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Abstract

A statistical hypothesis test determines whether a hypothe-
sis should be rejected based on samples from populations. In
particular, randomized controlled experiments (or A/B test-
ing) that compare population means using, e.g., t-tests, have
been widely deployed in technology companies to aid in mak-
ing data-driven decisions. Samples used in these tests are
collected from users and may contain sensitive information.
Both the data collection and the testing process may compro-
mise individuals’ privacy. In this paper, we study how to con-
duct hypothesis tests to compare population means while pre-
serving privacy. We use the notation of local differential pri-
vacy (LDP), which has recently emerged as the main tool to
ensure each individual’s privacy without the need of a trusted
data collector. We propose LDP tests that inject noise into ev-
ery user’s data in the samples before collecting them (so users
do not need to trust the data collector), and draw conclusions
with bounded type-I (significance level) and type-II errors
(1− power). Our approaches can be extended to the scenario
where some users require LDP while some are willing to pro-
vide exact data. We report experimental results on real-world
datasets to verify the effectiveness of our approaches.

Introduction

Randomized controlled experiments (or A/B testing) and hy-
pothesis tests are used by many companies, e.g., Google,
Facebook, Amazon, and Microsoft, to design and improve
their products and services (Tang et al. 2010; Panger 2016;
Kohavi and Round 2004; Kohavi et al. 2012). These statisti-
cal techniques base business decisions on samples of actual
customer data collected during experiments to draw more
informed conclusions. However, such data samples usually
contain sensitive information, e.g., usage statistics of certain
apps or services; in order to meet users’ privacy expectations
and tightening privacy regulations (e.g., European GDPR
law), ensuring that these experiments and tests do not breach
the privacy of individuals is an important problem.

Differential privacy (DP) (Dwork et al. 2006) has emerged
as a standard for the privacy guarantees, and been used by,
e.g., Apple (Apple 2017), Google (Erlingsson, Pihur, and
Korolova 2014), and Uber (Greenberg 2017). In a well-
studied DP model used by, e.g., (Gaboardi et al. 2016), users
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trust and send exact data to a data collector, who then in-
jects noise in the testing process to ensure DP. However,
this model is not applicable in our setup, as users may not
trust the data collector (e.g., a tech company) due to poten-
tial hacks and leaks (Hackett 2015), and prefer not to have
unprivatized data leave their devices. Therefore, we adopt
the local model of differential privacy (LDP) (Duchi, Jor-
dan, and Wainwright 2013). Under LDP, users do not need to
trust the data collector. Before sent to the data collector, each
user’s data is privatized by a randomized algorithm with the
property that the likelihood of any specific output of the al-
gorithm varies little with the input, i.e., the exact data.

In this paper, we study how to conduct hypothesis tests
to compare population means (e.g., in A/B testing), while
ensuring LDP for each user. We focus on the class of t-tests
when presenting our solutions – they can be easily extended
for Z-tests if populations follow Normal distributions.

An A/B test splits users randomly into two populations,
to give them two different experiences, a control and a treat-
ment, respectively, and then tests for differences between the
two population means in a measure of interest (clicks, usage,
monetization, etc.). A null hypothesis H0 is that the two pop-
ulation means are equal or differ by a fixed constant. Statis-
tical tests (e.g., t-tests) are used to determine whether the
null hypothesis should be rejected based on random samples
from the populations. To measure errors in the conclusions,
type-I error is the probability of falsely rejecting H0 when it
is true, and type-II error, or complement of statistical power,
is the probability of failing to reject H0 when it is false. We
want a test to have type-I error bounded by a pre-specified
threshold, called significance level, and have high power.

A typical test has three common steps: 1) compute the
observed value of a test statistic from samples; 2) calculate
the p-value, i.e., the probability, under H0, of a test statistic
being more extreme than the observed one; 3) reject H0 if
and only if the p-value is less than the significance level.
Challenges and our contributions. In t-tests (as well as Z-
tests when population variances are unknown) that compare
population means, sample means and sample variances are
the essential terms in the test statistic to be computed in step
1). While there are several approaches, e.g., (Duchi, Jordan,
and Wainwright 2013), to estimate means, there is no known
technique to estimate sample variances under LDP. In fact,
we show that any estimator to variances based on a previous
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LDP mechanism (Ding, Kulkarni, and Yekhanin 2017) has a
very large worst-case error (Proposition 3).

Our first approach, called estimation-based LDP test, is
based on a seemingly direct idea. We propose a new LDP
mechanism to estimate sample variances, using which we
obtain an estimation of the observed test statistic in step 1)
to calculate the p-value and then draw the conclusion.

One of the most important goals of hypothesis testing is to
control the probability of drawing a false conclusion in terms
of type-I and type-II errors. While our new LDP variance es-
timator is of independent interest, the first approach is unsat-
isfying in achieving this goal, especially when the size of the
data domain is large. As errors in both the estimator to sam-
ple means and the one to variances are proportional to the
domain size, it is hard to bound the error in estimating the
test statistic in step 1), so there is no theoretical guarantee
on type-I and type-II errors in our first approach.

