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Abstract

Markov Random Field (MRF) is a powerful framework for
developing probabilistic models of complex problems. MRF
models possess rich structures to represent properties and
constraints of a problem. It has been successful on many
application problems, particularly those of computer vision
and image processing, where data are structured, e.g., pixels
are organized on grids. The problem of identifying commu-
nities in networks, which is essential for network analysis, is
in principle analogous to finding objects in images. It is sur-
prising that MRF has not yet been explored for network
community detection. It is challenging to apply MRF to
network analysis problems where data are organized on
graphs with irregular structures. Here we present a network-
specific MRF approach to community detection. The new
method effectively encodes the structural properties of an ir-
regular network in an energy function (the core of an MRF
model) so that the minimization of the function gives rise to
the best community structures. We analyzed the new MRF-
based method on several synthetic benchmarks and real-
world networks, showing its superior performance over the
state-of-the-art methods for community identification.

1. Introduction

We witnessed in recent years rapid accumulation of tre-
mendous amounts of data from complex systems or net-
works, e.g., online social networks, World Wide Web, and
biological networks. Finding network communities has
become an effective means to study complex systems be-
cause highly connected nodes in the same community tend
to share the same properties, and thus form functional
modules. Examples of network communities include polit-
ical groups reflected in blog networks and scientific disci-
plines in co-authorship networks. A fundamental problem
for analyzing complex systems is identification of network
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communities or modules embedded in such large quantities
of data. Discovering communities can help comprehend
organizational principles of a system, understand its func-
tions, and predict its future trend. Analysis of communities
has been adopted in, e.g., customer segmentation based on
their interests or preferences (Fortunato and Hric 2016),
recommendation systems in social media consumption
platforms (Bernardes et al. 2015), and behavioral social
targeting (Pool, Bonchi, and Leeuwen 2014).

Detection of communities in complex networks was
originally considered as a structure-based graph partition
problem (Girvan and Newman 2002). Its primary objective
is to divide the nodes in a network into groups so that the
nodes within the same group are densely connected,
whereas those in different groups are loosely connected. A
wide variety of community detection algorithms have been
proposed, as reviewed in (Fortunato and Hric 2016). They
include hierarchical clustering (Girvan and Newman 2002),
heuristic methods (Raghavan, Albert, and Kumara 2007),
modularity-based methods (Newman and Girvan 2004),
spectral algorithms (Li et al. 2015), dynamic algorithms
(Rosvall and Bergstrom 2008), and statistical model based
methods (Martin, Ball, and Newman 2016). Among these
methods, statistical model based methods have a solid the-
oretical basis and reasonably good performance, and have
been broadly adopted. Many statistical models have been
explored and utilized to discover community structure,
which include stochastic block model (Karrer and Newman
2011), nonnegative matrix factorization (NMF) (Jin et al.
2016), and deep learning (Yang et al. 2016).

Markov Random Field (MRF) is a general and potent
statistical modeling technique (Nowozin and Lampert
2011). It can well represent structural relationships of task-
specific properties and constraints underlying complex
problems. It is particularly effective for problems in com-
puter vision and image processing. However, to the best of
our knowledge, MRF has not yet been considered for de-



tecting network communities, a special type of network
structure. We like to highlight that finding communities in
networks is analogous to finding objects or regions of in-
terest in images (i.e., the image segmentation problem).
The success of MRF on computer vision has inspired us to
extend MRF to the problem of community detection.

Markov Random Field relates observations to a problem
and some quantities of interest with a probabilistic model.
The model encodes a joint probability distribution P over
all feasible solutions of the quantities of interest, given the
observations to the problem, and find an optimal solution
by probabilistic inference on the model. To simplify an
MRF model (without considering probabilistic constraints),
the objective function of the model is first defined in an
energy form (i.e., the well-known energy function for MRF)
and the energy function is subsequently transformed to a
probabilistic objective function (i.e., the joint a posteriori
probability of the quantities of interest given the observa-
tions) by adopting a Gibbs distribution. Thus, the core of
an MRF model is its energy function. An MRF model can
be represented by an undirected graph, giving the alterna-
tive name of undirected probabilistic graphical model.

