, and drug administrations (See Fig. 1 as an exam-
ple). The visiting rates of different events vary significantly.
For example, a patient may take a blood test every morn-
ing while take a temperature test every two hours. Besides,
there is a high level of dependency among different kinds
of events. For instance, some diagnosis are made according
to the results of some lab tests. As a result, these heteroge-
neous temporal events yield heterogeneous event sequences
consisting of thousands of correlated event types, the visit-
ing rate of which varies significantly.

In the literature, learning representations of sequences are
widely studied especially in the domain of speech recogni-
tion and natural language understanding. The state-of-the-
art approaches for sequence modeling are recurrent neural
networks (Mikolov et al. 2010) (RNNs) with the Long Short-
term Memory (LSTM) units (Hochreiter and Schmidhuber
1997). RNNs are commonly used for modeling homoge-
neous sequences, but it is nontrivial to apply them for mod-
eling heterogeneous event sequences. There are some recent
works based on multi-task Gauss Process (MTGP) (Ghas-
semi et al. 2015) for modeling the correlations between mul-
tiple sequences. However, the computational cost of MTGP
is too expensive for EHR data since there are thousands of
types of events. Therefore, we are seeking an approach that
is able to: (1) effectively model the irregular visiting pat-
terns of different events; (2) model the complex nonlinear
relationships between different events; (3) scale up a large
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number of different types of events.
In this paper, we propose such an approach called Hetero-

geneous Event LSTM(HE-LSTM) for learning the joint rep-
resentation of heterogeneous event sequences. Our approach
is an extension of Phased LSTM (Neil, Pfeiffer, and Liu
2016), which was recently proposed and is used to model ir-
regular event-based sequential data. Compared to the vanilla
LSTM model, Phased LSTM (Neil, Pfeiffer, and Liu 2016)
adds a new time gate, which is able to naturally integrate in-
puts from several sensors of arbitrary sampling rates. But
Phased LSTM is not suitable for modeling the heteroge-
neous event sequence with thousands of event types in lon-
gitudinal EHR data. Our proposed model extends it by mod-
eling correlated heterogeneous events with multi-scale sam-
pling rates. Each event type and its attributes are embedded
and fed into HE-LSTM. The HE-LSTM is equipped with an
event gate controlled by the event type embeddings and the
their timestamps. With the help of the event gates, the HE-
LSTM can perfectly trace the temporal information of differ-
ent event types in the long heterogeneous event sequence by
asynchronously sample important and related events in the
heterogeneous event sequence. Therefore, the representation
of heterogeneous temporal events can be updated base on
the dependency of the current input event and other events
maintained in the HE-LSTM.

We conduct extensive experiments on real-world clinical
data. Experiment results on the tasks of death prediction
and abnormal lab test prediction prove that our proposed ap-
proach outperforms competitive baselines. Our proposed ap-
proach can be widely used in modeling data collected from
sensors with arbitrary sampling rates, such as data collected
from mobile sensors.

Our main contributions are:
• We formulate the clinical endpoint prediction task based

on EHR data as a representation learning problem of hetero-
geneous temporal events consists of asynchronous clinical
records from multiple sources.

• We propose a novel model called HE-LSTM for learn-
ing the representations of heterogeneous event sequence.
The model effectively models the multi-scale sampling rates
of different kinds of events and their temporal dependency.

• We conducted experiment on real-world clinical data on
the tasks of death and abnormal lab tests. Promising results
prove the effectiveness of our proposed approach over com-
petitive baselines.

Related Works

Clinical Endpoint Prediction

There are plenty of works trying to solve the clinical end-
point prediction problem. However, many of these works
only use a small subset of the whole EHR sequences in or-
der to avoid dealing with the high-dimensional event types.
Some works select a subset of the clinical events from the
EHR data according to the expertise of physicians (Ca-
ballero Barajas and Akella 2015). For instance, Alaa only
uses a set of 21 (temporal) physiological streams comprising
a set of 11 vital signs and 10 lab test scores to predict ICU
admission (Alaa, Hu, and van der Schaar 2017). Some tech-

niques select 50 time series from the whole set of EHR data,
and transformed the fixed-size subset into a new latent space
using the hyper-parameters of multi-task GP(MTGP) mod-
els. They then calculate the similarity of patient’s records
in the new hyper-parameter space (Ghassemi et al. 2015). It
is notable that manually selecting only a fraction of clinical
sequences from original EHR data as the input brings out
expert bias, thus these works seldom make full use of the
important information of original data.