The second approach we propose, called transformation-
based LDP test, aims to provide an upper bound of type-II
error at a pre-specified significance level, i.e., a hard con-
straint of type-I error. The main idea is to look into the
relationship between the original distribution of a popula-
tion and the distribution on the outputs of the LDP data-
collection algorithm on users’ data, called transformed dis-
tribution. Instead of estimating sample means and sample
variances under LDP, we directly conduct tests based on
LDP samples from the transformed distributions – the con-
clusion can then be translated into a conclusion of the test on
the original population (i.e., rejecting or accepting H0). The
upper bound on type-II error during A/B testing is critical in
estimating the number of users needed in the samples to de-
tect significant differences between the control and the treat-
ment populations. We derive such an estimation of sample
sizes needed to reduce type-II error below a threshold at the
specified significance level. This approach can be extended
to a hybrid-privacy scenario where some users require LDP
while some are willing to provide exact data.

Experiments are conducted on real datasets to verify our
theoretical results and the effectiveness of our approaches.
Related work. There are a long line of works on hypothe-
sis testing under the DP model with a trusted data collector,
with genome-wide association studies as a primary appli-
cation. In this setup, the data collector receives exact sam-
ples from users. The first type of approaches inject noise
into aggregates (or marginal tables) of data to ensure DP,
and compute or estimate the test statistic in step 1) from
these noisy aggregates (Fienberg, Rinaldo, and Yang 2010;
Karwa and Slavković 2012; Johnson and Shmatikov 2013;
Karwa and Slavković 2016). The intuition is that the impact
of the DP noise is small when the sample size is large enough
(Vu and Slavkovic 2009). However, it is shown that cer-
tain tests, e.g., χ2-tests, perform poorly when used with the
estimated statistic (Gaboardi et al. 2016), leading to much
higher type-I error than the specified amount. The second
type of approaches (Uhlerop, Slavković, and Fienberg 2013;
Yu et al. 2014; Wang, Lee, and Kifer 2015; Gaboardi et al.
2016) try to derive the asymptotic distribution of the esti-
mated test statistic. Since this asymptotic distribution cannot
be written analytically, Monte Carlo simulations or numeri-

cal approximations are used to calculate the p-value in step
2). More recently, for χ2-tests, unit circle mechanism (Kak-
izaki, Fukuchi, and Sakuma 2017) utilizes the geometrical
property of the test statistics and achieves a sharp reduction
on the type-II errors; and independently, new test statistics
(Rogers and Kifer 2017) are proposed, so that their asymp-
totic distributions with DP noise injected are close to the
asymptotics of the classical (non-private) tests.

To our best knowledge, our work is the first on statistical
hypothesis tests to compare population means under LDP.
One of our primary applications is A/B testing in software
companies, so LDP is a proper privacy guarantee for each
user without the need of trusting the data collector. LDP χ2-
testing is studied in (Rogers 2017), to test goodness of fit and
independence for multinomial distributions. LDP hypothe-
sis tests to distinguish between two specific distributions are
studied in (Kairouz, Oh, and Viswanath 2014).

Another relevant line of works are about parameter es-
timations under LDP, including, e.g., mean/density estima-
tions (Duchi, Jordan, and Wainwright 2013; Duchi, Wain-
wright, and Jordan 2016; Ding, Kulkarni, and Yekhanin
2017), and histogram estimations (Duchi, Wainwright, and
Jordan 2013; Kairouz, Bonawitz, and Ramage 2016; Wang
et al. 2016; Wang, Wu, and Hu 2016). Communication and
computation-efficient mechanisms are developed for his-
togram estimations over large domains to find heavy hit-
ters (Bassily and Smith 2015; Wang et al. 2017; Bassily et
al. 2017). Industrial deployments of LDP techniques on this
line enhance privacy using memorization (Erlingsson, Pihur,
and Korolova 2014; Fanti, Pihur, and Erlingsson 2016). How
to find heavy hitters is also studied in a hybrid-privacy model
with both LDP and DP users (Avent et al. 2017).

