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Abstract

To give a more humanized response in Voice Dialogue Appli-
cations (VDAs), inferring emotion states from users’ queries
may play an important role. However, in VDAs, we have
tremendous amount of VDA users and massive scale of un-
labeled data with high dimension features from multimodal
information, which challenge the traditional speech emo-
tion recognition methods. In this paper, to better infer emo-
tion from conversational voice data, we propose a semi-
supervised multi-path generative neural network. Specifi-
cally, first, we build a novel supervised multi-path deep
neural network framework. To avoid high dimensional in-
put, raw features are trained by groups in local classifiers.
Then high-level features of each local classifiers are con-
catenated as input of a global classifier. These two kinds
classifiers are trained simultaneously through a single ob-
jective function to achieve a more effective and discrimi-
native emotion inferring. To further solve the labeled-data-
scarcity problem, we extend the multi-path deep neural net-
work to a generative model based on semi-supervised varia-
tional autoencoder(semi-VAE), which is able to train the la-
beled and unlabeled data simultaneously. Experiment based
on a 24,000 real-world dataset collected from Sogou Voice
Assistant1(SVAD13) and a benchmark dataset IEMOCAP
show that our method significantly outperforms the existing
state-of-the-art results.

1 Introduction

The increasing popularity of Voice Dialogue Applica-
tions(VDAs), such as Siri2, brings great convenience to our
daily life. As the same words said in different emotion can
convey quite different messages, inferring emotion from
these conversational voice data of queries can assist to un-
derstand the true meaning of users as well as provide more
humanized responses.

Traditionally, in speech emotion recognition, there are
two kinds of major frameworks. One is HMM-GMM frame-
work based on dynamic features (Schuller, Rigoll, and Lang
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2003) , another one is support vector machines (SVM) based
on high-level representations(Schuller et al. 2009). Recently,
more and more attention has been paid to deep learning for
speech emotion recognition which results in a better per-
formance than the traditional framework (Kim, Lee, and
Provost 2013). Totally, two kinds of frameworks based on
deep learning have been proposed for speech emotion recog-
nition. Some researches are based on utterance-level features
which usually extract high-level representations from low-
level descriptors(LLDs) and then utilize deep neural net-
work (DNN) for classification (Xia and Liu 2017). Mean-
while, instead of high-level statistics representation, some
other researches utilize frame-level representation or raw
signal as input to neural network for an end-to-end train-
ing (Zhang et al. 2016; Trigeorgis et al. 2016). Also, some
works have focused on unsupervised learning for speech
emotion recognition (Ren et al. 2014; Wu et al. 2016;
Ghosh et al. 2016; Chang and Scherer 2017), which utilize
the unlabeled data to help improve the performance. Gener-
ally, deep learning have made a great contribution to speech
emotion learning.

However, for inferring emotion from conversational voice
data, these works based on deep learning have limitations
in the following two aspects. 1) for utterance-level frame-
work, features generated from lots of statistics functions
usually concatenated without selection before input to nets,
which lead to difficulty for getting satisfied training perfor-
mance because of high dimension features. Although some
dimensionality reduction techniques are explored to solve
this problem (Jin et al. 2014; Liu et al. 2017), finding a sat-
isfied strategy is not easy because of some information must
be loss from raw features; 2) Previous works primarily fo-
cus on datasets with limited amount of labeled data, such
as IEMOCAP database (Busso et al. 2008). While in VDAs,
we have tremendous amount of users and massive scale con-
versational voice data which raise difficulty to manually la-
bel, so how to make use of labeled data and unlabeled data
jointly is a quite crucial factor. As for the works focused
on unsupervised learning, their frameworks usually contain
two steps: representation learning based on unlabeled data
and classifier training based on labeled data. However, these
models, overfit easily due to the small amount labeled data
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Figure 1: The workflow of our framework.

for classifier training which greatly limit the performances.
Therefore, how to utilize those unlabeled data to increase the
speech emotion inference accuracy is still a challenge.