We are particularly interested in one of the most popular
types of MRF for image segmentation, pairwise MRF
(PMRF) (Nowozin and Lampert 2011). The energy func-
tion of a pMRF model is composed of a set of unary poten-
tials and a set of pairwise potentials. For image segmenta-
tion, two types of information in images can be used. One
is the set of features of pixels (e.g. color, brightness and
texture) and the other is the set of spatial or adjacen-
cy relationships among pixels in an image. pMRF for im-
age segmentation uses the pixel features to define a set of
unary potentials and the adjacency relationships to define a
set of pairwise potentials. In a pMRF model for image
segmentation, pixel features (and unary potentials) play a
dominant role by producing an initial segmentation of the
image, and the spatial adjacency relationships of pixels
(and pairwise potentials) are used to refine the model by
removing noise using soft smoothing constraints.

Unfortunately, for the problem of finding communities
in a network, network topology is often the only infor-
mation available and no equivalent feature information is
commonly provided. As a result, no feature information on
nodes can be exploited in unary potentials, and we cannot
derive an initial, rough community partition and directly
adopt a pMRF model. Thus, in order to apply pMRF to the
problem of network community identification only using
network topology, we need to develop new pairwise poten-
tials and a new network-specific pMRF approach.

We present in this paper such a pMRF model for net-
work community identification. Different from a pMRF
model for image segmentation that has one graph, our new
network-specific pMRF model maintains three graphs: the
original given network (adjacency relationships of nodes),
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an expected graph from a random-graph null model of the
given network to help detect network properties, and an
auxiliary, complete graph that is used as a graphical repre-
sentation of the pMRF model. Furthermore, we further
developed an efficient network-specific belief propagation
(BP) method for model inference by utilizing network top-
ological features. We present experimental results on syn-
thetic benchmarks and real-world networks to show the
superior performance of our network-specific MRF ap-
proach (named as NetMRF) over most state-of-the-arts.

2. The Net-MRF Approach

Given a network specified by the topology of how nodes
are connected, finding communities in the network is
equivalent to determining a community membership for
every node. Here we present a novel approach using a
MRF model that characterizes the relationship between the
network topology and node community memberships. We
also develop an inference method to optimize the model
for finding the optimal community structure.

2.1 The NetMRF Model

2.1.1 Design of the Model

We focus on the case where no node feature is available
for building unary potentials, so that the pMRF model only
contains pairwise potentials for topological properties of a
given network. Thus, making a full use of network struc-
tures holds the key to the design of a network-specific
PMRF model. We introduce two innovative design ideas.

Although there is no precise definition of communities,
one network structural property has been widely accepted
and used, i.e., nodes in the same community are densely
connected whereas nodes in different communities are
loosely linked. Therefore, the relationship between two
nodes with respect to an anticipated community structure
can be in one of the following categories, i.e., they are
connected (or disconnected) in the same community, or
they are connected (or disconnected) in different communi-
ties. To fully utilize this relationship between two nodes,
the pMRF model needs to 1) reward internal edges be-
tween nodes in the same group; 2) penalize the existing
edges across different groups; 3) penalize missing edges
(nonedges) between nodes in the same group; and 4) re-
ward nonedges across different groups. These four re-
quirements should be honored in a community detection
method. Note that no existing method has considered these
four requirements altogether. It is innovative to accommo-
date all of them in our network-specific MRF model.

A conventional pMRF model directly takes the adjacen-
cy relationships as the graphical representation of the mod-
el, and treats the adjacency relationships and the graphical
representation of a model as the same. For the problem of



community detection, if node adjacency relationships (i.e.,
the network topology) are taken as a graphical representa-
tion of a pMRF model, the model only contains pairwise
potentials for connected nodes in the given network. And it
only realizes the first two of the four requirements de-
scribed above and leaves out the last two requirements. To
support all of the four requirements, we creatively treated
the adjacency relationships and the graphical representa-
tion of a pMRF model separately and introduced an auxil-
iary, complete graph as the graphical representation to ac-
commodate pairwise potentials for the last two require-
ments. This is the first innovation in our design.