Preliminaries

Each user has a private real-valued counter x ∈ Σ =
[0,m] (to measure, e.g., app usage). Our approaches can
be easily extended for general domains like [−m,m], but
we focus on [0,m] for the simplicity of presentation. Let
[n] = {1, 2, . . . , n} and X = {xi}i∈[n] be a (sample)
set of counters from n users. We use μX =

∑
i xi/n and

s2X =
∑

i(xi − μX)2/(n − 1) to denote the sample mean
and sample variance of X , respectively. We use X (or A,
B) to denote both a population and the distribution of this
population, from which a sample X (or A, B) is drawn.
Hypothesis testing to compare population means. Let A
and B be the distributions of counters in the control and the
treatment populations, respectively. Let μA and μB be the
population means (expectations). The null hypothesis H0 is
μA − μB = d0, and the alternative hypothesis H1 is, e.g.,
μA−μB �= d0. We randomly pick nA and nB users from the
populations A and B, respectively, and let A = {ai}i∈[nA]

and B = {bi}i∈[nB ] be the corresponding samples.
A test is an algorithm T that takes the two samples A

and B and decides whether to reject or accept H0 at a pre-
specified significance level α. We require T to have type-I er-
ror at most α, i.e., Pr[T(A,B;α,H0) = reject | H0] ≤ α,
and type-II error Pr[T(A,B;α,H0) = accept | H1] = β as
small as possible. 1− β is called the statistical power of T.
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The probability is taken over the randomness from the data
generation (of A and B) and the possible randomness in T.

A key step in a test is to compute the observed value of
a test statistic from samples. To compare population means,
it is usually a function of six parameters: sample means μA

and μB , sample variances s2A and s2B , and sample sizes nA

and nB . In t-tests, we also need to obtain the degrees of free-
dom. For example, in Welch’s t-test, they are, respectively

t=
(μA − μB)− d0√
s2A/nA + s2B/nB

and df=
(s2A/nA + s2B/nB)

2

(s2A/nA)2

nA−1 +
(s2B/nB)2

nB−1

.

(1)
Local model of differential privacy (LDP). In the local
model of differential privacy (LDP) (Duchi, Wainwright, and
Jordan 2013; Bassily and Smith 2015), also called random-
ized response model (Warner 1965), γ-amplification (Ev-
fimievski, Gehrke, and Srikant 2003), or FRAPP (Agrawal
and Haritsa 2005), private data from each user is randomized
by an algorithm A before being sent to data collector.

Definition 1 (Local model of differential privacy) A ran-
domized algorithm A : Σ → Z is ε-locally differentially
private (ε-LDP) if for any pair of values x, y ∈ Σ and any
subset of output S ⊆ Z , we have that

Pr[A(x) ∈ S] ≤ eε ·Pr[A(y) ∈ S] .

One interpretation of LDP is that no matter what output
is released from A, it is approximately equally as likely to
have come from one value x ∈ Σ as any other. Unlike the
DP model used in (Gaboardi et al. 2016; Rogers and Kifer
2017), users do not need to trust the data collector in LDP.
Problem statement: LDP mean-comparison test. Each
user in the control and the treatment has a counter. Two ran-
dom samples of counters A and B are drawn from the con-
trol and the treatment distributions A and B, respectively.
With the null hypothesis H0: μA−μB = d0, we want to de-
sign a test, such that: i) each counter in A and B is collected
from the user in an ε-LDP way, ii) its type-I error ≤ signifi-
cance level α, and iii) type-II error is as small as possible.
Building block: 1-bit LDP data collection. We will utilize
the following ε-LDP mechanism Mε,m from (Ding, Kulka-
rni, and Yekhanin 2017) to privatize each counter in samples
A and B. For each user with a counter x, it generates a noisy
bit (0 or 1), independently, and sends to the data collector

Mε,m(x) =

{
1, with probability 1

eε+1 + x
m · eε−1

eε+1 ;
0, otherwise.

(2)

Proposition 1 The mechanism Mε,m is ε-LDP.

This mechanism can be interpreted as firstly rounding x
to a bit 1 with probability x/m or 0 otherwise, and flip-
ping the bit with probability 1

eε+1 . It is communication-
efficient (only one bit is sent) and can be seen as a simplifi-
cation of the multidimensional mean-estimation mechanism
in (Duchi, Jordan, and Wainwright 2013).

Mε,m can be used for mean estimation. Suppose there are
n users: X = {xi}i∈[n]. We collect x′

i = Mε,m(xi) from
each user i. The mean μX =

∑
i xi/n can be estimated

from the noisy bits X ′ = Mε,m(X) = {x′
i}i∈[n] as:

μ̂ε,m(X ′) =
m

n

n∑
i=1

x′
i · (eε + 1)− 1

eε − 1
. (3)

It is shown in (Ding, Kulkarni, and Yekhanin 2017) that:
Proposition 2 The estimator μ̂ε,m(X ′) is unbiased:

i) E[μ̂ε,m(X ′)] = μX , and ii) Var[μ̂ε,m(X ′)] = O
(

m2

nε2

)
.

Estimation-based LDP Test

Given two samples A = {ai}i∈[nA] and B = {bi}i∈[nB ],
one straightforward starting point is to use Mε,m to collect
each counter, to preserve ε-LDP for each user, and estimate
parameters (sample means μA and μB and sample variances
s2A and s2B) in, e.g., (1), based on Mε,m(A) = {Mε,m(ai)}
and Mε,m(B) = {Mε,m(bi)} to conduct a t-test.