Most works ignore the content or value of clinical events,
and only use the type information of clinical events to pre-
dict the endpoints (Liu et al. 2015). Specifically, some ap-
proaches train the semantic embeddings for different cate-
gories of clinical events for endpoint predictions (Henriks-
son et al. 2015).RETAIN uses two reversed recursive neu-
ral networks(RNN) generating attention variables of sequen-
tial ICD-9 code groups for the prediction tasks (Choi et al.
2016). There are some works using convolution neural net-
work(CNN) to model irregular medical codes for future risk
predictions (Nguyen et al. 2016). These works only exploit
the type information of historical clinical events to make pre-
dictions, ignoring the fine-grained varying attributes of the
events. Our work is to address the issue by utilizing the rich
type information of clinical events as well as the content and
values of the events.

Deep Learning Models for Sequential Data

Standard RNNs trained with stochastic gradient descent
have difficulty learning long-term dependencies (i.e. span-
ning more than 10 time steps) encoded in the input se-
quences owing to the vanishing gradient (Hochreiter et al.
2001). The problem has been addressed for example by us-
ing a specialized neuron structure in Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhuber 1997)
that maintains constant backward flow in the error signal.

In the Clockwork RNN (CW-RNN) (Koutnik et al. 2014),
the hidden layer is partitioned into separate modules, each
processing inputs at its own temporal granularity, making
computations only at its prescribed clock rate. In this way,
the fixed clock periods help to contain long-term dependen-
cies.

Phased LSTM (Neil, Pfeiffer, and Liu 2016)is a state-of-
the-art RNN architecture for modeling event-based sequen-
tial data. It extends LSTM by adding the time gate. The gate
has three phases: it rises from 0 to 1 in the first phase and
drops from 1 to 0 in the second phase, which are active
states. During the third phase, the model is in the inactive
state. Updates to ct and ht are permitted only in the active
state. The Phased LSTM network can achieve fast conver-
gence in most experiments, owing to the fact that the auto-
sampling on the long sequential data conducted by the time
gate maintains derivative error in the longer back propaga-
tion.

However, these models only focus on learning long-term
dependencies in homogeneous sequences, lacking the abil-
ity to capture the various and complex temporal dependen-
cies in heterogeneous temporal events, which usually exist
in EHR data.
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Task Definition

Here are some notations and the definition of the task.

Heterogeneous Events Sequence The heterogeneous
event is defined as the triple ei = (type, value, time). type
is the category of event, value is the attribute of the event,
type and value of ei are logged at time. It is noteworthy that
the attribute values of different event types can be either nu-
merical or categorical variable. For example, the value of a
lab test, e.g.lactate blood test, is numerical while the value
of the clinical status, e.g. ectopia type, is categorical vari-
able(i.e. fusion beats, nodal bigeminy).

Heterogeneous events are merged in the ascending or-
der of the record time into a triple sequence {ei}. We de-
note the heterogeneous event sequence in a period of time
[Tstart, Tend] as {ei}Tstart≤ei.t≤Tend

.

Clinical Endpoint Prediction Task The clinical endpoint
prediction task is formulated as follow: given a clinical het-
erogeneous event sequence {ei}Tstart≤ei.t≤Tend

, and a bi-
nary label ŷ for the target endpoint occurring at Tend + 24
hours, the objective is to predict what the target endpoint is
in 24 hours using {ei}Tstart≤ei.t≤Tend

.
In this paper, we aim to dynamically predict two endpoint

outcomes base on the heterogeneous event sequence of pa-
tient data in EHR. In the first "death prediction dataset",
the endpoint outcome is death in either hospital or dis-
charge to home. In the second âĂIJlab test result prediction
datasetâĂİ, the endpoint outcome is either an abnormal re-
sult of the potassium lab test, or clinical stability.

Proposed Method

In this section, we introduce the technical details about our
proposed model. The overall view of our model is illustrated
in Figure 2.

Event type embedding and attribute encoding

To help the HE-LSTM to trace temporal information of var-
ious kinds of events, we use “event type embedding” and
“attribute encoding” to embed the type and attributes of the
high dimensional events into compact continuous vectors,
which can be trained end-to-end with the following HE-
LSTM.