We now turn to the intrinsic community structures that a
given network has but a random graph does not. In a ran-
dom graph, nodes are randomly connected so that the
graph has little community structure. In contrast, real net-
works usually have some, albeit hidden, community struc-
tures. Thus, an expected random graph of the original net-
work, which has the same number of nodes and the same
number of edges as the given real network, can help extract
information of community structures hidden in the given
network. By comparing the real network with its expected
random graph, we can assess the extent of denseness with-
in communities and the extent of sparseness across com-
munities with respect to the random case. Therefore, we
introduced to our pMRF model an expected random graph
of the original network as a baseline for comparison. This
is the second innovation in our overall design of the model.

NetMREF for community detection

MREF for image segmentation

Problem

Dairwise potentials
adjacency relations)

Observed graph

Representation graph

(b)

Figure 1: Comparison of models for image segmentation and
network community detection. For expected random graph in (d),
the width of an edge corresponds to its expected values.

To extract structural information of communities hidden
in a given network and build an accurate energy function
for the pMRF model, we used degree-preserved random
graph null model to produce a comparison graph. Random
graphs generated by this random model have not only the
same numbers of nodes and edges but also the same degree
for each node as in the given network, which can provide a
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baseline on what to expect for a graph with the same graph
characteristics but with little community structure.

In summary, comparing to MRF models for image seg-
mentation, our NetMRF model for community detection
has two features. First, it does not have unary potentials
due to the lack of node feature information (the green part
in Figure 1(b)). Second, it introduces two auxiliary graphs,
i.e., a complete graph as a graphical representation of the
MRF model (the blue graph in Figure 1(d)) and a random
graph for comparison (the green graph in Figure 1 (d)) so
as to fully utilize the adjacency relationships among nodes.

2.1.2 The Definition of the NetMRF Model

Consider an undirected network G with » nodes and m
edges. The adjacency matrix of G is 4 = (a;))uxn, Where a;; =
1 if nodes i and j are connected, or 0, otherwise. Suppose
that the nodes fall into K communities and ¢; (¢;e {1, ...,
K}) denotes the community that node i belongs to, and
C=(c1,¢2, ...,Cn-1,cn) denotes a community partition of net-
work G. The auxiliary graphical representation of the
PMRF model is denoted by D, which is a complete graph
with the same number of nodes of the given network G.

As we adopt a fully connected structure for our pMRF
model, the energy function of the model is the sum of
pairwise potentials for all node pairs of the given network.
It should possess the property that the minimum of the
energy function corresponds to the best possible communi-
ty partition (Nowozin and Lampert 2011).

Pairwise potentials are defined based on the relative
density of edges between a pair of nodes, i.e., the differ-
ence between the density of edges in the given network and
that in a random graph. The pairwise potential between
nodes i and j can then be defined as:

o dd.

Ocucsap =0 (Seg )
where d; is the degree of node i in G, and the J-function
d(ciycj) is 1 if ¢=c;, or 0 otherwise. In Eq. (1), did;/2m is the
expected density of the edge between nodes i and j in the
random graph. In the above potentials, if the actual density
of edges between two nodes in the given network is larger
(smaller) than the expected density of edges in the ex-
pected random graph, the two nodes contribute a smaller
(larger) value to the pairwise potentials if they belong to
the same community than when they are in different com-
munities. As the better a community partition is, the small-
er the energy function becomes, the pairwise potential im-
poses a soft constraint to let two densely connected nodes
be more likely to be in the same community than in differ-
ent ones, and likewise let two loosely connected nodes to
be more likely to belong to different groups.

The energy function with exclusively the pairwise po-
tentials of our network-specific pMRF model can then be
defined as:
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In the energy function, all pairwise constraints cooperate
with each other to capture and utilize community structural
signals underlying network topology to derive a global
coherent community result.