In this paper, employing a real-world VDA data, we
propose a novel semi-supervised learning scheme with
multi-path generative neural network (MGNN) to solve the
limitations mentioned above for speech emotion recogni-
tion(shown in Figure 1). Specifically, first, we propose a
novel supervised multi-path deep neural network frame-
work. Rather than learn a single classifier through the
whole features for our task, the whole features are divided
into groups based on different LLDs and statistics func-
tions, such as mean of MFCC features. Then, the high-
level representation features learned from local classifiers
are concatenated to feed into a global classifier. More im-
portantly, local classifiers and global classifier are trained
simultaneously through a single objective function. Sec-
ond, we extend the multi-path deep neural network to
a generative model based on semi-supervised variational
autoencoder(semi-VAE)(Kingma et al. 2014). Employed as
the local part of multi-path method, semi-VAE utilize la-
beled data to train a classifier and exploit unlabeled data
to strengthen the classifier simultaneously. Experiments on
benchmark dataset IEMOCAP and real-world voice dataset
from Sogou Voice Assistant(SVAD13)(a Chinese Siri) show
that our framework is efficient. Especially for IEMOCAP,
our method outperform (+11.6% in terms of unweighted ac-
curacy of acoustic and textual feature)the existing state-of-
the-art methods.

Our main contributions are summarized as below.

• First, we propose a novel supervised multi-path deep neu-
ral network framework. Unlike the existing works that
employ the whole features as input and train them in a
single classifier, the proposed framework train raw fea-
tures by groups in local classifiers to avoid high dimen-
sional. Then high-level features of each local classifiers
are concatenated as input of a global classifier. More im-
portantly, these two kinds classifiers are trained simulta-
neously through a single objective function to achieve a
more effective and discriminative emotion inferring.

• Second, extending the multi-path deep neural network to
a generative model based on semi-VAE, we introduce a
semi-supervised multi-path generative framework. By uti-
lizing labeled data and unlabeled data as a joint process
for training, to some extent, it help solve the problem
of over-fitting easily caused by the small amount labeled
data in classifier training.

The rest of paper is organized as follows. Section 2 lists re-
lated works. Section 3 formulates the problem. Section 4
presents the methodologies. Section 5 introduces the exper-
iment dataset and results. Section 6 is the conclusion.

2 Related Works

In this section, we briefly review previous methods which
are most related to our work including speech emotion
recognition and semi-supervised learning.

Speech emotion recognition. Existing works can be
sorted into two aspects: utterance-level feature based and
frame-level feature based. Researches on utterance-level
feature based approaches generate high-level representation
from LLDs with lots of statistics functions, and then as input
of DNN for classification (Xia and Liu 2017). For frame-
level feature based approaches, (Mirsamadi, Barsoum, and
Zhang 2017) propose local attention based recurrent neu-
ral networks for speech emotion recognition. (Zhang et al.
2016) propose multi-modal learning scheme based on con-
volutional network for audio-visual emotion recognition.
(Trigeorgis et al. 2016) utilize convolutional recurrent net-
work to learn high-level representations for recognition.

semi-supervised learning. As autoencoders have always
been a common way to make better use of unlabeled data.
(Ghosh et al. 2016) utilize stacked autoencoder to form high-
level representation with an unsupervised way, and adopt
BLSTM for classification. (Chang and Scherer 2017) learn
representations based DCGAN for speech emotion recog-
nition. In these works, two independent parts usually con-
tained: representation learning based on unlabeled data and
classifier training based on labeled data, which overfit eas-
ily due to the small amount labeled data for classifier train-
ing. To our best knowledge, seldom work make use of la-

580



beled data and unlabeled data as a joint process in training
for speech emotion recognition. It is worth noting that great
success has been achieved based semi-supervised learning
approach, such as variational autoencoder (VAE) (Kingma
and Welling 2014), in the area of computer vision and nat-
ural language processing. These works prove that the semi-
supervised learning based is more efficient than the tradi-
tional approach mentioned above.

3 Problem Formulation

Given a set of utterances S, we divide it into two sets Sl

(labeled data) and Su (unlabeled data). For each utterance
x ∈ S, we denote x = {xa, xt}. xa represents the acoustic
features of each utterance, which is a na dimensional vector.
xt represents the textual features of each utterance, which
is a nt dimensional vector. In addition, Xa is defined as a
|S| ∗ na feature matrix with each element xa

ij denoting the
jth acoustic feature of vi. The definition of Xt is similar to
Xa.