We can obtain estimators to μA and μB using μ̂ε,m (3).
However, it is difficult to estimate the sample variances from
the LDP data collection Mε,m(A) and Mε,m(B). The in-
tuition is as follows. Consider two distributions: a counter
from distribution X is always a constant m/2; a counter
from Y is 0 with probability 1/2, and m otherwise. After
applying Mε,m on two samples X and Y from X and Y,
respectively, the LDP samples Mε,m(X) and Mε,m(Y ) fol-
low the same distribution (cannot be distinguished from each
other), but the gap between s2X and s2Y is Ω

(
m2

)
with high

probability. In general, we have a hardness result:

Proposition 3 If each counter in X = {xi} is collected us-
ing Mε,m, any estimator ŝ2 to s2X based on Mε,m(X) =
{Mε,m(xi)} has worst-case error |ŝ2−s2X | at least Ω

(
m2

)
.

Proof: In the full version (Ding et al. 2017).
LDP Data Collection for Variance Estimation. The above
proposition essentially says that estimating the sample vari-
ance of a sample X based on Mε,m(X) leads to unbounded
error, as a sample variance itself is bounded by O

(
m2

)
. In

order to obtain a reasonable estimation for sample variances,
we need to collect two LDP bits from each user.

Indeed, the sample variance s2X can be rewritten as

s2X =
1

n− 1

∑
i

(xi − μX)
2
=

n

n− 1

(
μX2 − μ2

X

)
, (4)

where X2 is defined to be {x2
i }i∈[n] and μX2 = 1

n

∑
i x

2
i .

The sequential composability (McSherry 2009) of DP
also holds for LDP (considering a dataset with one user). We
split the privacy budget into ε = ε1 + ε2. For each user with
a counter xi, the first bit to be collected is x′

i = Mε1,m(xi),
which can be also used to estimate mean μX . The second bit
is x′′

i = Mε2,m2(x2
i ), which will be used to estimate μX2

(the range of x2
i is [0,m2]). Note that the two bits are col-

lected with independent randomnesses. From the sequential
composability, we preserve (ε1 + ε2)-LDP for each user.

After collecting X ′ = {x′
i}i∈[n] and X ′′ = {x′′

i }i∈[n]

from users in X , the sample variance can be estimated as

ŝ2ε1,ε2,m(X ′, X ′′) =
n
(
μ̂ε2,m2(X ′′)− μ̂2

ε1,m(X ′)
)

n− 1
, (5)
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where μ̂ε1,m and μ̂ε2,m2 are defined as in (3). We have the
following result about the accuracy of ŝ2ε1,ε2,m.

Proposition 4 s2ε1,ε2,m(X ′, X ′′) is an estimator to s2X :

i) s2X −O
(

m2

nε21

)
≤ E

[
ŝ2ε1,ε2,m(X ′, X ′′)

] ≤ s2X , and

ii) Var
[
ŝ2ε1,ε2,m(X ′, X ′′)

]
= O

(
m4

n2ε41
+ m4

nε22

)
.

Proof: In the full version (Ding et al. 2017).
Using Mean/Variance Estimation in Tests. The test Test

ε1,ε2
uses the above mechanism to collect data and estimate μA,
μB , s2A, and s2B under LDP (consider X = A,B), and put
the estimates back into (1) to calculate t and df in order to
conduct t-tests. Refer to the full version (Ding et al. 2017)
for detailed description. There is no theoretical guarantee on
the testing errors, but from the above discussion, we have:
Theorem 1 Test

ε1,ε2 satisfies (ε1 + ε2)-LDP.

Transformation-based LDP Test

In this section, we give a LDP testing algorithm with guar-
anteed significance and power. The main idea is that, if a
counter x follows some (unknown) population distribution
with a (unknown) mean μ, the LDP bit Mε,m(x) follows a
Bernoulli distribution with the mean determined by μ and ε.
So in order to compare population means, we can conduct
tests directly on the LDP bits and compare Bernoulli means.

The following proposition firstly gives the relationship be-
tween the original population distribution and the resulting
Bernoulli distribution on the outputs of Mε,m.

Proposition 5 If a counter x ∈ [0,m] follows a distribution
X with mean μX, the LDP bit xbin = Mε,m(x) (as in (2))
follows a Bernoulli distribution with the mean

pX = Pr
[
xbin = 1

]
=

μX

m
· e

ε − 1

eε + 1
+

1

eε + 1
. (6)

Proof: Let f be the PDF of X. We have

Pr
[
xbin = 1

]
=

∫ m

0

Pr
[
xbin = 1 | x] f(x)dx

=

∫ m

0

(
1

eε + 1
+

x

m
· e

ε − 1

eε + 1

)
f(x)dx

=
1

eε + 1

∫ m

0

f(x)dx+
1

m
· e

ε − 1

eε + 1

∫ m

0

xf(x)dx

=
1

eε + 1
· 1 + 1

m
· e

ε − 1

eε + 1
·E[x]

=
μX

m
· e

ε − 1

eε + 1
+

1

eε + 1
.