With the energy function for a partition C defined, we
can then adopt the Gibbs distribution, P(C|4) o<
exp{—PE(C; A)}, which is a function of inverse tempera-
ture £, to compute the a posteriori probability of partition
C given network topology A. That is

- oleie;) ﬁ —

4)= Z( i exp{( D af,-)} 3)
where Z(A) is a normalization term, which depends on the
adjacency matrix A4, to ensure that P(C|4) is a probability
distribution. It is evident from (3) that the smaller the ener-
gy function, the larger the a posteriori probability. Finally,
the community partition C on # nodes can be estimated as
a global maximum of the posteriori of the pMRF model:

C= argmax P(C | A) 4)
C

P(C|

2.2 Model Inference by Belief Propagation

To derive the best community partition C that maximizes
the a posteriori probability P(C| A) of the MRF model, we
need to consider the inference problem on the MRF model.
We may adopt one of the well-developed MAP inference
methods in the MRF framework to find a configuration of
community memberships of all nodes, which contribute
Jjointly to the largest joint probability among all configura-
tions in Eq. (4). The optimization of this joint probability is
expected to provide a better solution than optimization of
individual per-variable marginal probabilities P (c¢; | 4),
which most existing statistical models attempt to optimize
(Karrer and Newman 2011; Martin, Ball, and Newman
2016). In fact, these two types of optimization usually pro-
duce different results (Bishop 2006).

Belief propagation (BP) is one of the most popular in-
ference methods for MRF models. It has a theoretical basis
and has been shown to have an excellent performance on a
wide variety of problems. There are two versions of BP,
the sum-product version and the max-sum version. The
sum-product version of BP computes marginal probabili-
ties of the joint probability distribution of an MRF model;
the max-sum version of BP finds a configuration of varia-
bles that has the largest joint probability. Here we use the
max-sum version to jointly maximize the joint probability.

The algorithm runs in iteration to compute a series of
“messages” for each edge in a graph (the auxiliary, com-
plete graph D) of the MRF model until convergence. Ac-
cording to (Nowozin and Lampert 2011), the message that
node i sends to node j can be calculated iteratively in terms
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of all the messages that node i receives from its other
neighbors & of:

y Z max| (-1)° "‘)ﬁ( did —ay )-I—l/lf/fi %)

keNG) ;| *

where N(i) is the neighborhood of node i in graph D. Mes-
sages are normalized in every iteration by moving the min-
imum of the message for any community state c;e {1,...,K}
to zero, according to (Nowozin and Lampert 2011).

When the algorithm converges, the variable max-belief
ui(ci) then can be computed as:

ple) < Y | max| (-1 ‘k)ﬂ< did —ay )_h//k—n (6)

keN(@)|

Max-beliefs are scoring functions whose maximum corre-
spond to a community configuration with the maximal
joint probability.

To find the joint maximum a posteriori configuration,
for each variable ¢;, the state with the maximum max-belief
is selected, i.e.,

(7

¢, =arg max ,(c;)
cefl,...K}

2.3 A Max-Sum Belief Propagation Method

Since our NetMRF model is a fully connected pairwise
MRF, messages on all edges of the complete graph D need
to be computed in every iteration for a total of n(n-1) mes-
sages. The time for computing each message is O(n) ac-
cording to (5). Then the whole algorithm takes O(n?) time.
To make it suitable for large networks, we further devel-
oped an efficient max-sum version of BP based on the
principle of network-specific fast sum-product version of
BP that is used to compute marginal probabilities for other
network analysis model (e.g., stochastic block model) (De-
celle et al. 2011). According to (Decelle et al. 2011), fol-
lowing the connection between BP algorithm and the repli-
ca symmetric cavity method in statistical physics, each
node can send the same message to all its non-neighbors of
the original network, which is the belief of node i (i.e.,
ui(ci), as terms of subleading order can be neglected. The
messages sent to non-neighbors can be replaced by an ex-
ternal field. In this case, in each iteration we only need to
update O(m) messages where m is the number of edges.
Then the message that node i sends to its neighbor j can

be computed as:
did ;
max| (1)K p( ko1 )
keNg (i) j| “k 2m

l%j

v,

+ > rICI;:X|:( 1)5(L L")ﬂ . +/1k(ck)}

kENG(i)

®)

where Ng(i) is the neighborhood of node i in network G.