An event ei = (type, value, time) of the sequence will
be embedded into three parts to feed the HE-LSTM for the
endpoint prediction. The three input including embedding
vector of event type s, the event attribute encoding vector x
and the scale variable time t.

The event type vector s carries the information of the
event category of ei, and is constructed only by the one
hot representation type of sequence type. Similar to word
embedding (Mikolov et al. 2013), it will provide a low-
dimension vector of the sequence type with semantic mean-
ing in clinical field. The embedding lookup matrix Ctype ∈
R

N×M , where N is the embedding dimension and M is the
number of sequence types, is established for further training.
The sequence type vector s is given by:

s = Ctype × type (1)

The event attribute encoding vector x represents the com-
bining information of both event type type and the attribute
value, which is the main input of the following HE-LSTM.
Each event has two kinds of attribute values. One is cate-
gorical with the one hot representation valuec ∈ {0, 1}C ,
where C is the sum of categorical values of all the event
types. The other is numerical with the one hot representa-
tion valuen ∈ R

U , where U is the number of all numerical
value types. Notice that value = [valuec,valuen].

Each categorical value is assigned with a vector from
Vc ∈ R

N×C , where N is the embedding dimension. As for
numerical values, they are associated with a value encoding
vector in Vn ∈ R

N×U , where N is the embedding dimen-
sion.

The representing vector of a record x is mainly decided
by its event type s, however the attribute value of the event
also carries lots of information for modeling patients. The
different values of the same event type, such as the abnor-
mal label in a lab test event, can lead to distinct estimates for
the patient’s future health status. The other important part of
x is a disturbance from the numerical attribute values. For
instance, the high numerical value of the lactate blood lab
test event indicates potential health problem of the patient,
while the low value does not offer much information. Fi-
nally, to combine the three parts of information, the attribute
encoding vector x is given by:

x = s+ Vc × valuec + tanh(Vn × valuen) (2)

where Vc, Vn and C are parameters to learn.

Heterogeneous Event LSTM

Long short-term memory (LSTM) units (Hochreiter and
Schmidhuber 1997) (Fig. 2(a)) is an important ingredient of
modern deep RNN architectures. We first define their update
equations in a commonly-used version in the following:

it = σ(Wixxt +Wihht−1 +wic ◦ ct−1 + bi) (3)
ft = σ(Wfxxt +Wfhht−1 +wfc ◦ ct−1 + bf ) (4)

ct = ft ◦ ct−1 + it ◦ tanh
(
Wcxxt +Wchht−1 + bc

)

(5)
ot = σ(Woxxt +Wohht−1 +woc ◦ ct−1 + bo) (6)

ht = ot ◦ tanh
(
ct
)

(7)

The main difference from classical RNNs is the use of the
gating functions it, ft, ot, which represent the input, forget,
and output gate at time t respectively. ct is the cell activation
vector, whereas xt and ht represent the input feature vec-
tor and the hidden output vector respectively. The gates use
the typical sigmoid function σ and tanh nonlinear function
tanh with weight parameters Wih, Wfh, Woh, Wix, Wfx,
and Wox, which connect the different inputs and gates with
the memory cells and outputs, as well as biases bi, bf , and
bo. The cell state ct itself is updated with a fraction of the
previous cell state that is controlled by ft, and a new input
state created from the element-wise product, denoted by ◦,
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Figure 2: Model architecture. (a) Standard LSTM model. (b) HE-LSTM model, with event gate jt consist of the event filter es
and phase gate kt separately controlled by the event type s and timestamp t. In the HE-LSTM formulation, each neural in the
cell value ct and the hidden output ht can be updated during an “open” phase by only some certain types of events; otherwise,
the previous values are maintained.

of it and the output of the cell state nonlinearity tanh. Op-
tional peephole (Gers and Schmidhuber 2000) connection
weights wic, wfc, woc further influence the operation of the
input, forget, and output gates.

HE-LSTM extends the LSTM model by adding a new
event gate js,t. The event gate has two factors — an event
filter and a phase gate. The event filter only allows the in-
formation of a certain cluster of events to fuse into the cor-
responding memory cell, so that each cell will only trace a
particular group of events. Collaborated with the phase gate,
the event filter can help the network to maintain the temporal
information of the different events in multi-scaled sampling
rates. The dependency of the heterogeneous events will be
easier to capture by the diverse and long memory of corre-
lated events.