Therefore, xbin follows a Bernoulli distribution.
The test process Tbin

ε is described in Algorithm 1. Two
samples, A = {ai}i∈[nA] and B = {bi}i∈[nB ], are drawn
from two distributions A and B with means μA and μB.
After applying the mechanism Mε,m, the LDP bits Abin =
Mε,m(A) = {Mε,m(ai)}i∈[nA] and Bbin = Mε,m(B) col-
lected (lines 1-5) are two samples from Bernoulli distribu-
tions with means pA and pB. With μA−μB = d0, from (6),
we have pA−pB = dbin0 = (d0/m) ·((eε−1)/(eε+1)). An

Input: Two samples A = {ai}i∈[nA] and B = {bi}i∈[nB ].
Null hypothesis H0: μA − μB = d0.
Parameters: privacy budget ε and significance level α.

1: For users i = 1 to nA do
2: Encode abini = Mε,m(ai) and send abini to the server.
3: For users i = 1 to nB do
4: Encode bbini = Mε,m(bi) and send bbini to the server.
5: Server receives Abin = {abini } and Bbin = {bbini }.
6: Let the transformed null hypothesis be

Hbin
0 : pA − pB =

d0
m

· e
ε − 1

eε + 1
,

where pA (pB) is the distribution mean of Abin (Bbin).
7: Conduct a t-test with null hypothesis Hbin

0 on Abin and
Bbin at significance level α: accept (or reject) H0 if and
only if Hbin

0 is accepted (or rejected).

Algorithm 1: Tbin
ε : Transformation-based LDP Test

important observation here is that the relative order between
μA and μB is the same as the one between pA and pB, i.e.,
μA − μB ≥ d0 ⇔ pA − pB ≥ dbin0 . Therefore, we can con-
duct a test on Abin and Bbin to compare pA and pB with a
null hypothesis Hbin

0 : pA − pB = dbin0 (line 6), in order to
compare μA and μB and reject or accept H0 (line 7).

Indeed, Tbin
ε preserves ε-LDP for each user from Proposi-

tion 1 and the way how Abin and Bbin are collected.
Theorem 2 Tbin

ε satisfies ε-LDP.
We do need a larger sample size in Tbin

ε to get a satisfac-
tory statistical power than the size needed in a non-private
t-test on the real values in A and B. Intuitively, for a fixed
gap between population means μA and μB, the gap between
pA and pB is smaller if the domains size m is larger or ε is
smaller; note that the smaller the gap between pA and pB is,
the harder for the test Tbin

ε to draw a significant conclusion.
Lower bounds of the power of Tbin

ε (or sample sizes needed)
are derived in Theorem 3 at a significance level α.
Theorem 3 Tbin

ε (Algorithm 1) has a significance level α,
i.e., type-I error ≤ α. Suppose the alternative H1: μA −
μB > d0 is true with (μA − μB) − d0 = θ. The statistical
power (1− type-II error) of Tbin

ε , denoted by P (θ), is

P (θ)�Pr
[
Tbin
ε (A,B) = reject | (μA − μB)− d0 = θ

]≥
1− exp

⎛
⎝−

(
θ(eε − 1)

m(eε + 1)

√
2nAnB

nA + nB
−
√
ln

1

α

)2
⎞
⎠ , (7)

if the samples are large enough: nA +nB = Ω
(

m2

θ2ε2 ln
1
α

)
.

If we use Normal distributions to approximate Binomial
distributions and Student’s t-distributions (under the condi-
tion that nA and nB are large enough), we have:

P (θ) ≥ 1− F

(
F−1 (1− α)− pθ

σ̂A+B

)
≥ (8)

1− F

⎛
⎝F−1 (1− α)− pθ ·

√
4(nA − 1)(nB − 1)

nA + nB − 2

⎞
⎠ (9)
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where pθ = θ
m · eε−1

eε+1 , F (·) is the CDF of the Normal distri-
bution N(0, 1), and the sample variance σ̂A+B =√

1Abin/nA − 12
Abin/n

2
A

nA − 1
+

1Bbin/nB − 12
Bbin/n

2
B

nB − 1
, where

1X = |{x ∈ X | x = 1}| is the number of 1’s in X . (10)

In particular, if nA = nB = n and we require that the
statistic power P (θ) ≥ 1− β, it suffices to have

n =
(
F−1 (1− α)− F−1(β)

)2 · 1

2p2θ
+ 1. (11)

Proof: Let’s focus on the case d0 = 0. The proof can be
easily generalized for d0 > 0 by adding a constant.

Consider a test with a null hypothesis Hbin
0 (in line 7 of

Algorithm 1) using the following test statistic:

z(Abin, Bbin) =
1

nA
1Abin − 1

nB
1Bbin

(1X is defined in (10)). Using the linearity of expectation,
we have E

[
z(Abin, Bbin)

]
= pA−pB (pX is defined in (6)).