As messages from non-neighbors can be replaced by an
external field (Decelle et al. 2011), the message that node i
sends to its neighbor j can be computed based on auxiliary
external field:

. dd ;
i 1.6 i“k fe—i
v, / E max (—1) /)’( S 1 ) +y, +h, (di)(g)

keNg@)j|

where Ng(i) is the neighborhood of node i on network G,
and A.4(d;) is the external field

_ - —1\o(e.e) didk
h(.,(d,-)—;{mix {( e p s +uk<ck)ﬂ (10)

The external field is a function of degree values of nodes,
and there are L external fields need to be computed, where
L is the number of distinct degrees.

The max-belief ui(c;) can be computed based on the aux-
iliary external field as follow:

9 (6;,) az'dk k— i
i) « Z [rr(;ka{(—l) ﬂ( B -1 ) +y, }

keNg(i)

In order to find a fixed point of (9) in linear time, we
update the message y!”/, recompute uic;), update the
field hc(d;) by adding the new contribution and subtracting
the old one, and repeat until messages converge to a fixed
point. The detail description of the whole efficient max-
sum version of BP algorithm is as follows:

Efficient Max-Sum (K, A4, &, T)

(1) Initialize randomly K-component message vector 1//H
for each edge (i, j) on the original network G;

(2) Initialize randomly K-component max-belief u; for

3)

+h,(@X11)

J

each vertex i;
Compute K-component external field /(d;) according
to (10) for each distanct degree value;

(4) conv«—¢& +10;t«0;

(5) whileconv>¢ andr<T:

(6) doconv«— 0;ft«—1¢t+1;

7 for every edge (i, j) on network G:

(3) do Update all K-component of y' "’
according to (9);

) conv «— conv + ’ l//;;:] - ‘//:;l_d) !

(10) Update [; using the new value of l//Hj
and (11);

11 Update the field % by subtracting the

old ; and adding the new value
according to (10);
(12) Compute ¢ from max-beliefs using (7).

For each edge (i, j), it takes O(K’d;) time to updating
message '~/ and max-belief u; according to (9) and (11)
respectively, where d; is the degree of node i, and O(LK?)
time to update external field 4. For a network with m edges,
the time of each iteration is no greater than O(mK(dmax L))
where dmax= max(di, ..., d,). As the number of communi-
ties K is usually very small relative to the number of nodes,
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the time of each iteration is no greater than O(m(dmaxt+L)).
As the maximal number of possible iterations 7 is set to
100 (a constant number) in our experiments, the total time
of the algorithm is O(m(dmaxtL)). As dmax and L are the
largest node degree and the number of distinct degrees
respectively, which are very small relative to the number of
nodes » and can also be considered as a constant, the total
time complexity of the algorithm is O(m) which is nearly
linear for large sparse networks.

3. Experimental Analysis

Here we validate whether our newly developed MRF ap-
proach is competitive and can outperform the existing
methods, particularly statistical models.

We first tested the speedup version of our NetMFR
method on two types of synthetic benchmarks, and then
applied it to several widely used real-world networks with
or without ground-truth of communities. We compared it
with five existing methods, i.e., Karrer’s method (Karrer
and Newman 2011), SNMF (Wang et al. 2011), BNMTF
(Zhang and Yeung 2012), MNDP (Jin et al. 2015) and
DNR (Yang et al. 2016). Karrer’s method is a degree-
corrected stochastic block model. SNMF, BNMTF and
MNDP are all nonnegative matrix factorization methods.
DNR is an algorithm using deep learning. We adopted ac-
curacy (AC) and normalized mutual information (NMI)
(Liu et al. 2012) as accuracy metrics when ground-truth of
communities is known, and used modularity O (Newman
and Girvan 2004) as quality metric when true communities
are unknown. We compared NetMFR with its original ver-
sion without speedup to assess accuracy and efficiency.

We used the programs of the existing methods from
their authors and reported the results using their default
parameters, expect our early deep learning method DNR
(Yang et al. 2016). Besides, because all of these methods
converge to local minima, we ran each method 20 times
and report the result with the highest objective. For DNR,
we used the results that we reported in the original paper.
Since these methods all need the number of communities K,
when true communities are known we set K to the ground-
truth, whereas when communities are unknown we used
Louvain method (Blondel et al. 2008) to find K as did in
(Jin et al. 2015).