Definition. Emotion. We adopt {Positive, Neutral, Neg-
tive} as the emotion space and denote it as ES , where S = 3.

Problem. Learning task. Given utterances set V , we aim
to infer the emotion for every utterance x ∈ S:

f : (Sl, Su, X
a, Xt) ⇒ ES (1)

4 Multi-path Generative Neural Network

In this work, a semi-supervised multi-path generative neural
network framework is proposed for inferring emotion from
real-world conversational voice data. Specifically, first, to
take the feature independency nature into account and avoid
high dimensional input, we adopt a supervised multi-path
deep neural network(MDNN) framework. Raw features are
trained by groups in local classifiers. Then high-level fea-
tures of each local classifiers are concatenated as input of a
global classifier. These two kinds classifiers are trained si-
multaneously through a single objective function to achieve
a more effective and discriminative emotion inferring. Sec-
ond, to solve the labeled-data-scarcity problem, we extend
the MDNN framework to a semi-supervised multi-path gen-
erative neural network(MGNN) framework based on semi-
VAE, which utilize labeled data and unlabeled data as a joint
process for training. The structures of MDNN and MGNN
are shown in Figure 2 and Figure 3.

4.1 Multi-path Deep Neural Network

As discussed above, traditionally, for speech emotion recog-
nition, high-level representations generated by applying
statistics functions on low-level descriptors (LLDs) with
simply concatenating are used as input of deep neural net-
work. These not only ignore the independent nature of each
feature but also cause the feature dimension to be too high,
which restrict the performance to a great extent.

To solve these, we propose a novel supervised framework
for speech emotion recognition, called multi-path deep neu-
ral network(MDNN) shown in Figure 2, which trains group-
features as local classifiers and their concatenated high-level
representation features as global classifier simultaneously
through a single objective function.

Figure 2: The structure of Multi-path Deep Neural Network.

Rather than learn a single classifier through the whole
sample features for our task, the raw features are divided
into groups based on different LLDs and statistics functions,
such as mean or standard deviation of MFCC features, to
learn multiple classifiers. Therefore, each grouped features
are trained to obtain the corresponding classifier, we called
these are ‘local classifiers’. Through ‘local classifiers’, each
grouped features are trained for classification independently,
which effectively avoid the problem that the dimensions too
high.

It is worth noting that although ‘local classifiers’ take the
independent nature of features into account, they ignore rel-
evance between different features. To solve this problem, we
merge the highest hidden layers of ‘local classifier’ to gener-
ate a global representation for training a ‘global classifier’,
which can model the relevance between different feature
effectively. More importantly, we optimize the framework
through the single objective function as following, which
can make us train ‘local classifiers’ and ‘global classifier’
simultaneously:

L(Θ,Φ;x) = (1− λ)Lg(θg, φg;x)

+ λ
N∑

i=1

Ll(θl,i, φl,i;x)

= (1− λ)H(pθg (x), qφg
(x))

+ λ
N∑

i=1

H(pθl,i(x), qφl,i
(x))

(2)

where Lg(·) is the cost function for ‘global classifier’ and
Ll(·) is the cost function for ‘local classifier’. pθ is the true
distribution of one-hot label and qφ is the approximating dis-
tribution. N is the number of ‘local classifiers’ and λ is the
weight coefficient that between 0 and 1. Specially, for λ = 0,
only the ‘global classifier’ are included in the framework,
and for λ = 1, only ‘local classifiers’ are included. H(·) is a
function that returns cross-entropy between an approximat-
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ing distribution and a true distribution that can be written
mathematically:

H(p(x), q(x)) = −
∑

x

p(x) log(q(x)) (3)

The objective function Eq. 2, can be optimized based on
back-propagation algorithm.

4.2 Multi-path Generative Neural Network

In VDAs, we have tremendous amount of users and mas-
sive scale conversational voice data which raise difficulty to
manually label. However, previous works in speech emotion
recognition primarily focus on datasets with limited amount
of labeled data. Although some works focus on unsuper-
vised learning which also utilize the unlabeled data to help
pre-training model, their frameworks usually train unlabeled
data and labeled data separately which overfit easily due to
the small amount labeled data for classifier training. There-
fore, how to make use of labeled data and unlabeled data
jointly is still challenge.