The proof of (7) is in the full version (Ding et al. 2017),
using a weaker test and McDiarmid’s inequality.

We now focus on (8)-(9). Let’s first state the Normal ap-
proximation: a Binomial distribution B(n, p) with n trials
and success probability p can be approximated by a normal
distribution N(np, np(1− p)), if n is large enough.

From Proposition 5, we have 1Abin ∼ B(nA, pA) and
1Bbin ∼ B(nB , pB). Using Normal approximations to 1Abin

and 1Bbin , under Hbit
0 (when d0 = 0), we have

z(Abin, Bbin)

σA+B
∼ N(0, 1),

where σA+B =
√

pA(1− pA)/nA + pB(1− pB)/nB .
In the test (line 7), we use σ̂A+B in (10) to approximate

σA+B. When nA and nB are large enough,

z(Abin, Bbin)

σ̂A+B
∼ N(0, 1),

from the Normal approximation to Student’s t-distribution.
At a significance level of α, we need to find an rejection

threshold z0 of z(Abin, Bbin), s.t., under Hbin
0 , Pr[reject] =

Pr
[
z(Abin, Bbin) ≥ z0

] ≤ α. Therefore, based on the CDF
of the Normal distribution N(0, 1), we reject Hbit

0 iff

z(Abin, Bbin) ≥ z0 = F−1(1− α) · σ̂A+B.

Now let’s estimate the statistical power under the alterna-
tive hypothesis with μA − μB = θ, or equivalently,

pA − pB =
θ

m
· e

ε − 1

eε + 1
� pθ.

Under the above condition, we have

z(Abin, Bbin)− pθ
σ̂A+B

∼ N(0, 1).

And thus the statistical power P (θ) =

= Pr

[
z(Abin, Bbin)

σ̂A+B
≥ F−1 (1− α)

∣∣∣∣ pA − pB = pθ

]

= Pr

[
z(Abin, Bbin)− pθ

σ̂A+B
≥ F−1 (1− α)− pθ

σ̂A+B

]

= 1− F

(
F−1 (1− α)− pθ

σ̂A+B

)

≥ 1− F

⎛
⎝F−1 (1− α)− pθ ·

√
4(nA − 1)(nB − 1)

nA + nB − 2

⎞
⎠ .

The sample size lower bound in (11) is directly from (9).
How to use Theorem 3. All three of (7)-(9) can be used to
estimate the lower bound of statistical power, and the largest
one can be picked. (8) is likely to be the tightest one, but it
needs the sample variance σ̂A+B (10) in the LDP samples
Abin and Bbin, while the other two only need the sample
sizes. Before we draw samples from populations, (11) can be
used to estimate the sample sizes needed. As will be verified
in the experiments, the estimated sample sizes are sufficient
to guarantee the required statistical power. It is interesting
to note that the type-II error of Tbin

ε has a dominated term
O(− exp(

√
n)) similar to the one of unit circle mechanism

(Kakizaki, Fukuchi, and Sakuma 2017) for a different test
(χ2-test) under DP. The additional term 1

m is from LDP.
About Laplace mechanism. Tbin

ε can be adapted if each
user’s counter is collected using the Laplace-perturbation
mechanism (Duchi, Jordan, and Wainwright 2013). How-
ever, sending Laplace-perturbed counters is costly and we
cannot expect better statistical power from it.

Extensions for Hybrid Privacy Requirements

Hybrid privacy model. The transformation-based LDP test
Tbin
ε can be extended for population with hybrid privacy re-

quirements: more formally, in a random sample A = {ai}
(or B = {bi}) drawn from the distribution A (or B), some
users require ε-LDP, while the others do not.
Rescaling LDP bits. Indeed, for users who do not require
ε-LDP, we can simply send their exact counter aj (or bj)
to the server. The question is, for those who require ε-LDP,
e.g., ai, how to combine their LDP bits Mε,m(ai) ∈ {0, 1}
with exact counters aj ∈ [0,m] to conduct hypothesis tests.

The proposed test Tmix
ε in Algorithm 2 “re-scales” LDP

bits Mε,m(ai) to form a mixed sample Amix together with
the exact counters. For a user ai who requires ε-LDP, if
Mε,m(ai) = 0, amix

i = −m/(eε − 1) is sent (line 3), and
if Mε,m(ai) = 1, amix

i = meε/(eε − 1) is sent (line 4). If
a user ai does not requires ε-LDP, simply send amix

i = ai
(line 5). The same process is applied for sample B (lines 7-
12). This process can be easily extended if different users
require different values of the privacy parameter ε.

We can show that Amix = {amix
i } and Bmix = {bmix

i }
received by the server (line 13) can be considered as being
drawn from distributions Amix and Bmix, with means μmix

A =
μA and μmix

B = μB, respectively, but higher variances.
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Input: Two samples A = {ai}i∈[nA] and B = {bi}i∈[nB ].
Null hypothesis H0: μA − μB = d0.
Parameters: privacy budget ε and significance level α.