3.1 Synthetic Benchmarks

We used two types of synthetic networks, the Girven-
Newman benchmarks (Girvan and Newman 2002) and the
LFR benchmarks (Lancichinetti, Fortunato, and Radicchi
2008) with known community structures.

3.1.1 The Girven-Newman Networks
For this benchmark, each graph consists of » = 128 nodes
divided into 4 groups of 32 nodes each. Each node has on



average zi, edges connecting it to members of the same
group and zoy edges to members of other groups, with zi,
and zoy chosen such that the expected degree zin + zou = 16.
Fig. 2(a) shows the accuracy of each algorithm in NMI
as a function of the outside degree number zoy (Which in-
creases from 4 to 12 with an increment of 1). As shown,
our NetMRF outperformed the other five methods. Espe-
cially when zo is in the range of 7 to 9 which is a discrim-
inative area where the superiority of NetMRF is more pro-
nounced. We also obtained similar results when measured
in AC, shown in Fig. 2(b). Collectively these results
showed that our new MRF approach is more suitable for
community detection, outperforming the state-of-the-arts.
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Figure 2: Comparison of our NetMRF to Karrer’s method, SNMF,
BNMTF, MNDP and DNR in terms of (a) NMI and (b) AC on
GN benchmarks. (Yang et al. 2016) reported results from zou=4
to 8 in NMI, so the showed DNR results are just from 4 to 8 in (a).

3.1.2 LFR Artificial Networks
To further compare these methods, a new type of bench-
mark proposed by (Lancichinetti, Fortunato, and Radicchi
2008) was also used. This benchmark has some interesting
properties, e.g., the heterogeneous distributions of node
degree and community size that have been found in most
real-world networks. As designed in (Yang et al. 2016), we
considered networks with 1,000 nodes and the minimum
community size cmin of 10 or 20. We varied the mixing
parameter z, which specifies the fraction of the links of a
node connecting to nodes outside of the node’s community,
from 0.6 to 0.8 with an increment of 0.05, which is the
most discriminative area of this benchmark. The remaining
parameters were kept fixed: the average degree d was set to
20, the maximum degree dmax to 2.5%d, the maximum
community Size Cmax t0 5Xcmin, the exponent of power-law
distribution of node degrees 7; to -2 and community size »
to -1. This design space led to two sets of benchmarks. Due
to space limitation, we only present the results measured in
NMI since the results in AC are also similar. We did not
compare the results of BNMTF here since it cannot finish
within 100 hours on every trial attempted.

Fig. 3 shows the accuracy of each algorithm in NMI as a
function of the mixing parameter . As shown in Fig. 3(b),
our NetMFR method performs the best on networks with
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large communities. On networks with small communities,
NetMFR, SNMF, MNDP and DNR performed similarly,
and were much better than Karrer’s method (Fig. 3(a)). In
short, our method performed competitively or better than
these methods on the more challenging benchmark.

n=1000 cmin=10 cmax=50 n=1000 cmin=20 cmax=100

Karrer
-+ SNMF
-<+~MNDP
4-DNR
-4-NetMRF

Karrer
0.4 [|<+SNMF
~+~MNDP
0.2 {@DNR

-<4-NetMRF

0.6 0.65 0.7 0.75

NMI (normalized mutual information)
NMI (normalized mutual information)

e
)

0.6 0.65 0.7 0.75 0.8
mixing parameter u mixing parameter u

(a) (b)
Figure 3: Comparison of different methods in terms of NMI on
the LFR benchmark. Each instance is averaged over 50 graphs.
Shown are results on networks of (a) small communities (cmin =
10, ¢max = 50) and (b) large communities (¢min = 20, ¢max = 100).

3.2 Real-World Networks

Many real networks have distinct topological properties
from synthetic networks on which different methods may
perform differently.

3.2.1 Real Networks with Ground-Truth Communities
The comparison will be more compelling if the real net-
works have ground-truth of communities, so that we can
use the gold metric, i.e., accuracy, to evaluate the perfor-
mance of different methods.