The opening and closing of this event gate is controlled
by the event type embedding s and an independent rhythmic
oscillation specified by the phase gate (Neil, Pfeiffer, and
Liu 2016) with three parameters. And updates to the cell
state ct and ht are permitted only when the gate is opened.

One factor of the event gate, the event filter es, for each
neuron is a feed forward network with a hidden layer of size
L with tanh activation function as following.

es = σ(Wem tanh
(
Wmss+ bm

)
+ be) (8)

where Wem ∈ R
H×L, Wms ∈ R

L×N , be ∈ R
H and bm ∈

R
L are parameters to learn.
Considering the multi-scale sampling rates of the events,

we extend the event filter es with a time factor proposed in
phased LSTM (Neil, Pfeiffer, and Liu 2016) by three param-
eters: t, ron and s, where t represents the real-time period of
the gate, s represents the phase shift and ron is the ratio of
the open phase to the full period. t, ron and s are learned by
training. Therefore, js,t is formally defined as:

φt =
(t− s) mod τ

τ
, kt =

⎧⎪⎨
⎪⎩

2φt
ron

, if φt <
1
2
ron

2− 2φt
ron

, if 1
2
ron < φt < ron

αφt, otherwise
(9)

js,t = es ◦ kt (10)

Different from traditional RNNs for single sequential data
and even sparser variants of RNNs (Koutnik et al. 2014),
updates in HE-LSTM can optionally be performed at irreg-
ularly sampled time points t for different event types. This
allows the RNNs to learn the multi-scale rhythm of related
events and work with asynchronously sampled heteroge-
neous temporal event data. We use the shorthand notation
cl = ctl for cell states at time tl (analogously for other gates
and units), and let cl−1 denote the state at the previous up-
date time tl−1. We can then rewrite the regular LSTM cell
update equations for cl and hl (from Eq. 5 and Eq. 7), using
proposed cell updates c̃l and h̃l mediated by the event gate
jl :

c̃l = fl ◦ cl−1 + il ◦ tanh
(
Wcxxl +Wchhl−1 + bc

)

(11)
cl = jl ◦ c̃l + (1− jl) ◦ cl−1 (12)

h̃l = ol ◦ tanh
(
c̃l
)

(13)

hl = jl ◦ h̃l + (1− jl) ◦ hl−1 (14)

The HE-LSTM formulation ensures the flexible allocation
and retain of information of each event clusters. Each neuron
of the memory cell and hidden layer of HE-LSTM states can
be updated only during the open periods of the event gate.
In other words, only the information of a certain cluster of
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events’ records can flow into this certain neuron in its own
phase. This is because the event filter es, one of the factor
of the event gate js,t, can be seen as a binary classifier to
chose the cluster of event types responsible for each neu-
ron. Besides, the neuron maintains a perfect memory during
its closed phase, i.e. cl = cl−δif jl′ = 0 for tl ≤ l′ ≤ tl−δ .
Thus, other neurons, tracing other events can directly use the
information of this cluster of events even they are far away
from each other in term of the sequence index. Because of
this allocation mechanism, HE-LSTM can have much di-
verse and longer memory for modeling the dependency of
multiple events.

We use a sigmoid layer to predict the true label ŷt of the
learned representation vector of sequence in the given deci-
sion times.

yt = sigmoid(wpht + bp) (15)

where wp ∈ R
N and bp are parameters to learn.

We use cross-entropy to calculate the classification loss of
the prediction yt and true label ŷt of each sample as follows:

Loss(ŷt, yt) =
1

N

∑

1≤t≤N

(ŷt× ln yt+(1− ŷt)× ln(1−yt))

(16)
We can sum up the losses of all the samples in one mini-

batch to get the total loss for back propagation.

Experiments

Data Description and Experimental Settings

We set up two data sets for evaluation of the models from
one real clinical data source. MIMIC-III (Johnson et al.
2016)(Medical Information Mart for Intensive Care III) is
a large, freely-available database comprising de-identified
health-related data relating to over forty thousand patients
who stayed in critical care units of the Beth Israel Deaconess
Medical Center between 2001 and 2012.

We extract all kinds of events from the MIMIC-III
database to get the initial event type set(18192 kinds of
events in total).The statistics of the event types with top fre-
quency are listed in Table.1. By merging the heterogeneous
events into triple sequence, we get a set of clinical event
sequences. We drop out the sparse event types, whose fre-
quency in total is less than 2500.