1: For users i = 1 to nA do
2: If ai requires ε-LDP then:
3: If Mε,m(ai) = 0 then: amix

i = −m/(eε − 1);
4: Else: amix

i = meε/(eε − 1).
5: Else: amix

i = ai.
6: Send amix

i to the server.
7: For users i = 1 to nB do
8: If bi requires ε-LDP then:
9: If Mε,m(bi) = 0 then: bmix

i = −m/(eε − 1);
10: Else: bmix

i = meε/(eε − 1).
11: Else: bmix

i = bi.
12: Send bmix

i to the server.
13: Server receives Amix = {amix

i } and Bmix = {bmix
i }.

14: Conduct a t-test with the null hypothesis Hmix
0 : μmix

A −
μmix
B = d0 on Amix and Bmix at significance level α:

accept (or reject) H0 iff Hmix
0 is accepted (or rejected).

Algorithm 2: Tmix
ε : For Hybrid Privacy Requirements

Proposition 6 If a counter x ∈ [0,m] follows a distribu-
tion X with mean μX, xmix (derived as amix

i or bmix
i in Algo-

rithm 2) follows a distribution Xmix with mean μmix
X = μX.

Let σ2
X be the variance of X. If each user in X requires

ε-LDP with probability r, the variance of Xmix is
σ2
Xmix = σ2

X · (1− r) + O
(
m2/ε2

) · r. (12)

Proof: μmix
X = μX is from (6) and the fact that if x requires

LDP, xmix = Mε,m(x) ·m · (eε+1)/(eε−1)−m/(eε − 1).
The variance of Xmix can be then calculated as follows:
σ2
Xmix = E

[
(xmix −E

[
xmix

]
)2
]

=E
[
(xmix −E

[
xmix

]
)2 | x does not require LDP

]·(1− r)

+E
[
(xmix −E

[
xmix

]
)2 | x requires LDP

]·r
=σ2

X · (1− r) +
m2(eε + 1)2

(eε − 1)2
·Var[Mε,m(x)] · r,

where Var[Mε,m(x)] = O(1) follows from (2).
Since the distributions A and Amix (or, B and Bmix) have

the same mean, we can conduct a t-test with the null hypoth-
esis Hmix

0 : μmix
A − μmix

B = d0 on Amix and Bmix in order to
accept or reject H0 on A and B (line 14) – this is because H0

is a necessary and sufficient condition of Hmix
0 . For the same

reason, the significance and the power of Tmix
ε are guaran-

teed to be the same as those of the t-test on line 14.
Theorem 4 Tmix

ε (Algorithm 2) satisfied the hybrid privacy
model. It has a significance level α, i.e., type-I error ≤ α.
Its power is the same as the power of the t-test on line 14.
Proof: The significance/power guarantee is from the above
discussion. The privacy guarantee for each user follows from
Proposition 1 and how Amix and Bmix are collected.

We do not give a closed-form lower bound of Tmix
ε ’s sta-

tistical power. Since it is equal to the power of the test con-
ducted on line 14 of Algorithm 2, it depends on the variances

Figure 1: Empirical type-I error of different approaches

of Amix and Bmix, which are determined by σ2
A, σ2

B, r (the
fraction of users requiring LDP), and m as in (12). And since
σ2
A and σ2

B are usually much smaller than m2, r has a sig-
nificant impact on the power: the smaller r is, the smaller
the variances σ2

Amix and σ2
Bmix are, and the larger the power

is. This property will be verified in our experiments.
More general hybrid privacy models. Tmix

ε can be easily
extended for the model where each user i requires a different
privacy budget εi (just replacing ε with εi in lines 3-4 and
9-10 of Algorithm 2). In a different model considered for the
heavy-hitter problem (Avent et al. 2017), some users require
LDP while others only require DP on the testing output: how
to conduct effective tests in this model remains open.

Experimental Evaluation

Dataset and parameters. There are 20 million users in this
real-world dataset. Each user has a counter with the value in
[0, 15000], i.e., m = 15000. There are categorical attributes,
e.g., country, associated with each user’s counter.

We vary the privacy parameter ε from 0.5 to 5. The pre-
specified significance level α = 0.05, and the null hypoth-
esis is H0 : μA − μB = 0. We draw samples from con-
trol/treatment with equal sizes nA = nB . For each value
of sample sizes, we repeat drawing samples and conducting
(LDP) tests 1000 times, and report the average (empirical)
type-I error and statistical power (1 − type-II error).

Evaluating Significance

In the first set of experiments, we draw samples from distri-
butions with the same means, and thus H0 holds. We report
the average type-I error of different approaches in Figure 1,
i.e., the empirical probability that H0 is rejected.