The ten real-world networks that were analyzed (New-
man 2017; Xie, Kelley, and Szymanski 2013; Sen et al.
2008) are listed in Table 1. The methods that were com-
pared in terms of AC and NMI, along with the results on
ten real networks, are listed in Tables 1 and 2. (DNR, and
DNRcg are two versions of DNR in (Yang et al. 2016), one
is DNR with L2 norm and the other is that with cross-
entropy distance.) As shown, the new method NetMRF has
the best performance on 9 and 8 of the 10 networks in
terms of AC and NMI, respectively. For example, using the
NMI index, NetMRF is on average 10.13%, 5.45%, 6.71%,
3.88%, 7.01% and 3.58% more accurate than Karrer’s
method, SNMF, BNMTF, MNDP, DNR;, and DNRcg,
respectively. We obtained similar results measured in AC.
This further validates the superiority of the MRF based
model over the existing models in finding communities.

Considering the efficiency, on the largest network we
used, i.e., Pubmed with 19,729 nodes, our NetMFR method,
Karrer’s method, SNMF and MNDP ran 794s, 2,238s, 667s
and 14,793s, respectively. (BNMTF could not finish in 100
hours.) We also performed the efficiency experiments on
other networks though did not show them due to space
limitation. The efficiency of our NetMFR is always com-



petitive with SNMF. It ran faster than the other methods
compared.

Table 1: Comparison of 5 methods in terms of accuracy AC on 10
real networks with ground-truth of communities. ‘Friendship6’
and ‘Friendship7’ have the same network, but are described by

different “true” communities. NDR was not included because
(Yang et al. 2016) didn't reported their results in AC index.

Accuracy AC (%)
Datasets o K [Karrer SNMF BNMTF MNDP NetMRF
Karate club 34 78 2 197.06 100 100 100 100
Friendship6 69 220 6 [81.16 78.26 60.87 78.26 95.65
Friendship7 69 220 7 194.20 88.41 89.86 89.86 95.65
Political books 105 441 3 182.86 80.95 69.52 8190 83.81
US Football 115 613 12/84.35 87.83 91.30 91.30 91.30
Political blogs 1,490 16,717 2 |87.18 94.69 94.61 94.69 95.01
Cora 2,708 5,429 7 |37.70 42.25 40.95 4439 58.05
UAI2010 3,363 45,006 19(27.78 28.52 25.51 2892 31.14
Northeastern  13,882381,9357 |66.36 58.87 - 56.4 65.11
PubMed 19,72944,338 3 |53.64 52.87 - 50.72 55.53
Table 2: Comparison of 6 methods in terms of NMI on 10 net-

works. We showed one decimal place for DNR’s results as (Yang
et al. 2016) did in their paper, and also, they did not give DNR’s
results on some of these networks so that we marked them as
‘N/A. The ‘=’ denotes run time >100 hours.

Datasets NMI index (%)

Karrer SNMF BNMTF MNDP DNR;, DNR¢g NetMRF
Karate club 83.72 100 100 100 100 100 100
Friendship6 77.02 78.64 7122 7930 888 924 9398
Friendship7 85.10 82.11 8430 8426 90.7 932 93.24
Political books | 54.20 56.48 51.18 53.01 552 582 56.88
US Football 87.06 90.38 9242 9242 927 914 9242
Political blogs |45.68 70.95 70.78 71.07 389 51.7 71.83
Cora 17.06 24.72 26.08 3399 N/A N/A 37.24
UAI2010 2098 2324 21.68 2501 N/A N/A 25.76
Northeastern | 49.13 38.66 - 40.67 N/A N/A 4524
PubMed 12.28 13.80 - 1496 N/A N/A 16.89

3.2.2 Real Networks without Known Communities

We often know little about the community structures of
real networks. So here we further compared these methods
on eight real-world networks with no known communities
(Newman 2017; Nelson, McEvoy, and Schreiber 2004),
which are listed in Table 3. When no “true” number of
communities K is known, our method NetMRF can run on
different K’s (e.g., in a range of Kmin to Kmax), and get the
best K as its communities which corresponds to the small-
est energy function value. However, the methods compared
cannot find the number of communities automatically,
which is typically suffered by most statistical model-based
methods. So for fair comparison, we used Louvain method
(Blondel et al. 2008) to estimate the numbers of communi-
ties and used the estimated numbers in all methods. We
adopted the widely-used quality metric of modularity Q
(Newman and Girvan 2004) for evaluating the quality of
community structures obtained by all of these algorithms.
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The results are in Table 3. As shown, NetMRF has the
best performance on 7 of the 8 networks in terms of modu-
larity Q. On average, our method is 0.2099, 0.0445, 0.0671
and 0.0404 better than Karrer’s method, SNMF, BNMTF
and MNDP, respectively. As Q-values are normally in the
range of 0.3 to 0.8 (Newman and Girvan 2004), NetMRF
obviously outperformed the existing methods.