To solve these, we extent the multi-path deep neural net-
work to a semi-supervised framework named multi-path
generative neural network(MGNN, shown in Figure 3),
which train labeled data and unlabeled data simultaneously
based on semi-VAE. As shown in Figure 3, rather than em-
ploy DNN, we employ a semi-VAE as the building block for
constructing the multi-path neural network. Similar to multi-
path deep neural network, group-based features are used as
the input of semi-VAEs.

Typically, a Variational Autoencoder(VAE) is a deep gen-
erative model (Kingma and Welling 2014) which contains
both a probabilistic encoder and decoder with an observed
data set S. For x ∈ S, the encoder network qφ(z | x), as
an approximation to the true posterior pθ(z | x), is an infer-
ence model to acquire a latent distribution z from observed
datapoint x. The decoder network pθ(x | z) is a generative
model to get a distribution over the possible corresponding
x, given a latent variable z. The whole process can be writ-
ten mathematicallly as:

z ∼ qφ(z | x),x ∼ pθ(x | z) (4)

According to (Kingma and Welling 2014), based on SGVB
estimator and reparameterization trick, the parameters, θ and
φ, can be trained simultaneously based on (deep) neural net-
works (most commonly DNNs or CNNs).

As an extension of VAE, semi-supervised learning
method based on semi-VAE was proposed in (Kingma et al.
2014). Besides an encoder and a decoder, a classifier is con-
sisted in the semi-VAE framework and these three parts are
trained simultaneously with a single objective function. For
the auto-encoder part, two objective functions are utilized
for optimization with labeled data and unlabeled data.

Give a labeled data x and its label y, the evidence lower
bound with corresponding latent variable z is:

log pθ(x, y) ≥ Eqφ(z|x,y)[log pθ(x | y, z)] + log pθ(y)

−DKL[qφ(z | x, y) || pθ(z)]
= −L(x, y)

(5)

Figure 3: The structure of multi-path generative neural net-
work.

for unlabeled data, the evidence lower bound is:

log pθ(x) ≥
∑

y

qφ(y | x)(−L(x, y))

−DKL(qφ(y, z | x) || pθ(z))
=

∑

y

qφ(y | x)(−L(x, y)) +H(qφ(y | x))

= −U(x)

(6)

Then,the final objective function is:

J =
∑

(x,y)∈Sl

L(x, y) +
∑

x∈Su

U(x)

+ αE(x,y)∈Sl
[− log qφ(y | x)]

(7)

Specifically, the first item is the loss of labeled data in auto-
encoder part defined as Eq. 5, the second item is the loss of
unlabeled data in auto-encoder part defined as Eq. 6, and the
third item is the loss for classifier part to learn the distribu-
tion qφ(y | x) from the labelled data. α is a hyper-parameter
that controls the weights of classification loss and we use
α = 0.1 ∗ |S| in all experiments. Sl and Su are the dataset
for labeled and unlabeled data respectively.

As shown in Figure 3, for MGNN, we utilize the semi-
VAEs as the building blocks. The objective of MGNN is
minimize the function as following:

JMGNN = (1− λ)E(x,y)∈Sl
[− log qφ(yglobal | x)]

+ λ

N∑

i=1

Jlocal,i

(8)

582



Table 1: The number of utterances for each emotion cate-
gory.

Emotion Happy Anger Sad Neutral Total
Utterances 1636 1103 1084 1708 5531

(%) 29.6 19.9 19.6 30.9 -

where Jlocal,i(·) is the cost function for ‘local classifiers’ ,
which is defined as Eq. 7. N is the number of ‘local classi-
fiers’. The first term is the loss of classifier part produced
by ‘global classifier’. λ is the weight coefficient between
0 and 1. Specially, for λ = 0, only the ‘global classifier’
are included in the framework, and for λ = 1, only ‘local
classifiers’ are included. The whole framework can be opti-
mized by AEVB algorithm with SGVB estimator (Kingma
and Welling 2013).