We extract episodes of patients, which are 24 hours before
the occurrence time of each endpoint, from these event se-
quences as samples. And the upper bound of the record num-
ber of the samples is 1000. All the resulting sample events
are labeled according to the target endpoint outcome in each
task.

The statistics of the final clinical multiple sequences in
two datasets are summarized in Table 2.

Each dataset is split into 3 parts with fixed proportions,
namely training set(70%), validation set(10%) and evalua-
tion set(20%). The data in validation set is used to select
hyper-parameters of the proposed and comparing models

event sources e.g. event types # of types

lab test HEMATOCRIT, 525
WHITE BLOOD CELLS

vital signal Heart Rate, 385
Respiratory Rate

drug input 0.9% Normal Saline, 60
Dextrose 5%

clinical symptom Ectopy Type 2382
Motor Response

procedure electrocardiogram 19
Invasive Ventilation

clinical output Urine 17
gastric retentive oral dosage

Table 1: Statistics of the event type

Dataset # of samples # of events Avg timespan

death 24301(8%) 20290879 3d 15h 58m
lab test 784583(11%) 41006177 192d 22h 45m

Table 2: Statistics of the datasets(the percentage in the sec-
ond column is the positive sample rate)

and to conduct “early stop” while training, in which the sam-
ples may be different because of cross-validation. The eval-
uation set, the details of which is non-transparent for us in
the process of training and parameter selection, will then be
only used to calculate and report the evaluation metrics for
comparison.

For all the results presented in this section, the net-
works, implemented with Theano (Bergstra et al. 2010),were
trained with Adam (Kingma and Ba 2014) set to default
learning rate parameters.

Comparing Methods

We compare HE-LSTM to the following methods.
• Independent LSTM We use LSTM to model each ho-

mogeneous event independently and average the resulting
representations into a logistic regression layer. Because the
computational cost of thousands of independent LSTM ex-
ceed our tolerance, we select 25 important events as it was
done in many works (Alaa, Hu, and van der Schaar 2017).

• Independent LSTM (shared weight) This model is the
same as the previous one, except that the weights in each
single LSTM is shared and all events are used as the input
of the model.

• RETAIN RETAIN (Choi et al. 2016) mimics physician
practice by modeling the EHR data in a reverse time order,
and a two-level RNN generating attention variables of se-
quential data can provides interpretation of the prediction.

• LSTM We use the event embedding in the first part of
proposed method section as the input of traditional LSTM.
Logistic regression is applied to the top hidden layer.

• Clock-work RNN Clockwork RNN (Koutnik et al.
2014) described in related works section.

• Phased LSTM Phased LSTM (Neil, Pfeiffer, and Liu
2016) described in related works section.
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Methods death lab test
AUC AP AUC AP

Independent LSTM 0.8771 ± 0.0005 0.5573 ± 0.0006 0.7196 ± 0.0006 0.2969 ± 0.0008
Independent LSTM(shared weight) 0.8064 ± 0.0005 0.5301± 0.0006 0.5308 ± 0.0005 0.1098 ± 0.0005
Phased LSTM 0.8474 ± 0.0005 0.4900 ± 0.0075 0.7722 ± 0.0007 0.3575 ± 0.0026
Clock-work RNN 0.8400 ± 0.0001 0.7181 ± 0.0003 0.6516 ± 0.0002 0.2208 ± 0.0003
RETAIN 0.8967 ± 0.0011 0.5808 ± 0.0114 0.7325 ± 0.0022 0.3096 ± 0.0052
LSTM 0.9466 ± 0.0002 0.7445 ± 0.0007 0.7231 ± 0.0028 0.3021 ± 0.0014
HE-LSTM 0.9516 ± 0.0003 0.7687 ± 0.0011 0.7987 ± 0.0008 0.3914 ± 0.0013

Table 3: Performance of clinical endpoint prediction tasks

Evaluating Metrics

All methods listed above can produce predict scores instead
of binary labels, and the data for target prediction tasks are
imbalanced labeled. So metrics for binary labels such as ac-
curacy are not suitable for measuring the performance. Sim-
ilar to the work (Choi et al. 2016; Liu et al. 2015), we adopt
the area under ROC curves (Receiver Operating Character-
istic curves) and area under PRC (Precision-Recall curves)
for evaluation. Both reflect the overall quality of predicted
scores at each decision time, according to their true labels.