Table 3: Comparison of 5 algorithms on 8 real networks with no
known community structures. The greater a O-value, the better.
The ‘-’ denotes run time >100 hours.

Modularity O
Datasets moom K rrer SNMF BNMTF MNDP NetMFR
Les Miserables 77 254 6 [0.45750.5453 0.5487 0.5434 0.5600
Word adjacencies 112 425 7 |-0.1040.2672 0.2634 0.2712 0.2813
Jazz musicians 198 2,742 4 (0.36960.4348 0.4347 0.4377 0.4495
C. Elegans neural 297 2,148 5 [0.26170.3701 0.3689 0.3811 0.4120
E. coli metabolic 453 2,025 10[0.26560.3879 0.3834 0.3796 0.4579
E-mail network  1,1335.451 11/0.51260.5007 0.4685 0.5154 0.5712
Power grid 4,941 6,594 39/0.17960.8649 0.7212 0.8683 0.9266
Word association 5,018 55,234 12/0.45950.3546 - 0.3613 0.4226

Table 4: Comparison of NetMRF with its original version without
speedup on accuracy and runtime. “Ratio” denotes the result of
NetMRF divided by that of its original version.

NMI (%) . o, |_Time (Seconds) <o

Datasets NetMRF Original Ratio (%) NetMRF Original Ratio (%)
Karate club 100 100 100 0.012  0.077 1558
Friendship6 ~ [93.98  96.07 97.82 0.062  0.894 6.94
Friendship7  [93.24 9395 99.24 0.076 0981 7.75
Political books [56.88  67.21  84.63 0.071  0.697 10.19
US Football  92.32  92.69  99.60 0.222 5796 3.83
Political blogs [71.83 7331  97.98 1220 77.54 15.73
Cora 3724  39.27 9483 56.40 1666  3.38
UAI2010 2576 27.62 93.27 1337 10192 1.31
Northeastern  [45.24 523 86.50 1962 25965 7.56
PubMed 16.89  17.69 95.48 794.0 25885 3.07

3.3 Comparison within the NetMRF Family

In order to further appreciate the effectiveness of the
speedup strategy that we adopted (i.e., reducing its time
from O(#?) to nearly linear) to make the MRF model prac-
tical on large networks, we compared NetMRF with its
original version without speedup. As shown in Table 4, on
the 10 real networks of Table 1, the NMI index of NetMRF
is on average 94.94% of its original version while it ran
22.7 times faster. This also means that these two versions
generate similar results but with NetMRF runs almost two
orders faster than the original non-speedup version.

4. Conclusion and Discussions

For most problems of network analysis, network topology
is often the only source of information available. Therefore,
it is imperative to develop algorithms for network analysis,
including community detection, by exclusively explore



network topological properties. In this paper, we focused
on developing a new network-specific MRF approach,
called NetMRF, for finding communities in large networks,
which exclusively and effectively utilizes network topolo-
gies. Our extensive experiments showed that NetMRF out-
performs the state-of-the-art methods on synthetic and real
networks. The results suggest that NetMRF is the algo-
rithm of choice for community detection when network
topology is the only available information.

To our knowledge, NetMRF is the first approach that
uses MRF for network community detection. NetMRF is
general and applicable to nearly all types of real networks.
NetMREF can also be readily extended to attributed network
(e.g., network with content), as such content information
can be directly incorporated into the unary potentials of
MREF energy functions; it can also be readily extended to
overlapping community detection by replacing the max-
sum version of BP with the sum-product version of BP for
inference in the MRF model. Therefore, the work present-
ed here sets the foundation for a novel, general MRF based
approach that is able to use network topology and content
information to detect disjoint and overlapping communities.
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