5 Experiments

5.1 Dataset Details

SVAD13 We establish a corpus of voice data from So-
gou Voice Assistant 1 (Chinese Siri)(SVAD13) containing
24,000 Mandarin utterances recorded in 2013. Every utter-
ance is assigned with its corresponding speech-to-text in-
formation provided by Sogou Corporation. Due to the mas-
sive scale of our dataset, manually labeling the emotion
for every utterance is not practical. Thus we randomly se-
lect 2,000 utterances from the dataset and invite three well-
trained people to annotate the emotion. The annotators are
asked to label the emotion by listening to the utterances and
reading corresponding words simultaneously. The annota-
tors stop and discuss when they can’t reach consensus. If
they still cannot reach an agreement, the utterance will be
discarded. The emotion distributions of these utterances are:
Neutral: 43.75%, Positive: 18.5%, Negtive: 38.2%. Besides,
randomly selected 24000 unlabeled data are employed to do
model training in our experiment.

IEMOCAP The IEMOCAP (Busso et al. 2008) database
have been widely used for evaluating speech emotion recog-
nition systems. It contains approximately 12 hours of audio-
visual conversations in English, and the conversations are
manually segmented into utterances. The categorical labels
of the utterances are as follows: anger, happiness, sadness,
neutral, excitement, frustration, fear, surprise, and others.
In our experiment, to compare with the state of the art as
mentioned beforemerging the happiness and excitement cat-
egories as the happy category, we form a four-class emotion
classification dataset containing {happy, angry, sad and neu-
tral}. Table 1 presents the detail utterance number of each
category. There are in total 5531 utterances.

5.2 Feature Extraction

Acoustic Feature We utilize openSMILE toolkit (Eyben,
Wöllmer, and Schuller 2010) to extract acoustic features for
SVAD13 and IEMOCAP. Totally, we obtain 1,582 statistic
acoustic feature, which is the same as the acoustic features
used in the INTERSPEECH 2010 Paralinguistic Challenge
(Schuller et al. 2010).

Textual feature As for the textual information in real-
world chinese database SVAD13. Thulac Tool (Li and Sun
2009), an efficient Chinese word segmentation is used
to get words of an utterance. Then word embeddings is
learned with word2vec (Mikolov et al. 2013). Specifically,
we use the whole 31.2 million chinese word corpora col-
lected from the 7.5 million utterance from SVAD13 as the
training corpora for word2vec. As for the textual informa-
tion in IEMOCAP, we adopt the publicly available 300-
dimensional word2vec vectors, which are trained on 100
billion words from Google News(Mikolov et al. 2013) to
represent word vector. Then, we extract 4200-dimensional
utterance-level textual features according to the statistic
functions (mean, std, disp, max, min, range, quartile1/2/3,
iqr1-2/2-3/1-3, skewness, kurtosis) over the LLDs.

5.3 Experimental setup

Evaluation metrics. In all the experiments, we evaluate the
performance in terms of F1-measure (Powers 2011), Un-
weighted accuracy(UA), Weighted accuracy(WA) (Rozgic et
al. 2012). The results reported in SVAD13 are based on 5-
fold cross validation. To compare with the state of the art, the
results reported in IEMOCAP are based on 10-fold leave-
one-speaker-out(LOSO) cross-validation.

F1−measure =
2 ∗ Precision ∗Recall

Precision+Recall
(9)

UA =
∑

i

correct utterances for emotion i

utterances for emotion i
(10)

WA =
correct utterances

utterances
(11)

5.4 Performance of MDNN

To evaluate the effectiveness of our proposed supervised
multi-path neural network approach, we compare the perfor-
mance of emotion classification with some baseline methods
based on SVAD13 and IEMOCAP. The comparison methods
are as follows:

Deep neural network (DNN)(Ren et al. 2014): The
whole features are putted together into one classifier to get
prediction.

Global Deep neural network(global): Features are
grouped into different local classifiers based on DNN, and
we utilize the concatenated high-level representation fea-
tures of each local classifiers as the input of a global clas-
sifier to get the final result.

Local Deep neural network(local): Features are also
grouped into different local classifiers based on DNN for
training while the final predict is calculated by the mean of
all single local classifiers.

Our proposed multi-path Deep neural network(multi-
path): Local classifiers and global classifiers are trained si-
multaneously through a single objective function. The final
result is calculated by combining results of local classifiers
and global classifiers.
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Table 2: Comparison for different supervised method on SVAD13 and IEMOCAP with different features. A:acoustic. T:text.