• the Area under ROC Curve(AUC) of comparing yi
with the true label ŷi. AUC is robust to imbalanced pos-
itive/negative prediction labels, making it appropriate for
evaluating the classification accuracy in the endpoint pre-
diction prediction tasks.

• Average Precision(AP) Average precision (Turpin and
Scholer 2006) emphasizes ranking positive samples higher.
It is the average of precisions computed at the point of each
positive samples in the ranked sequence in ascending order
of predict score:

AP =

∑N
r=1(P (r)× I(r))

number of positive samples
(17)

P (r) =
|{positive samples of rank r or less}|

r
(18)

where r is the rank, N the total number of samples, I() a
index function on the positive sample of a given rank, and
P (r) precision at a given cut-off rank.

This metric is also referred to geometrically as the area
under the Precision-Recall curve.

• Cross Entropy that measures the model loss on the test
set. The loss can be calculated by Eq (16).

Quantitative Results

Table.3 shows the area under ROC and AP of different meth-
ods on death and lab test datasets respectively. From the re-
sults in Table.3, we draw the following conclusions:

Firstly, models considering the dependency of correlated
events types outperform all the independent sequential mod-
els and the proposed HE-LSTM achieves the best perfor-
mance. For example, on âĂIJdeath prediction taskâĂİ, RE-
TAIN, LSTM and HE-LSTM improve the AP of lab test pre-
diction by around 4.3%, 2.4% and 32.1% respectively com-
pared to the best of “independent LSTM” model without
weight share of the parameters in each independent LSTMs.
The similar results have been shown in other experiments

and metrics. Furthermore, our model achieves the highest
performance among these heterogeneous sequential models.
For example, on âĂIJlab test prediction taskâĂİ, HE-LSTM
improves the AP by 26.2% and 29.4% compared to RETAIN
and LSTM. Besides, the improvements on AUC are 9.0%
and 10.4% respectively. We can draw the conclusion that
the dependency information of correlated clinical temporal
events is useful in endpoint prediction tasks and learning
joint representations is more effective to model the tempo-
ral dependency of different events of EHR data compared to
simple independent sequential models.

Secondly, compared to the densely updating recurrent
neural networks, the RNNs adaptive to the sampling rate pat-
tern of events make more improvement of the prediction per-
formance. For example, clock-work RNN improve the AP of
death prediction by 29.0% and 33.9% compared to the two
kinds of independent LSTMs, while the improvements of
AUC and AP are 7.0% and 20.7% for phased LSTM com-
pared to the best of independent LSTMs in the lab test pre-
diction task. We can draw the conclusion that multi-scaled
sampling rate pattern of events is effective for endpoint pre-
diction, which makes the model concentrate more on the im-
portant events in different phases other than treating all clin-
ical events equally in the long sequence.

Thirdly, HE-LSTM achieves the best performance on all
datasets and all evaluation metrics. HE-LSTM outperforms
all sparsely updating recurrent neural networks and hetero-
geneous sequential models on each metrics of two datasets.
Models solely utilizing multi-scale sampling pattern in event
sequence or models straight-forwardly merging different
type of events are not the best choice for clinical endpoint
prediction in EHR data. Take the result of death predic-
tion for example, HE-LSTM improves the AUC and AP
by 12.4% and 7.0% respectively compared to the best of
sparsely updating methods without the event type embed-
ding and attribute encoding modules. The improvements of
HE-LSTM compared to the heterogeneous sequential mod-
els without event gates are 3.4% and 30.3% in average in
term of AUC and AP. We can draw the conclusion that the
proposed HE-LSTM effectively improve the performance
because of the joint effects of tracing the temporal depen-
dency of heterogeneous events and adaptively fitting their
multi-scaled sampling patterns.

Experiment on variations of the event gate To evaluate
the effect of the components in the event gate js,t, we re-
place js,t in (Eq 10) with its factors, namely phase gate kt
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Methods Phase gate Event filter Event gate

death
prediction

AUC(1st epoch) 0.9301 0.9105 0.9370
AUC 0.9471 0.9518 0.9516

AP(1st epoch) 0.6856 0.6048 0.7094
AP 0.7467 0.7679 0.7687

Entropy(1st epoch) 0.1561 0.1835 0.1479
Entropy 0.1369 0.1301 0.1297

abnormal lab test
prediction

AUC(1st epoch) 0.7050 0.6747 0.7275
AUC 0.7945 0.7559 0.7987

AP(1st epoch) 0.2752 0.2403 0.2965
AP 0.3875 0.3410 0.3914

Entropy(1st epoch) 0.3373 0.3448 0.3298
Entropy 0.3019 0.3178 0.3003

Table 4: Performance with different settings of the event gate

and event filter es while remaining the other parts of the
model identical. The results on two datasets are list in ta-
ble 4, including AUC, AP and cross entropy on test data as
well as the values of the three metrics when the first training
epoch is finished.