We conduct Welch’s t-test on the non-privatized samples
(NonPrivate in Figure 1), estimation-based LDP test Test

ε1,ε2

(2bitLDP), LDP test Tbin
ε in Algorithm 1 (LDP), and Tmix

ε in
Algorithm 2 when 50% users require LDP (50% Hybrid).

Since it is required that type-I error ≤ significance level
α, ideally, the empirical type-I error should be close to α
or less. Figure 1 verifies Theorems 3-4: for different sam-
ple sizes and ε, both Tbin

ε and Tmix
ε always have empirical

type-I errors close to 0.05. However, Test
ε does not perform

well, even with large sample sizes and large ε = ε1 + ε2 =
2.5 + 2.5; the reason is that although the sample variance
estimator (5) used in Test

ε has bounded bias (Proposition 4),
its variance is too high as m is large, and thus its empirical
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(a) Gap θ = 60 (b) Gap θ = 120 (c) Gap θ = 300 (d) Gap θ = 600

Figure 2: Empirical power (1 − type-II error) of different approaches in different scenarios for varying θ and ε

Figure 3: Empirical power (1 − type-II error) of Tmix
ε for

hybrid privacy requirements with varying LDP fraction

error has a non-negligible impact on the test statistic, leading
to much higher type-I error than the pre-specified α.

Evaluating Power

We will evaluate the power of Tbin
ε (LDP in Figure 2) and

Tmix
ε (x% Hybrid in Figure 3) in the rest experiments, as they

have been shown to satisfy the significance level empirically.
We draw samples from two populations with means dif-

fering by some constant θ, and thus H0 should be rejected.
We report the average power in Figures 2-3, i.e., the empiri-
cal probability that H0 is (correctly) rejected.
Varying gap θ between control and treatment. We vary θ
between two sub-populations from 60 to 600 in Figures 2(a)-
2(d). In particular, θ = 60 is a real scenario that we are
comparing populations between two countries A and B. We
inject shifts to create synthetic cases with θ = 120-600.

As θ grows, both Tbin
ε (for different ε) and non-privatized

Welch’s t-test need smaller samples to achieve an empirical
power 0.8 (a threshold commonly used in practice). Intu-
itively, the larger the mean gap θ is, the easier it is for a test to
distinguish the two populations. This trend is also consistent
with theoretical bounds of the power derived in Theorem 3.

For θ = 60, to achieve an empirical power 0.8, Tbin
ε (with

ε = 5) needs roughly three times as many samples as the
non-privatized Welch’s t-test does. It is totally acceptable,
because, with the strong LDP privacy guaranteed for each
user without the need of trusting the data collector, more
users would be willing to share their data (in an LDP way).

Theorem 3 gives a way (11) to estimate the sample size
needed to achieve certain power in Tbin

ε . We can verify this

analytical result here: in Figures 2(a)-2(d), for each ε, we
plot a dashed line in the same color as the color of the corre-
sponding power curve – this dashed line, calculated by (11),
denotes the sample size needed to achieve a power of 0.8.
It turns out to be a “safe” estimation: samples with this size
always give the required or better power in Figure 2.
Hybrid privacy requirements. We evaluate our test Tmix

ε
for hybrid privacy requirements in the scenario with θ = 60
and ε = 1 in Figure 3: “x% Hybrid” represents Tmix

ε on a
population with a random portion of x% users requiring 1-
LDP, and “LDP” represents Tbin

ε . Intuitively, the less users
require LDP, the easier it is for us to conduct tests. This in-
tuition is consistent with the empirical performance of Tmix

ε ,
which calibrates noise for each LDP user and mixes them
with exact samples from those who do not require LDP.

Even within one sample, LDP users may follow a dif-
ferent distribution from non-LDP ones. So Tmix

ε still needs
larger samples than the non-private test does. But the sam-
ple size needed to achieve a high power (e.g., 0.8) decreases
quickly as the LDP ratio goes down: when 50% users re-
quires LDP, the sample size needed in Tmix

ε is around half of
the one in Tbin

ε ; and when 1% users requires LDP, the sample
size needed is close to the one in the non-private t-test.

Conclusion

We study how to conduct hypothesis testing for comparing
population means under LDP. We propose two approaches.
Both inject noise into each user’s data in the samples before
sending it to the data collector to ensure LDP. The first one,
called estimation-based LDP test, decodes LDP samples ag-
gregatively at the data collector to recover the observed test
statistics. The second one, called transformation-based LDP
test, studies the relationship between the population distri-
butions and the distributions of LDP samples. It conducts
transformed tests directly on LDP samples and converts con-
clusions for the original tests. The second one has provable
significance and lower bounds of power, and it can be ex-
tended for population with hybrid privacy requirements.
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Karwa, V., and Slavković, A. B. 2012. Differentially private graph-
ical degree sequences and synthetic graphs. In Proceedings of Pri-
vacy in Statistical Databases (PSD) 2012, 273–285.
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