Method SVAD13 IEMOCAP
DNN global local multi-path DNN global local multi-path

UA
A 49.3 48.6 53.3 53.7 58.4 59.8 61.6 62.7
T 55.9 56.0 58.4 58.5 59.9 60.3 66.8 66.9

A+T 57.5 59.0 59.8 61.3 72.8 70.0 75.8 76.7

WA
A 51.3 51.0 54.4 54.6 57.6 57.8 60.9 61.8
T 57.4 58.0 60.8 61.2 58.8 59.1 65.5 65.8

A+T 58.5 61.1 59.5 61.7 71.1 68.3 74.6 75.2

F1
A 48.3 48.4 52.3 52.8 57.6 57.9 60.7 61.9
T 55.4 55.8 58.4 58.7 58.3 58.7 65.6 65.8

A+T 56.8 58.8 58.5 60.5 71.8 68.7 75.1 75.6

Table 3: The performance on IEMOCAP dataset with different features and comparison with the state of the art. A:acoustic.
T:text.

Method A(%) T(%) A+T(%)
UA WA UA WA UA WA

SVM [APSIPA ASC, 2012] 60.9 60.8 48.6 48.5 67.4 67.4
SVM [ICASSP, 2015] - - - - 69.2 -
RNN [ICASSP, 2017] 58.8 63.5 - - - -
CNN [ICDM, 2016] 61.3 - 59.3 - 65.1 -

LSTM [ACL, 2017] 57.1 - 73.1 - 75.6 -
MDNN Our Method 62.7 61.8 66.9 65.8 76.7 75.2

As shown in Table 2, the performance of ‘local’ method
including grouped features and separate predictions are gen-
erally better than DNN which can be proved by the obvi-
ous improvement of UA, WA and F1. For ‘feature A’, ‘lo-
cal’ method(52.3%) is +4% than DNN(48.3%) for SVAD13
in F1 measures. However, the ‘global’ method, which is
also with grouped features but predicted by the concate-
nated high-level representation, have a better performance
+2% compared with DNN in SAVD13, while DNN per-
forms better in IEMOCAP. Therefore, ‘global’ method may
be not stable enough for different dataset. Furthermore, tak-
ing ‘feature A’, ‘feature T’ and ‘feature A+T’ all into con-
sideration, multi-path has better performance than any previ-
ous methods. Specifically, for UA, about 4.4% enhancement
has been accomplished in ‘feature A’ in SVAD13. As for
WA, the performance of multi-path is almost 3.2% higher
than DNN(61.7 VS 58.5 for ‘feature A+T’). It verifies that
training local classifiers and global classifier simultaneously
through a single objective function is a more effective way
to take the feature independency and relavance into consid-
eration and improve the emotion recognition performance.

Comparison to the state-of-art method To demonstrate
the comparability and the adaptability of our proposed
MDNN, we also compare the performance on the public
dataset IEMOCAP (Busso et al. 2008) with some state-of-
art methods. The comparison methods are as follows:

[APSIPA ASC, 2012] (Rozgic et al. 2012) propose a en-
semble of trees of binary SVM classifiers to address the
sentence-level multimodal emotion recognition problem.

[ICASSP, 2015] (Jin et al. 2015) This paper generate dif-
ferent kinds of acoustic and lexical features in utterance level
and combine them via early fusion and late fusion to recog-

nize emotion with a SVM classifier.
[ICDM, 2016] (Poria et al. 2016) feed features extracted

by deep convolutional neural networks(CNN) into a multiple
kernel learning classifier to do multimodal emotion recogni-
tion.

[ICASSP, 2017] (Mirsamadi, Barsoum, and Zhang 2017)
This paper study automatically discovering emotionally rel-
evant speech features using a deep recurrent neural net-
work(RNN) and a local attention base feature pooling strat-
egy.

[ACL, 2017] (Poria et al. 2017) This paper propose a
LSTM-based model to capture contextual information be-
tween utterance-level features in the same video.