The event filter mainly helps to improve the performance
of clinical endpoint prediction tasks by modeling the depen-
dency of heterogeneous events. Both the event gate and the
event filter achieve good performance in all metrics and both
datasets when the training is finished. For example, the event
gate and the event filter improve the AUC of death prediction
by 0.5% and 0.5% compared to the phase gate, while the im-
provements of AP are 2.8% and 2.9% and the improvements
of entropy are 4.9% and 5.2%.

The phase gate helps to achieve a fast convergence in the
early stage of training by fitting the multi-scaled sampling
rates of different events. HE-LSTM and the model with only
phase gate get much higher performance in all metrics and
both datasets in the first epoch of training. Take results in
lab test task for example, the phase gate and the event gate
improve the AUC in first epoch by 4.6% and 7.9% compared
to the event filter, while the improvements of AP are 14.5%
and 23.3% and the improvements of entropy are 2.2% and
4.3%.

From these comparisons, we draw the conclusion that the
event filter and the phase gate collaborates jointly in model-
ing the dependency in heterogeneous temporal events with
the multi-scale sampling rates, which leads to the accurate
and efficient performance on the clinical endpoint prediction
task.

Experiment on varying length of multiple sequential
data To evaluate the ability to model the temporal depen-
dency of heterogeneous temporal events of our proposed ar-
chitect and the other baselines, we feed the trained models
multiple events in test set with various length, in the range
of 20 to 1000, as input. From figure 3, we can draw the fol-
lowing conclusions:

Firstly, temporal information is effective for endpoint pre-
diction tasks. The performances of most models improve
with the increase of the input sequence length. Especially,
the performance increases sharply when the length of input
sequence is less than 200.

Secondly, HE-LSTM is better at handling the dependency
of heterogeneous temporal events than other models. When

Figure 3: the performance on death prediction task with
varying input length of the heterogeneous event sequence
data

the input sequence is short, the performances of different
models are similar. The reason lies in the fact that, for short
sequence input, the combination of independent representa-
tions of a single event makes less difference from the joint
representation of heterogeneous events in HE-LSTM. But
when the input sequence get longer and longer, the per-
formance of our model steadily increase from 0.7551 to
0.7687 in term of AP and from 0.9482 to 0.9516 in term
of AUC. The performance of other models remained almost
unchanged at almost 0.9465 of AUC and 0.7434 of AP.

Different initial period To explore the effect of the event
filter in the event gate when modeling heterogeneous se-
quential EHR data, we compare the performance of the pro-
posed HE-LSTM with the reduced HE-LSTM, of which the
event filter factor in the event gate is removed. We use differ-
ent initial periods of τ during training for death prediction
task. The period was drawn uniformly in the exponential
domain, comparing four sampling intervals exp(U(1, 2));
exp(U(2, 3)); exp(U(3, 4)), and exp(U(4, 5)) for each
model. The results in Figure.4 show that the initialization of
τ affects the performance of both models. But HE-LSTM is
more robust to the initialization. For example, the improve-
ments of HE-LSTM compared to the one without event filter
are 4.1%, 4.1%, 2.8%and 6.6% on average. We can draw the
conclusion that, with the help of event filter, the event gate
can be more adaptive to multi-scale sampling rates of the
events in the heterogeneous temporal sequence.
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Figure 4: Different initial period

Conclusion

In this paper, we propose a novel HE-LSTM model to learn
joint representations of heterogeneous temporal events for
clinical endpoint prediction. Our model can adaptively fit
the multi-scaled sampling rates of events in the heteroge-
neous event sequence. By tracing the temporal information
of different kinds of events in the long sequence, the tem-
poral dependency of different types of events can be cap-
tured in our learned representations. Experimental results
with real-world clinical data on the tasks of predicting death
and abnormal lab tests prove the effectiveness of our pro-
posed approach over competitive baselines.
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