Table 3 shows the unweighted accuracy(UA) and
weighted accuracy(WA) of competitive methods and our
proposed MDNN. While comparing the performance ‘fea-
ture A+T’, our proposed method outperforms all the base-
line methods that are state-of-the-art. Especially, for the
UA of the ‘feature A+T’, +7.5% compared with [ICASSP
, 2015] using SVM, +11.6% compared with [ICDM, 2016]
using CNN and +1.1% compared with [ACL, 2017] using
LSTM. As for UA of ‘feature A only’, it shows that MDNN
(62.7%) is +1.8% compared with [APSIPA ASC, 2012] us-
ing SVM, +3.9% compared with [ICASSP, 2017] with RNN.
These strongly demonstrate the effectiveness of the super-
vised part of our proposed method.

5.5 Performance of MGNN

To demonstrate the semi-supervised part of our proposed
method, we make comparisons among the performance of
different autoencoder pretraining strategy Stacked Autoen-
coder(SAE) (Vincent et al. 2010), variational autoencoder
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Figure 4: Performance of the semi-supervised methods with
different amount of unlabeled data on SVAD13 dataset of
acoustic features.

(VAE)(Kingma and Welling 2014) with different amount of
unlabeled data on SVAD13 dataset. As show in Table 4,
VAE outperform SAE on different unlabel data size. These
verifies VAE which train the labeled and unlabeled data si-
multaneously be a more effective learning method to solve
the problem of emotion inferring from the real-world voice
data with limited labeled data. Furthermore, we find that the
MGNN which employ semi-VAE as the local part of multi-
path framework, has the best performance. These proof that
our proposed MGNN method which combine semi-VAE and
multi-path method do have an effective impact on the real-
world voice dataset emotion inferring.

5.6 Analysis

unlabeled data size To verify the effectiveness of the un-
labeled data, we test different size of unlabeled data for
MGNN on SVAD13. In Figure 4, as the scale of unlabeled
data increase, the performance gets better gradually which
imply that the semi-supervised learning continues to help
improve the model’s ability to infer emotion from conversa-
tional voice data.

feature contribution analysis We discuss the contribu-
tions of acoustic and textual features. The F1-measure for
3 emotion categories and their average are shown in Fig-
ure 5 on SVAD13. Specifically, for all these we adopt the
MDNN to calculate the performance. As in Figure 5, the per-
formance of ‘Textual Only’ is better than ‘Acoustic Only’ in
SVAD13, which indicates that the textual information can
contribute more to the emotion recognition in the real world
VDAs. Moreover, ‘T+A’ which contains both Textual in-
formation and acoustic information performs best. Specifi-
cally, for the Positive emotion, ‘T+A’ +3.1% compared with
‘Textual Only’, +7.1% compared with ‘Acoustic Only’, and
for Negative emotion, ‘T+A’ +1.7% compared with ‘Textual
Only’, +5.0% compared with ‘Acoustic Only’. These con-
vince that utilize the two modalities simultaneously can be
more effective to infer emotional utterances.

Figure 5: Feature contribution analysis.

Table 4: Performance of the methods about different amount
of unlabeled data with acoustic features on SVAD dataset.

Method None 2k 6k 12k 24k
SAE 48.3 48.8 49.6 49.7 50.0

semi-VAE 48.3 48.8 49.7 50.0 50.4
MGNN 52.8 53.4 53.5 53.8 54.3

6 Conclusion

In this paper, to study the problem of inferring emotion from
conversational voice data, we propose a semi-supervised
multi-path generative neural network. Our main contribu-
tion are as follows: first, to take the feature independency
nature into account and avoid high dimensional input, we
adopt a supervised MDNN framework. Raw features are
trained by groups in local classifiers. Then high-level fea-
tures of each local classifiers are concatenated as input of a
global classifier. These two kinds classifiers are trained si-
multaneously through a single objective function to achieve
a more effective and discriminative emotion inferring. Sec-
ond, to solve the labeled-data-scarcity problem, we extend
the MDNN to a semi-supervised MGNN framework based
on semi-VAE, which utilize labeled data and unlabeled data
as a joint process for training. As shown in the experiment
results based on real-world VDA data SVAD13 and a public
dataset IEMOCAP, our proposed MGNN turns out to be ef-
fective in speech emotion inferring. Furthermore, our work
can be well utilized in real-world applications. For instance,
we can provide emotional response in the VDAs, which con-
tributes to more humanized intelligent service.
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